Exemplo n.º 1
0
    def interpolate(self, expr, offset=0, increment=False, self_subs={}):
        """
        Generate equations interpolating an arbitrary expression into ``self``.

        Parameters
        ----------
        expr : expr-like
            Input expression to interpolate.
        offset : int, optional
            Additional offset from the boundary.
        increment: bool, optional
            If True, generate increments (Inc) rather than assignments (Eq).
        """
        variables = list(retrieve_function_carriers(expr))

        # List of indirection indices for all adjacent grid points
        idx_subs, eqns = self._interpolation_indices(variables, offset)

        # Substitute coordinate base symbols into the interpolation coefficients
        args = [
            expr.subs(v_sub) * b.subs(v_sub)
            for b, v_sub in zip(self._interpolation_coeffs, idx_subs)
        ]

        # Accumulate point-wise contributions into a temporary
        rhs = Scalar(name='sum', dtype=self.dtype)
        summands = [Eq(rhs, 0.)] + [Inc(rhs, i) for i in args]

        # Write/Incr `self`
        lhs = self.subs(self_subs)
        last = [Inc(lhs, rhs)] if increment else [Eq(lhs, rhs)]

        return eqns + summands + last
Exemplo n.º 2
0
    def _interpolation_indices(self, variables, offset=0):
        """
        Generate interpolation indices for the DiscreteFunctions in ``variables``.
        """
        index_matrix, points = self._index_matrix(offset)

        idx_subs = []
        for i, idx in enumerate(index_matrix):
            # Introduce ConditionalDimension so that we don't go OOB
            mapper = {}
            for j, d in zip(idx, self.grid.dimensions):
                p = points[j]
                lb = sympy.And(p >= d.symbolic_min - self._radius, evaluate=False)
                ub = sympy.And(p <= d.symbolic_max + self._radius, evaluate=False)
                condition = sympy.And(lb, ub, evaluate=False)
                mapper[d] = ConditionalDimension(p.name, self._sparse_dim,
                                                 condition=condition, indirect=True)

            # Track Indexed substitutions
            idx_subs.append(OrderedDict([(v, v.subs(mapper)) for v in variables
                                         if v.function is not self]))

        # Equations for the indirection dimensions
        eqns = [Eq(v, k) for k, v in points.items()]
        # Equations (temporaries) for the coefficients
        eqns.extend([Eq(p, c) for p, c in
                     zip(self._point_symbols, self._coordinate_bases)])

        return idx_subs, eqns
Exemplo n.º 3
0
    def inject(self, field, expr, offset=0):
        """
        Generate equations injecting an arbitrary expression into a field.

        Parameters
        ----------
        field : Function
            Input field into which the injection is performed.
        expr : expr-like
            Injected expression.
        offset : int, optional
            Additional offset from the boundary.
        """
        expr = indexify(expr)
        field = indexify(field)

        p, _ = self.gridpoints.indices
        dim_subs = []
        coeffs = []
        for i, d in enumerate(self.grid.dimensions):
            rd = DefaultDimension(name="r%s" % d.name, default_value=self.r)
            dim_subs.append((d, INT(rd + self.gridpoints[p, i])))
            coeffs.append(self.interpolation_coeffs[p, i, rd])
        rhs = prod(coeffs) * expr
        field = field.subs(dim_subs)
        return [Eq(field, field + rhs.subs(dim_subs))]
Exemplo n.º 4
0
    def interpolate(self, expr, offset=0, increment=False, self_subs={}):
        """
        Generate equations interpolating an arbitrary expression into ``self``.

        Parameters
        ----------
        expr : expr-like
            Input expression to interpolate.
        offset : int, optional
            Additional offset from the boundary.
        increment: bool, optional
            If True, generate increments (Inc) rather than assignments (Eq).
        """
        expr = indexify(expr)

        p, _, _ = self.interpolation_coeffs.indices
        dim_subs = []
        coeffs = []
        for i, d in enumerate(self.grid.dimensions):
            rd = DefaultDimension(name="r%s" % d.name, default_value=self.r)
            dim_subs.append((d, INT(rd + self.gridpoints[p, i])))
            coeffs.append(self.interpolation_coeffs[p, i, rd])
        # Apply optional time symbol substitutions to lhs of assignment
        lhs = self.subs(self_subs)
        rhs = prod(coeffs) * expr.subs(dim_subs)

