Exemplo n.º 1
0
 def names(self, value):
     if len(self._names) == get_length(value):
         if is_iterable_string(value):
             self._names = Array(value)
             self._update_names_to_index()
         else:
             msg = 'non string names are not allowed'
             raise ValueError(msg)
     else:
         msg = 'number of names must match the number of columns'
         raise ValueError(msg)
Exemplo n.º 2
0
 def _append_new_column(self, name, value):
     assert is_string(name)
     assert name not in self._names
     tmp = self._create_array(value)
     if len(tmp) == self._nrow:
         # FIXME: Override Array.append by checking for type
         self._names.extend(Array([name]))
         self._data.extend(Array([tmp]))
         self._update_nrow_ncol()
         self._update_names_to_index()
     else:
         msg = 'value does not have match existing number of rows = {}'
         raise ValueError(msg.format(self._nrow))
Exemplo n.º 3
0
    def _init_from_dict(self, data):
        scalarity_per_value = [is_scalar(value) for value in data.values()]
        if all(scalarity_per_value):
            # Box all scalar values
            _data = [Array(value) for value in data.values()]
        elif any(scalarity_per_value):
            # At least one value is scalar but all values are not scalars
            # Allocate a list and put non-scalar values inside.
            _data = [None] * len(data)
            length_per_value = [None] * len(data)
            for i, value in enumerate(data.values()):
                if not scalarity_per_value[i]:
                    _data[i] = Array(value)
                    length_per_value[i] = len(_data[i])

            # All non-scalar columns must have the same length or
            # we raise a ValueError
            length_non_scalars = set([
                length for length, scalarity in zip(
                    length_per_value, scalarity_per_value) if not scalarity
            ])
            if len(length_non_scalars) > 1:
                msg = 'columns do not have the same length'
                raise ValueError(msg)
            elif len(length_non_scalars) == 0:
                msg = 'you found a bug, please report it'
                raise InternalError(msg)
            else:
                length = list(length_non_scalars)[0]

            # Now that we have the length, we can fill out the columns
            # using scalars.
            for i, value in enumerate(data.values()):
                if scalarity_per_value[i]:
                    _data[i] = Array([value] * length)
        else:
            # All values are non-scalars. No need to box them.
            _data = [Array(value) for value in data.values()]

        # Ensure dict keys are string types
        if not is_iterable_string(data.keys()):
            msg = 'non string names are not allowed'
            raise ValueError(msg)
        else:
            _names = data.keys()

        # Ensure all columns have the same length
        if not is_list_same([len(column) for column in _data]):
            msg = 'columns do not have the same lengths'
            raise ValueError(msg)

        # Set curated internal vars
        self._data = Array(_data)
        self._names = Array(_names)

        # Update all other fields
        self._update_nrow_ncol()
        self._update_names_to_index()
Exemplo n.º 4
0
def which(array, ignore_missing=False):
    assert isinstance(array, Array)
    if array.dtype is bool:
        if not ignore_missing:
            if any(is_na(array)):
                msg = 'logical array contains missing values (None)'
                raise IndexError(msg)
        return Array([i for i, e in enumerate(array) if e])
    else:
        msg = 'array must be logical (dtype = bool)'
        raise TypeError(msg)
Exemplo n.º 5
0
 def groupby(self, names=None):
     groupby_dict, selected_columns = self._get_groupby_dict(names)
     print('selected_columns =', selected_columns)
     print('len(groupby_dict) =', len(groupby_dict))
     for row in groupby_dict.iterkeys():
         import time
         start = time.time()
         selected_rows = Array([True] * self._nrow)
         for i, e in zip(selected_columns, row):
             if any(selected_rows):
                 tmp = self._data[i][selected_rows]._eqnone(e)
                 selected_rows[selected_rows] = \
                     selected_rows[selected_rows] & tmp
             else:
                 break
         groupby_dict[row] = selected_rows
         end = time.time()
         time_taken = end - start
         print('time_taken =', time_taken)
     return groupby_dict
Exemplo n.º 6
0
    def rename(self, rename_dict):
        '''
            Rename the columns of the DataFrame object. Renaming happens
            in place.

