def create_mtcnn_net(p_model_path=None, r_model_path=None, o_model_path=None, use_cuda=True): pnet, rnet, onet = None, None, None if p_model_path is not None: pnet = PNet(use_cuda=use_cuda) if(use_cuda): pnet.load_state_dict(torch.load(p_model_path)) pnet.cuda() else: # forcing all GPU tensors to be in CPU while loading pnet.load_state_dict(torch.load(p_model_path, map_location=lambda storage, loc: storage)) pnet.eval() if r_model_path is not None: rnet = RNet(use_cuda=use_cuda) if (use_cuda): rnet.load_state_dict(torch.load(r_model_path)) rnet.cuda() else: rnet.load_state_dict(torch.load(r_model_path, map_location=lambda storage, loc: storage)) rnet.eval() if o_model_path is not None: onet = ONet(use_cuda=use_cuda) if (use_cuda): onet.load_state_dict(torch.load(o_model_path)) onet.cuda() else: onet.load_state_dict(torch.load(o_model_path, map_location=lambda storage, loc: storage)) onet.eval() return pnet,rnet,onet
def create_mtcnn_net(p_model_path=None, r_model_path=None, o_model_path=None, use_cuda=True, use_tucker2=False): pnet, rnet, onet = None, None, None if p_model_path is not None: pnet = PNet(use_cuda=use_cuda) if (use_cuda): pnet.load_state_dict(torch.load(p_model_path)) pnet.cuda() else: # forcing all GPU tensors to be in CPU while loading pnet.load_state_dict( torch.load(p_model_path, map_location=lambda storage, loc: storage)) pnet.eval() if r_model_path is not None: rnet = RNet(use_cuda=use_cuda) if (use_cuda): rnet.load_state_dict(torch.load(r_model_path)) rnet.cuda() else: rnet.load_state_dict( torch.load(r_model_path, map_location=lambda storage, loc: storage)) rnet.eval() if o_model_path is not None: onet = ONet(use_cuda=use_cuda) if (use_cuda): ckp = torch.load(o_model_path) if use_tucker2: onet.conv2 = Tkd2Conv(onet.conv2, 21, 25) onet.conv3 = Tkd2Conv(onet.conv3, 36, 35) onet.conv4 = Tkd2Conv(onet.conv4, 33, 18) onet.load_state_dict(ckp) onet.cuda() else: if use_tucker2: onet.conv2 = Tkd2Conv(onet.conv2, 21, 25) onet.conv3 = Tkd2Conv(onet.conv3, 36, 35) onet.conv4 = Tkd2Conv(onet.conv4, 33, 18) onet.load_state_dict( torch.load(o_model_path, map_location=lambda storage, loc: storage)) onet.eval() return pnet, rnet, onet
def create_mtcnn_net(p_model_path=None, r_model_path=None, o_model_path=None, use_cuda=True): pnet, rnet, onet = None, None, None if p_model_path is not None: pnet = PNet(use_cuda=use_cuda) pnet.load_state_dict(torch.load(p_model_path)) if (use_cuda): pnet.cuda() pnet.eval() if r_model_path is not None: rnet = RNet(use_cuda=use_cuda) rnet.load_state_dict(torch.load(r_model_path)) if (use_cuda): rnet.cuda() rnet.eval() if o_model_path is not None: onet = ONet(use_cuda=use_cuda) onet.load_state_dict(torch.load(o_model_path)) if (use_cuda): onet.cuda() onet.eval() return pnet, rnet, onet
def create_mtcnn_net(p_model_path=None, r_model_path=None, o_model_path=None, use_cuda=True): pnet, rnet, onet = None, None, None if p_model_path is not None: pnet = PNet(use_cuda=use_cuda) if(use_cuda): pnet = torch.nn.DataParallel(pnet,device_ids=[0]) #slove load pretrained error pnet.load_state_dict(torch.load(p_model_path)) #pnet.cuda() pnet = pnet.cuda() #pnet = torch.nn.DataParallel(net, device_ids=range(torch.cuda.device_count())) cudnn.benchmark = True else: # forcing all GPU tensors to be in CPU while loading pnet.load_state_dict(torch.load(p_model_path, map_location=lambda storage, loc: storage)) pnet.eval() if r_model_path is not None: rnet = RNet(use_cuda=use_cuda) if (use_cuda): rnet = torch.nn.DataParallel(rnet,device_ids=[0]) rnet.load_state_dict(torch.load(r_model_path)) #rnet.cuda() rnet=rnet.cuda() cudnn.benchmark=True else: rnet.load_state_dict(torch.load(r_model_path, map_location=lambda storage, loc: storage)) rnet.eval() if o_model_path is not None: onet = ONet(use_cuda=use_cuda) if (use_cuda): onet = torch.nn.DataParallel(onet,device_ids=[0]) onet.load_state_dict(torch.load(o_model_path)) onet.cuda() onet=onet.cuda() cudnn.benchmark=True else: onet.load_state_dict(torch.load(o_model_path, map_location=lambda storage, loc: storage)) onet.eval() return pnet,rnet,onet