        return [Eq(lhs, lhs + rhs)]
Exemplo n.º 5
0
 def _create_implicit_exprs(self):
     if not len(self._bounds) == 2 * len(self.dimensions):
         raise ValueError(
             "Left and right bounds must be supplied for each dimension")
     n_domains = self.n_domains
     i_dim = self.implicit_dimension
     dat = []
     # Organise the data contained in 'bounds' into a form such that the
     # associated implicit equations can easily be created.
     for j in range(len(self._bounds)):
         index = floor(j / 2)
         d = self.dimensions[index]
         if j % 2 == 0:
             fname = d.min_name
         else:
             fname = d.max_name
         func = Function(name=fname,
                         shape=(n_domains, ),
                         dimensions=(i_dim, ),
                         dtype=np.int32)
         # Check if shorthand notation has been provided:
         if isinstance(self._bounds[j], int):
             bounds = np.full((n_domains, ),
                              self._bounds[j],
                              dtype=np.int32)
             func.data[:] = bounds
         else:
             func.data[:] = self._bounds[j]
         dat.append(Eq(d.thickness[j % 2][0], func[i_dim]))
     return as_tuple(dat)
Exemplo n.º 6
0
    def _add_implicit(self, expressions):
        """
        Create and add any associated implicit expressions.

        Implicit expressions are those not explicitly defined by the user
        but instead are requisites of some specified functionality.
        """
        processed = []
        seen = set()
        for e in expressions:
            if e.subdomain:
                try:
                    dims = [d.root for d in e.free_symbols if isinstance(d, Dimension)]
                    sub_dims = [d.root for d in e.subdomain.dimensions]
                    dims = [d for d in dims if d not in frozenset(sub_dims)]
                    dims.append(e.subdomain.implicit_dimension)
                    if e.subdomain not in seen:
                        processed.extend([i.func(*i.args, implicit_dims=dims) for i in
                                          e.subdomain._create_implicit_exprs()])
                        seen.add(e.subdomain)
                    dims.extend(e.subdomain.dimensions)
                    new_e = Eq(e.lhs, e.rhs, subdomain=e.subdomain, implicit_dims=dims)
                    processed.append(new_e)
                except AttributeError:
                    processed.append(e)
            else:
                processed.append(e)
        return processed
Exemplo n.º 7
0
    def interpolate(self, expr, offset=0, increment=False, self_subs={}):
        """
        Generate equations interpolating an arbitrary expression into ``self``.

        Parameters
        ----------
        expr : expr-like
            Input expression to interpolate.
        offset : int, optional
            Additional offset from the boundary.
        increment: bool, optional
            If True, generate increments (Inc) rather than assignments (Eq).
        """
        # Derivatives must be evaluated before the introduction of indirect accesses
        try:
            expr = expr.evaluate
        except AttributeError:
            # E.g., a generic SymPy expression or a number
            pass

        variables = list(retrieve_function_carriers(expr))

        # List of indirection indices for all adjacent grid points
        idx_subs, temps = self._interpolation_indices(variables, offset)

        # Substitute coordinate base symbols into the interpolation coefficients
        args = [
            expr.xreplace(v_sub) * b.xreplace(v_sub)
            for b, v_sub in zip(self._interpolation_coeffs, idx_subs)
        ]

        # Accumulate point-wise contributions into a temporary
        rhs = Scalar(name='sum', dtype=self.dtype)
        summands = [Eq(rhs, 0., implicit_dims=self.dimensions)]
        summands.extend(
            [Inc(rhs, i, implicit_dims=self.dimensions) for i in args])

        # Write/Incr `self`
        lhs = self.subs(self_subs)
        last = [Inc(lhs, rhs)] if increment else [Eq(lhs, rhs)]

        return temps + summands + last
Exemplo n.º 8
0
    def interpolate(self,
                    expr,
                    offset=0,
                    u_t=None,
                    p_t=None,
                    cummulative=False):
        """Creates a :class:`sympy.Eq` equation for the interpolation
        of an expression onto this sparse point collection.