            Args
            -----
            rename_dict (dict): a dictionary of the form
                {'existing_column_name': 'new_column_name', ... }. Keys of
                `rename_dict` are the existing column names. Values of
                `rename_dict` are the intended new column names.

            Returns
            --------
            Nothing. Renaming happens in place.
        '''
        assert isinstance(rename_dict, dict)
        updated_names = Array(self._names)
        for current, new in rename_dict.items():
            # FIXME: This will fail when some names are unicode but
            # others are not.
            updated_names[self._names_to_index[current]] = new
        if is_iterable_string(updated_names):
            if is_iterable_unique(updated_names):
                self._names = updated_names
                self._update_names_to_index()
                if set(self._names_to_index.keys()) != set(self._names):
                    msg = ('renaming violated internal consistency ',
                           'this is a bug, please report it')
                    raise InternalError(msg)
            else:
                msg = 'renaming cannot create duplicate names'
                raise ValueError(msg)
        else:
            msg = 'non string names are not allowed'
            raise ValueError(msg)
Exemplo n.º 7
0
 def _create_array(self, value):
     if is_scalar(value):
         return Array([value] * self._nrow)
     else:
         return Array(value)
Exemplo n.º 8
0
 def __getitem__(self, key):
     if is_float(key):
         msg = 'float index is not supported; please cast to int'
         raise KeyError(msg)
     elif is_bool(key):
         msg = 'logical indexing must provide a list of full length'
         raise KeyError(msg)
     elif is_integer(key):
         return self._data[key]
     elif is_string(key):
         return self._data[self._names_to_index[key]]
     elif isinstance(key, slice):
         return type(self)(_DataFrameSlice(self._data[key],
                                           self._names[key]))
     elif isinstance(key, Iterable) and not isinstance(key, tuple):
         if is_iterable_string(key):
             key = [self._names_to_index[k] for k in key]
         if not is_iterable_unique(self._names[key]):
             msg = 'duplicate column names found'
             raise KeyError(msg)
         return type(self)(_DataFrameSlice(self._data[key],
                                           self._names[key]))
     elif isinstance(key, tuple):
         # Dual Indexing. Select both rows and columns.
         if len(key) == 2:
             rowkey = key[0]
             colkey = key[1]
             if is_float(colkey):
                 msg = ('float column index is not supported; '
                        'please cast to int')
                 raise KeyError(msg)
             elif is_bool(colkey):
                 msg = ('logical column indexing must provide a '
                        'list of full length')
                 raise KeyError(msg)
             elif is_integer(colkey):
                 return self._data[colkey][rowkey]
             elif is_string(colkey):
                 return self._data[self._names_to_index[colkey]][rowkey]
             elif isinstance(colkey, (slice, Iterable)):
                 if isinstance(colkey, Iterable):
                     if is_iterable_string(colkey):
                         colkey = [self._names_to_index[k] for k in colkey]
                 _names = self._names[colkey]
                 if not is_iterable_unique(_names):
                     msg = 'duplicate column names found'
                     raise KeyError(msg)
                 if is_integer(rowkey):
                     rowkey = [rowkey]
                 _data = Array(
                     [column[rowkey] for column in self._data[colkey]])
                 return type(self)(_DataFrameSlice(_data, _names))
             else:
                 # Catchall for all other column addresses
                 msg = ('column address must be int, string, slice,'
                        ' or iterable')
                 raise KeyError(msg)
         else:
             msg = 'tuple indexing must have exactly 2 elements'
             raise KeyError(msg)
     elif isinstance(key, Iterable):
         return self[list(key)]
     else:
         # Catchall for all other addresses
         msg = 'address must be int, string, list, slice, or a 2-tuple'
         raise KeyError(msg)
Exemplo n.º 9
0
class DataFrame(object):
    _print_max_nrows = 60
    _print_max_cols = 10

    def __init__(self, data={}):
        if isinstance(data, dict):
            self._init_from_dict(data)
        elif isinstance(data, type(self)):
            # This does not copy the underlying data a la Python and pandas.
            self._data = data._data
            self._names = data._names
            self._nrow = data._nrow
            self._ncol = data._ncol
            self._update_nrow_ncol()
            self._update_names_to_index()
        elif isinstance(data, _DataFrameSlice):
            self._data = data._data
            self._names = data._names
            self._update_nrow_ncol()
            self._update_names_to_index()
        else:
            # Default constructor only supports dict-like objects
            # Use alternate constructors for numpy/list/tuple, etc.
            msg = ('{} construction from {} is not supported; see '
                   'alternate constructors DataFrame.from_*')
            msg = msg.format(self.__class__.__name__, type(data))
            raise NotImplementedError(msg)