tmpstr += ', weights={}'.format(weights) if show_parameters: tmpstr += ', parameters={}'.format(params) tmpstr += '\n' tmpstr = tmpstr + ')' return tmpstr class Model(nn.Module): def __init__(self): super(Model,self).__init__() self.conv0 = nn.Conv2d(1, 16, kernel_size=3, padding=5) self.conv1 = nn.Conv2d(16, 32, kernel_size=3) def forward(self, x): h = self.conv0(x) h = self.conv1(h) return h model = RNet(is_train=False, use_cuda=True) print(torch_summarize(model)) # Summarize Model from pytorch_modelsummary import ModelSummary ms = ModelSummary(model, input_size=(1, 3, 12, 12))
def train_rnet(model_store_path, end_epoch, imdb, batch_size, frequent=50, base_lr=0.01, use_cuda=True): if not os.path.exists(model_store_path): os.makedirs(model_store_path) lossfn = LossFn() net = RNet(is_train=True, use_cuda=use_cuda) net.train() if use_cuda: net.cuda() optimizer = torch.optim.Adam(net.parameters(), lr=base_lr) train_data = TrainImageReader(imdb, 24, batch_size, shuffle=True) for cur_epoch in range(1, end_epoch + 1): train_data.reset() accuracy_list = [] cls_loss_list = [] bbox_loss_list = [] landmark_loss_list = [] for batch_idx, (image, (gt_label, gt_bbox, gt_landmark)) in enumerate(train_data): im_tensor = [ image_tools.convert_image_to_tensor(image[i, :, :, :]) for i in range(image.shape[0]) ] im_tensor = torch.stack(im_tensor) im_tensor = Variable(im_tensor) gt_label = Variable(torch.from_numpy(gt_label).float()) gt_bbox = Variable(torch.from_numpy(gt_bbox).float()) gt_landmark = Variable(torch.from_numpy(gt_landmark).float()) if use_cuda: im_tensor = im_tensor.cuda() gt_label = gt_label.cuda() gt_bbox = gt_bbox.cuda() gt_landmark = gt_landmark.cuda() cls_pred, box_offset_pred = net(im_tensor) # all_loss, cls_loss, offset_loss = lossfn.loss(gt_label=label_y,gt_offset=bbox_y, pred_label=cls_pred, pred_offset=box_offset_pred) cls_loss = lossfn.cls_loss(gt_label, cls_pred) box_offset_loss = lossfn.box_loss(gt_label, gt_bbox, box_offset_pred) # landmark_loss = lossfn.landmark_loss(gt_label,gt_landmark,landmark_offset_pred) all_loss = cls_loss * 1.0 + box_offset_loss * 0.5 if batch_idx % frequent == 0: accuracy = compute_accuracy(cls_pred, gt_label) show1 = accuracy.data.tolist() show2 = cls_loss.data.tolist() show3 = box_offset_loss.data.tolist() # show4 = landmark_loss.data.tolist() show5 = all_loss.data.tolist() print( "%s : Epoch: %d, Step: %d, accuracy: %s, det loss: %s, bbox loss: %s, all_loss: %s, lr:%s " % (datetime.datetime.now(), cur_epoch, batch_idx, show1, show2, show3, show5, base_lr)) accuracy_list.append(accuracy) cls_loss_list.append(cls_loss) bbox_loss_list.append(box_offset_loss) # landmark_loss_list.append(landmark_loss) optimizer.zero_grad() all_loss.backward() optimizer.step() accuracy_avg = torch.mean(torch.stack(accuracy_list)) cls_loss_avg = torch.mean(torch.stack(cls_loss_list)) bbox_loss_avg = torch.mean(torch.stack(bbox_loss_list)) # landmark_loss_avg = torch.mean(torch.stack(landmark_loss_list)) show6 = accuracy_avg.data.tolist() show7 = cls_loss_avg.data.tolist() show8 = bbox_loss_avg.data.tolist() # show9 = landmark_loss_avg.data.tolist() print("Epoch: %d, accuracy: %s, cls loss: %s, bbox loss: %s" % (cur_epoch, show6, show7, show8)) torch.save( net.state_dict(), os.path.join(model_store_path, "rnet_epoch_%d.pt" % cur_epoch)) torch.save( net, os.path.join(model_store_path, "rnet_epoch_model_%d.pkl" % cur_epoch))