        :param expr: The expression to interpolate.
        :param offset: Additional offset from the boundary for
                       absorbing boundary conditions.
        :param u_t: (Optional) time index to use for indexing into
                    field data in `expr`.
        :param p_t: (Optional) time index to use for indexing into
                    the sparse point data.
        :param cummulative: (Optional) If True, perform an increment rather
                            than an assignment. Defaults to False.
        """
        expr = indexify(expr)

        # Apply optional time symbol substitutions to expr
        if u_t is not None:
            time = self.grid.time_dim
            t = self.grid.stepping_dim
            expr = expr.subs(t, u_t).subs(time, u_t)

        variables = list(retrieve_indexed(expr))
        # List of indirection indices for all adjacent grid points
        index_matrix = [
            tuple(idx + ii + offset
                  for ii, idx in zip(inc, self.coordinate_indices))
            for inc in self.point_increments
        ]
        # Generate index substituions for all grid variables
        idx_subs = []
        for i, idx in enumerate(index_matrix):
            v_subs = [(v, v.base[v.indices[:-self.grid.dim] + idx])
                      for v in variables]
            idx_subs += [OrderedDict(v_subs)]
        # Substitute coordinate base symbols into the coefficients
        subs = OrderedDict(zip(self.point_symbols, self.coordinate_bases))
        rhs = sum([
            expr.subs(vsub) * b.subs(subs)
            for b, vsub in zip(self.coefficients, idx_subs)
        ])
        # Apply optional time symbol substitutions to lhs of assignment
        lhs = self if p_t is None else self.subs(self.indices[0], p_t)

        rhs = rhs + lhs if cummulative is True else rhs

        return [Eq(lhs, rhs)]
Exemplo n.º 9
0
 def __new__(cls, *args, **kwargs):
     if len(args) == 1:
         input_expr = args[0]
         assert isinstance(input_expr, Eq)
         obj = LoweredEq(input_expr)
     elif len(args) == 2:
         obj = LoweredEq(Eq(*args, evaluate=False))
     else:
         raise ValueError("Cannot construct DummyEq from args=%s" %
                          str(args))
     return ClusterizedEq.__new__(cls,
                                  obj,
                                  ispace=obj.ispace,
                                  dspace=obj.dspace)
Exemplo n.º 10
0
    def guard(self, expr=None, offset=0):
        """
        Generate guarded expressions, that is expressions that are evaluated
        by an Operator only if certain conditions are met.  The introduced
        condition, here, is that all grid points in the support of a sparse
        value must fall within the grid domain (i.e., *not* on the halo).

        Parameters
        ----------
        expr : expr-like, optional
            Input expression, from which the guarded expression is derived.
            If not specified, defaults to ``self``.
        offset : int, optional
            Relax the guard condition by introducing a tolerance offset.
        """
        _, points = self._index_matrix(offset)

        # Guard through ConditionalDimension
        conditions = {}
        for d, idx in zip(self.grid.dimensions, self._coordinate_indices):
            p = points[idx]
            lb = sympy.And(p >= d.symbolic_min - offset, evaluate=False)
            ub = sympy.And(p <= d.symbolic_max + offset, evaluate=False)
            conditions[p] = sympy.And(lb, ub, evaluate=False)
        condition = sympy.And(*conditions.values(), evaluate=False)
        cd = ConditionalDimension("%s_g" % self._sparse_dim,
                                  self._sparse_dim,
                                  condition=condition)

        if expr is None:
            out = self.indexify().xreplace({self._sparse_dim: cd})
        else:
            functions = {
                f
                for f in retrieve_function_carriers(expr)
                if f.is_SparseFunction
            }
            out = indexify(expr).xreplace(
                {f._sparse_dim: cd
                 for f in functions})

        # Temporaries for the indirection dimensions
        temps = [
            Eq(v, k, implicit_dims=self.dimensions) for k, v in points.items()
            if v in conditions
        ]

        return out, temps
Exemplo n.º 11
0
    def _extract_increments(self, cluster, template, **kwargs):
        """
        Extract the RHS of non-local tensor expressions performing an associative
        and commutative increment, and assign them to temporaries.
        """
        processed = []
        for e in cluster.exprs:
            if e.is_Increment and e.lhs.function.is_Input:
                handle = Scalar(name=template(), dtype=e.dtype).indexify()
                if q_scalar(e.rhs):
                    extracted = e.rhs
                else:
                    extracted = e.rhs.func(*[i for i in e.rhs.args if i != e.lhs])
                processed.extend([Eq(handle, extracted), e.func(e.lhs, handle)])
            else:
                processed.append(e)

        return cluster.rebuild(processed)
Exemplo n.º 12
0
    def _extract_nonaffine_indices(self, cluster, template, **kwargs):
        """
        Extract non-affine array indices, and assign them to temporaries.
        """
        make = lambda: Scalar(name=template(), dtype=np.int32).indexify()