    @classmethod
    def from_dict(cls, data):
        assert isinstance(data, dict)
        return cls(data)

    @classmethod
    def from_items(cls, items):
        # Ensure names are unique
        if is_list_unique([name for name, _ in items]):
            return cls(OrderedDict(items))
        else:
            raise ValueError('duplicate column names found')

    @classmethod
    def from_rows(cls, list_of_rows, names=None):
        nrow = get_length(list_of_rows)
        ncol_per_row = [get_length(row) for row in list_of_rows]
        if is_list_same(ncol_per_row):
            if len(ncol_per_row) == 0:
                ncol = 0
            else:
                ncol = ncol_per_row[0]
            if names is None:
                names = _get_generic_names(ncol)
            if ncol == get_length(names):
                items = [(names[j], [list_of_rows[i][j] for i in range(nrow)])
                         for j in range(ncol)]
                return cls.from_items(items)
            else:
                msg = 'number of names do not match the number of columns'
                raise ValueError(msg)
        else:
            msg = 'all rows do not have the same number of columns'
            raise ValueError(msg)

    @classmethod
    def from_columns(cls, list_of_columns, names=None):
        ncol = get_length(list_of_columns)
        if names is None:
            names = _get_generic_names(ncol)
        if ncol == get_length(names):
            items = [(names[j], list_of_columns[j]) for j in range(ncol)]
            return cls.from_items(items)
        else:
            msg = 'number of names do not match the number of columns'
            raise ValueError(msg)

    @classmethod
    def from_numpy(cls, array, names=None):
        assert isinstance(array, np.ndarray)
        if len(array.shape) == 2:
            columns = [array[:, j] for j in range(array.shape[1])]
            return cls.from_columns(columns, names)
        else:
            msg = 'numpy array dimensions must be exactly 2'
            raise ValueError(msg)

    @classmethod
    def from_pandas(cls, df):
        if isinstance(df, pd.Series):
            msg = ('pandas Series is not supported, please use pandas '
                   'DataFrame instead')
            raise ValueError(msg)
        elif isinstance(df, pd.DataFrame):
            df.reset_index(drop=True, inplace=True)
            items = [(name, df[name]) for name in df]
            return cls.from_items(items)
        else:
            msg = 'pandas DataFrame required'
            raise ValueError(msg)

    @classmethod
    def from_shape(cls, shape, names=None):
        if get_length(shape) == 2:
            if is_iterable_integer(shape):
                if (shape[0] >= 0) and (shape[1] >= 0):
                    if names is None:
                        names = _get_generic_names(shape[1])
                    if shape[1] == get_length(names):
                        items = [(names[j], [None for i in range(shape[0])])
                                 for j in range(shape[1])]
                        return cls.from_items(items)
                    else:
                        msg = ('number of names do not match the number '
                               'of columns')
                        raise ValueError(msg)
                else:
                    msg = 'shape elements must be non-negative'
                    raise ValueError(msg)
            else:
                msg = 'shape elements must be integers'
                raise ValueError(msg)
        else:
            msg = 'shape must have exactly two elements'
            raise ValueError(msg)

