# ------------------------------------------------------------------------- # 
# now call DF functions to fit the 
# intensity histogram to a mixture of von-Mises-Fischer distribution
angles = ResultsFFT.X
values = ResultsFFT.Y

# convert the angles from degrees to radians:
r_X = np.radians( angles )
X_samples = r_X

# normalize the light intensity data (FFT): 
n_X = dC.normalizeIntensity( angles, values, YNplot='Yes' )
Int = n_X[:,1]

# make points of angles based on the light intensity: 
p_X = dC.makePoints( n_X, YNplot='Yes' )

# select model to fit: 
#model_test = '1vM'
#model_test = '2vM'
#model_test = '3vM'
#model_test = '2vM1U'
model_test = '1vM1U'
#%% for a 1vM1U model: 
#model_test = '1vM1U'
if model_test == '1vM1U':
    # parameters for the von Mises member:
    p1_ = 0.7                   # weight contribution of the 1st von Mises 
    pu_ = 1. - p1_              # weight contribution of Uniform distribut 
    kappa1_ = np.array((12.0))  # concentration for the 1st von Mises member 
    loc1_ = -np.pi/9.0          # location for the 1st von Mises member 
Exemplo n.º 2
0
# ------------------------------------------------------------------------- #
    
# read the data from the csv file: 
angles, values, mydat = dC.imageCVS2Data( csv_path )

# convert the angles from degrees to radians:
angles = angles
r_X = np.radians( angles )
X_samples = r_X

# normalize the light intensity data (FFT): 
n_X = dC.normalizeIntensity( angles, values, YNplot='Yes' )
Int = n_X[:,1]

# make points of angles based on the light intensity: 
p_X = ( dC.makePoints( n_X, YNplot='Yes' )  + np.pi/2 )/np.pi
#p_X = p_X + np.pi/2
nn = len(p_X)

u_X = np.random.uniform(0.0,np.pi,nn)
u_X = np.sort(np.unique(u_X))/np.pi

hh = np.arange(1/(nn+1), nn/(nn+1), 1/(nn+1))
#hh = np.arange(0, nn/(nn+1), 1/(nn+1))
#hh = np.arange(1/(nn+1), 1, 1/(nn+1))

fig, ax00 = plt.subplots(1, 1, figsize=(6, 6))
ax00.plot(hh, p_X[1::], color='r', linestyle=':', label='data')
ax00.plot(hh, u_X[1::], color='b', linestyle=':', label='uniform')
ax00.plot([0, 1], [0, 1], color='g', linestyle='--', label='45$^o$ line')
ax00.plot(hh, hh, color='m')