        mapper = OrderedDict()
        for e in cluster.exprs:
            for indexed in retrieve_indexed(e):
                for i, d in zip(indexed.indices, indexed.function.indices):
                    if q_affine(i, d) or q_scalar(i):
                        continue
                    elif i not in mapper:
                        mapper[i] = make()

        processed = [Eq(v, k) for k, v in mapper.items()]
        processed.extend([e.xreplace(mapper) for e in cluster.exprs])

        return cluster.rebuild(processed)
Exemplo n.º 13
0
    def _eliminate_inter_stencil_redundancies(self, cluster, template,
                                              **kwargs):
        """
        Search aliasing expressions and capture them into vector temporaries.

        Examples
        --------
        1) temp = (a[x,y,z]+b[x,y,z])*c[t,x,y,z]
           >>>
           ti[x,y,z] = a[x,y,z] + b[x,y,z]
           temp = ti[x,y,z]*c[t,x,y,z]

        2) temp1 = 2.0*a[x,y,z]*b[x,y,z]
           temp2 = 3.0*a[x,y,z+1]*b[x,y,z+1]
           >>>
           ti[x,y,z] = a[x,y,z]*b[x,y,z]
           temp1 = 2.0*ti[x,y,z]
           temp2 = 3.0*ti[x,y,z+1]
        """
        # For more information about "aliases", refer to collect.__doc__
        aliases = collect(cluster.exprs)

        # Redundancies will be stored in space-varying temporaries
        graph = FlowGraph(cluster.exprs)
        time_invariants = {
            v.rhs: graph.time_invariant(v)
            for v in graph.values()
        }

        # Find the candidate expressions
        processed = []
        candidates = OrderedDict()
        for k, v in graph.items():
            # Cost check (to keep the memory footprint under control)
            naliases = len(aliases.get(v.rhs))
            cost = estimate_cost(v, True) * naliases
            test0 = lambda: cost >= self.MIN_COST_ALIAS and naliases > 1
            test1 = lambda: cost >= self.MIN_COST_ALIAS_INV and time_invariants[
                v.rhs]
            if test0() or test1():
                candidates[v.rhs] = k
            else:
                processed.append(v)

        # Create alias Clusters and all necessary substitution rules
        # for the new temporaries
        alias_clusters = []
        subs = {}
        for origin, alias in aliases.items():
            if all(i not in candidates for i in alias.aliased):
                continue

            # The write-to Intervals
            writeto = [
                Interval(i.dim, *alias.relaxed_diameter.get(i.dim, (0, 0)))
                for i in cluster.ispace.intervals if not i.dim.is_Time
            ]
            writeto = IntervalGroup(writeto)

            # Optimization: no need to retain a SpaceDimension if it does not
            # induce a flow/anti dependence (below, `i.offsets` captures this, by
            # telling how much halo will be needed to honour such dependences)
            dep_inducing = [i for i in writeto if any(i.offsets)]
            try:
                index = writeto.index(dep_inducing[0])
                writeto = IntervalGroup(writeto[index:])
            except IndexError:
                warning("Couldn't optimize some of the detected redundancies")

            # Create a temporary to store `alias`
            dimensions = [d.root for d in writeto.dimensions]
            halo = [(abs(i.lower), abs(i.upper)) for i in writeto]
            array = Array(name=template(),
                          dimensions=dimensions,
                          halo=halo,
                          dtype=cluster.dtype)

            # Build up the expression evaluating `alias`
            access = tuple(i.dim - i.lower for i in writeto)
            expression = Eq(array[access], origin)

            # Create the substitution rules so that we can use the newly created
            # temporary in place of the aliasing expressions
            for aliased, distance in alias.with_distance:
                assert all(i.dim in distance.labels for i in writeto)
                access = [i.dim - i.lower + distance[i.dim] for i in writeto]
                if aliased in candidates:
                    # It would *not* be in `candidates` if part of a composite alias
                    subs[candidates[aliased]] = array[access]
                subs[aliased] = array[access]

            # Construct the `alias` IterationSpace
            intervals, sub_iterators, directions = cluster.ispace.args
            ispace = IterationSpace(intervals.add(writeto), sub_iterators,
                                    directions)

            # Construct the `alias` DataSpace
            mapper = detect_accesses(expression)
            parts = {
                k: IntervalGroup(build_intervals(v)).add(ispace.intervals)
                for k, v in mapper.items() if k
            }
            dspace = DataSpace(cluster.dspace.intervals, parts)

            # Create a new Cluster for `alias`
            alias_clusters.append(Cluster([expression], ispace, dspace))

        # Switch temporaries in the expression trees
        processed = [e.xreplace(subs) for e in processed]

        return alias_clusters + [cluster.rebuild(processed)]
Exemplo n.º 14
0
    def _eliminate_inter_stencil_redundancies(self, cluster, template, **kwargs):
        """
        Search for redundancies across the expressions and expose them
        to the later stages of the optimisation pipeline by introducing
        new temporaries of suitable rank.