    @classmethod
    def from_csv(cls, filepath_or_buffer, **kwargs):
        # Use pandas reader which is incredibly fast!
        if 'index_col' in kwargs.keys():
            del kwargs['index_col']
            msg = ('index_col in keyword arguments is not allowed',
                   'dframe does not have index at all')
            warnings.warn(msg)
        df = pd.read_csv(filepath_or_buffer, index_col=False, **kwargs)
        return cls.from_pandas(df)

    def _init_from_dict(self, data):
        scalarity_per_value = [is_scalar(value) for value in data.values()]
        if all(scalarity_per_value):
            # Box all scalar values
            _data = [Array(value) for value in data.values()]
        elif any(scalarity_per_value):
            # At least one value is scalar but all values are not scalars
            # Allocate a list and put non-scalar values inside.
            _data = [None] * len(data)
            length_per_value = [None] * len(data)
            for i, value in enumerate(data.values()):
                if not scalarity_per_value[i]:
                    _data[i] = Array(value)
                    length_per_value[i] = len(_data[i])

            # All non-scalar columns must have the same length or
            # we raise a ValueError
            length_non_scalars = set([
                length for length, scalarity in zip(
                    length_per_value, scalarity_per_value) if not scalarity
            ])
            if len(length_non_scalars) > 1:
                msg = 'columns do not have the same length'
                raise ValueError(msg)
            elif len(length_non_scalars) == 0:
                msg = 'you found a bug, please report it'
                raise InternalError(msg)
            else:
                length = list(length_non_scalars)[0]

            # Now that we have the length, we can fill out the columns
            # using scalars.
            for i, value in enumerate(data.values()):
                if scalarity_per_value[i]:
                    _data[i] = Array([value] * length)
        else:
            # All values are non-scalars. No need to box them.
            _data = [Array(value) for value in data.values()]

        # Ensure dict keys are string types
        if not is_iterable_string(data.keys()):
            msg = 'non string names are not allowed'
            raise ValueError(msg)
        else:
            _names = data.keys()

        # Ensure all columns have the same length
        if not is_list_same([len(column) for column in _data]):
            msg = 'columns do not have the same lengths'
            raise ValueError(msg)

        # Set curated internal vars
        self._data = Array(_data)
        self._names = Array(_names)

        # Update all other fields
        self._update_nrow_ncol()
        self._update_names_to_index()

    def _update_nrow_ncol(self):
        column_lengths = set(map(len, self._data))
        if len(column_lengths) > 1:
            msg = ('found different column lengths which is a bug, '
                   'please report it')
            raise InternalError(msg)
        elif len(column_lengths) == 0:
            self._nrow = 0
        else:
            self._nrow = list(column_lengths)[0]
        self._ncol = len(self._data)

    def _update_names_to_index(self):
        self._names_to_index = {
            name: index
            for index, name in enumerate(self._names)
        }

    def __len__(self):
        return self._ncol

    def __iter__(self):
        for name in self._names:
            yield name

    def __repr__(self):
        return str(self)

    def __str__(self):
        if self.ncol == 0:
            out = 'DataFrame with {} rows and {} columns'
            return out.format(self.nrow, self.ncol)
        else:
            # if self._ncol <= self._print_max_cols:
            #     col_index = slice(None)
            # else:
            #     left_col_index = slice(self._print_max_cols // 2)
            #     right_col_index = slice(self._ncol, self._print_max_cols // 2)
            headers = [''] + [name for name in self._names]
            table = PrettyTable(headers)
            table.max_width = 10
            if self.nrow <= self._print_max_nrows:
                for i, row in enumerate(self.rows(rows_as_tuple=False)):
                    row.insert(0, i)
                    table.add_row(row)
                return str(table)
            else:
                # Top rows
                # top = self[:(self._print_max_nrows // 2), :]
                top = self[range(self._print_max_nrows // 2), :]
                for i, row in enumerate(top.rows(rows_as_tuple=False)):
                    row.insert(0, i)
                    table.add_row(row)

                # Divider to indicate longer
                divider = ['...' for _ in range(self.ncol)]
                divider.insert(0, '')
                table.add_row(divider)
                table.add_row(divider)

                # Bottom rows
                bottom_row_index = range(
                    self._nrow - self._print_max_nrows // 2, self._nrow)
                bottom = self[bottom_row_index, :]
                for i, row in zip(bottom_row_index,
                                  bottom.rows(rows_as_tuple=False)):
                    row.insert(0, i)
                    table.add_row(row)

                out = '{}\n\n[{} rows x {} columns]'
                return out.format(str(table), self.nrow, self.ncol)

    @property
    def ncol(self):
        return self._ncol

    @property
    def nrow(self):
        return self._nrow

    @property
    def shape(self):
        return (self._nrow, self._ncol)

    @property
    def names(self):
        # Copy and provide to user to avoid accidental changes.
        # Use Array over list so user can use array functions.
        return Array(self._names)

    @names.setter
    def names(self, value):
        if len(self._names) == get_length(value):
            if is_iterable_string(value):
                self._names = Array(value)
                self._update_names_to_index()
            else:
                msg = 'non string names are not allowed'
                raise ValueError(msg)
        else:
            msg = 'number of names must match the number of columns'
            raise ValueError(msg)

    @property
    def dtypes(self):
        return Array([column.dtype for column in self._data])

    def keys(self):
        # Copy and provide to user to avoid accidental changes.
        # Use Array over list so user can use array functions.
        return Array(self._names)

    def values(self):
        return [column for column in self._data]

    def items(self):
        return [(key, value) for key, value in zip(self.keys(), self.values())]

    def rows(self, rows_as_tuple=True):
        if rows_as_tuple:
            return [(column[row_index] for _, column in enumerate(self._data))
                    for row_index in range(self._nrow)]
        else:
            return [[column[row_index] for _, column in enumerate(self._data)]
                    for row_index in range(self._nrow)]

    def columns(self):
        return self.values()

    def head(self, nrows=6):
        return self[:nrows, :]

    def iterrows(self):
        for row_index in range(self._nrow):
            row = (column[row_index] for _, column in enumerate(self._data))
            yield row

    def __getitem__(self, key):
        if is_float(key):
            msg = 'float index is not supported; please cast to int'
            raise KeyError(msg)
        elif is_bool(key):
            msg = 'logical indexing must provide a list of full length'
            raise KeyError(msg)
        elif is_integer(key):
            return self._data[key]
        elif is_string(key):
            return self._data[self._names_to_index[key]]
        elif isinstance(key, slice):
            return type(self)(_DataFrameSlice(self._data[key],
                                              self._names[key]))
        elif isinstance(key, Iterable) and not isinstance(key, tuple):
            if is_iterable_string(key):
                key = [self._names_to_index[k] for k in key]
            if not is_iterable_unique(self._names[key]):
                msg = 'duplicate column names found'
                raise KeyError(msg)
            return type(self)(_DataFrameSlice(self._data[key],
                                              self._names[key]))
        elif isinstance(key, tuple):
            # Dual Indexing. Select both rows and columns.
            if len(key) == 2:
                rowkey = key[0]
                colkey = key[1]
                if is_float(colkey):
                    msg = ('float column index is not supported; '
                           'please cast to int')
                    raise KeyError(msg)
                elif is_bool(colkey):
                    msg = ('logical column indexing must provide a '
                           'list of full length')
                    raise KeyError(msg)
                elif is_integer(colkey):
                    return self._data[colkey][rowkey]
                elif is_string(colkey):
                    return self._data[self._names_to_index[colkey]][rowkey]
                elif isinstance(colkey, (slice, Iterable)):
                    if isinstance(colkey, Iterable):
                        if is_iterable_string(colkey):
                            colkey = [self._names_to_index[k] for k in colkey]
                    _names = self._names[colkey]
                    if not is_iterable_unique(_names):
                        msg = 'duplicate column names found'
                        raise KeyError(msg)
                    if is_integer(rowkey):
                        rowkey = [rowkey]
                    _data = Array(
                        [column[rowkey] for column in self._data[colkey]])
                    return type(self)(_DataFrameSlice(_data, _names))
                else:
                    # Catchall for all other column addresses
                    msg = ('column address must be int, string, slice,'
                           ' or iterable')
                    raise KeyError(msg)
            else:
                msg = 'tuple indexing must have exactly 2 elements'
                raise KeyError(msg)
        elif isinstance(key, Iterable):
            return self[list(key)]
        else:
            # Catchall for all other addresses
            msg = 'address must be int, string, list, slice, or a 2-tuple'
            raise KeyError(msg)

    def _create_array(self, value):
        if is_scalar(value):
            return Array([value] * self._nrow)
        else:
            return Array(value)