        Two type of redundancies are sought:

            * Time-invariants, and
            * Across different space points

        Examples
        ========
        Let ``t`` be the time dimension, ``x, y, z`` the space dimensions. Then:

        1) temp = (a[x,y,z]+b[x,y,z])*c[t,x,y,z]
           >>>
           ti[x,y,z] = a[x,y,z] + b[x,y,z]
           temp = ti[x,y,z]*c[t,x,y,z]

        2) temp1 = 2.0*a[x,y,z]*b[x,y,z]
           temp2 = 3.0*a[x,y,z+1]*b[x,y,z+1]
           >>>
           ti[x,y,z] = a[x,y,z]*b[x,y,z]
           temp1 = 2.0*ti[x,y,z]
           temp2 = 3.0*ti[x,y,z+1]
        """
        if cluster.is_sparse:
            return cluster

        # For more information about "aliases", refer to collect.__doc__
        mapper, aliases = collect(cluster.exprs)

        # Redundancies will be stored in space-varying temporaries
        g = cluster.trace
        indices = g.space_indices
        time_invariants = {v.rhs: g.time_invariant(v) for v in g.values()}

        # Find the candidate expressions
        processed = []
        candidates = OrderedDict()
        for k, v in g.items():
            # Cost check (to keep the memory footprint under control)
            naliases = len(mapper.get(v.rhs, []))
            cost = estimate_cost(v, True)*naliases
            if cost >= self.MIN_COST_ALIAS and (naliases > 1 or time_invariants[v.rhs]):
                candidates[v.rhs] = k
            else:
                processed.append(v)

        # Create alias Clusters and all necessary substitution rules
        # for the new temporaries
        alias_clusters = ClusterGroup()
        rules = OrderedDict()
        for origin, alias in aliases.items():
            if all(i not in candidates for i in alias.aliased):
                continue
            # Construct an iteration space suitable for /alias/
            intervals, sub_iterators, directions = cluster.ispace.args
            intervals = [Interval(i.dim, *alias.relaxed_diameter.get(i.dim, i.limits))
                         for i in cluster.ispace.intervals]
            ispace = IterationSpace(intervals, sub_iterators, directions)

            # Optimization: perhaps we can lift the cluster outside the time dimension
            if all(time_invariants[i] for i in alias.aliased):
                ispace = ispace.project(lambda i: not i.is_Time)

            # Build a symbolic function for /alias/
            intervals = ispace.intervals
            halo = [(abs(intervals[i].lower), abs(intervals[i].upper)) for i in indices]
            function = Array(name=template(), dimensions=indices, halo=halo)
            access = tuple(i - intervals[i].lower for i in indices)
            expression = Eq(function[access], origin)

            # Construct a data space suitable for /alias/
            mapper = detect_accesses(expression)
            parts = {k: IntervalGroup(build_intervals(v)).add(intervals)
                     for k, v in mapper.items() if k}
            dspace = DataSpace([i.zero() for i in intervals], parts)

            # Create a new Cluster for /alias/
            alias_clusters.append(Cluster([expression], ispace, dspace))

            # Add substitution rules
            for aliased, distance in alias.with_distance:
                access = [i - intervals[i].lower + j for i, j in distance if i in indices]
                rules[candidates[aliased]] = function[access]
                rules[aliased] = function[access]

        # Group clusters together if possible
        alias_clusters = groupby(alias_clusters).finalize()
        alias_clusters.sort(key=lambda i: i.is_dense)

        # Switch temporaries in the expression trees
        processed = [e.xreplace(rules) for e in processed]

        return alias_clusters + [cluster.rebuild(processed)]
Exemplo n.º 15
0
def first_touch(array):
    """
    Uses an Operator to initialize the given array in the same pattern that
    would later be used to access it.
    """
    devito.Operator(Eq(array, 0.))()