    def _setitem_using_int_key(self, key, value):
        assert is_integer(key)
        tmp = self._create_array(value)
        if len(tmp) == self._nrow:
            self._data[key] = tmp
        else:
            msg = 'value does not have match existing number of rows = {}'
            raise ValueError(msg.format(self._nrow))

    def _append_new_column(self, name, value):
        assert is_string(name)
        assert name not in self._names
        tmp = self._create_array(value)
        if len(tmp) == self._nrow:
            # FIXME: Override Array.append by checking for type
            self._names.extend(Array([name]))
            self._data.extend(Array([tmp]))
            self._update_nrow_ncol()
            self._update_names_to_index()
        else:
            msg = 'value does not have match existing number of rows = {}'
            raise ValueError(msg.format(self._nrow))

    def _parse_colkey(self, colkey):
        # FIXME: self._data can handle slices. Should I not convert slice to
        # list of ints here?
        if isinstance(colkey, slice):
            colkey = range(*colkey.indices(len(self)))
        if is_iterable_string(colkey):
            colkey = [self._names_to_index[k] for k in colkey]
        if infer_dtype(colkey) is bool:
            if any([k is None for k in colkey]):
                msg = 'logical index contains missing values (None(s))'
                raise IndexError(msg)
            else:
                if get_length(colkey) == len(self):
                    colkey = [i for i, k in enumerate(colkey) if k]
                else:
                    msg = 'logical index does not match number of columns'
                    raise IndexError(msg)
        valid = range(self._ncol)
        if not all([k in valid for k in colkey]):
            msg = 'invalid column key'
            raise KeyError(msg)
        return colkey

    def _setitem_using_list_of_int_key_numpy_value(self, key, value):
        assert isinstance(key, list)
        assert is_iterable_integer(key)
        assert isinstance(value, np.array)
        if len(value.shape) == 2:
            if len(key) == value.shape[1]:
                if self._nrow == value.shape[0]:
                    for i, k in enumerate(key):
                        self._setitem_using_int_key(k, value[:, i])
                else:
                    msg = 'key and value do not have the same number of rows'
                    raise ValueError(msg)
            else:
                msg = 'key and value do not have the same number of columns'
                raise ValueError(msg)
        else:
            msg = 'key and value do not have the same number of dimensions'
            raise ValueError(msg)

    def _setitem_using_list_of_int_key_pandas_value(self, key, value):
        assert isinstance(key, list)
        assert is_iterable_integer(key)
        assert isinstance(value, pd.DataFrame)
        if len(value.shape) == 2:
            if len(key) == value.shape[1]:
                if self._nrow == value.shape[0]:
                    for i, k in enumerate(key):
                        self._setitem_using_int_key(k, value.iloc[:, i])
                else:
                    msg = 'key and value do not have the same number of rows'
                    raise ValueError(msg)
            else:
                msg = 'key and value do not have the same number of columns'
                raise ValueError(msg)
        else:
            msg = 'pandas DataFrame value of shape = {} cannot be assigned'
            raise NotImplementedError(msg.format(value.shape))

    def _setitem_elements_using_list_of_int_key_numpy_value(
            self, rowkey, colkey, value):
        assert isinstance(colkey, list)
        assert is_iterable_integer(colkey)
        assert isinstance(value, np.array)
        if len(value.shape) == 2:
            if len(colkey) == value.shape[1]:
                for i, k in enumerate(colkey):
                    self._data[k][rowkey] = value[:, i]
            else:
                msg = 'key and value do not have the same number of columns'
                raise ValueError(msg)
        else:
            msg = 'key and value do not have the same number of dimensions'
            raise ValueError(msg)

    def _setitem_elements_using_list_of_int_key_pandas_value(
            self, rowkey, colkey, value):
        assert isinstance(colkey, list)
        assert is_iterable_integer(colkey)
        assert isinstance(value, pd.DataFrame)
        if len(value.shape) == 2:
            if len(colkey) == value.shape[1]:
                for i, k in enumerate(colkey):
                    self._data[k][rowkey] = value.iloc[:, i]
            else:
                msg = 'key and value do not have the same number of columns'
                raise ValueError(msg)
        else:
            msg = 'key and value do not have the same number of dimensions'
            raise ValueError(msg)

    def _setitem_using_rowkey_colkey(self, rowkey, colkey, value):
        if is_float(colkey):
            msg = 'float index is not supported; please cast to int'
            raise KeyError(msg)
        elif is_bool(colkey):
            msg = 'logical indexing must provide a list of full length'
            raise KeyError(msg)
        elif is_integer(colkey):
            self._data[colkey][rowkey] = value
        elif is_string(colkey):
            colkey = self._names_to_index[colkey]
            self._data[colkey][rowkey] = value
        elif isinstance(colkey, (slice, list)):
            colkey = self._parse_colkey(colkey)
            if is_scalar(value):
                for k in colkey:
                    self._data[k][rowkey] = value
            elif isinstance(value, np.array):
                self._setitem_elements_using_list_of_int_key_numpy_value(
                    rowkey, colkey, value)
            elif isinstance(value, pd.Series):
                msg = ('pandas Series is not supported, please use pandas '
                       'DataFrame instead')
                raise ValueError(msg)
            elif isinstance(value, pd.DataFrame):
                self._setitem_elements_using_list_of_int_key_pandas_value(
                    rowkey, colkey, value)
            elif isinstance(value, Iterable):
                if len(colkey) == len(value):
                    for k, v in zip(colkey, value):
                        self._data[k][rowkey] = v
                else:
                    msg = ('key and value do not have the same number '
                           'of columns')
                    raise ValueError(msg)
            else:
                msg = 'cannot assign {} type value'.format(type(value))
                raise ValueError(msg)
        else:
            # Catchall for all other addresses
            msg = 'column key must be int, string, list, or slice'
            raise KeyError(msg)

    def __setitem__(self, key, value):
        if is_float(key):
            msg = 'float index is not supported; please cast to int'
            raise KeyError(msg)
        elif is_bool(key):
            msg = 'logical indexing must provide a list of full length'
            raise KeyError(msg)
        elif is_integer(key):
            self._setitem_using_int_key(key, value)
        elif is_string(key):
            if key in self._names:
                self._setitem_using_int_key(self._names_to_index[key], value)
            else:
                self._append_new_column(key, value)
        elif isinstance(key, (slice, Iterable)) and not isinstance(key, tuple):
            key = self._parse_colkey(key)
            if is_scalar(value):
                for k in key:
                    self._setitem_using_int_key(k, value)
            elif isinstance(value, np.array):
                self._setitem_using_list_of_int_key_numpy_value(key, value)
            elif isinstance(value, pd.Series):
                msg = ('pandas Series is not supported, please use pandas '
                       'DataFrame instead')
                raise ValueError(msg)
            elif isinstance(value, pd.DataFrame):
                self._setitem_using_list_of_int_key_pandas_value(key, value)
            elif isinstance(value, Iterable):
                if len(key) == len(value):
                    for k, v in zip(key, value):
                        self._setitem_using_int_key(k, v)
                else:
                    msg = ('key and value do not have the same number '
                           'of columns')
                    raise ValueError(msg)
            else:
                msg = 'cannot assign {} type value'.format(type(value))
                raise ValueError(msg)
        elif isinstance(key, tuple):
            # Dual Indexing. Set both rows and columns.
            if len(key) == 2:
                rowkey = key[0]
                colkey = key[1]
                self._setitem_using_rowkey_colkey(rowkey, colkey, value)
            else:
                msg = 'tuple indexing must have exactly 2 elements'
                raise KeyError(msg)
        else:
            # Catchall for all other addresses
            msg = 'key must be int, string, list, slice, or a 2-tuple'
            raise KeyError(msg)

    def _delitem_colkey(self, colkey):
        colkey = self._parse_colkey(colkey)
        del self._data[colkey]
        del self._names[colkey]
        self._update_nrow_ncol()
        self._update_names_to_index()

    def _delitem_rowkey(self, rowkey):
        for j in range(len(self)):
            del self._data[j][rowkey]
        self._update_nrow_ncol()

    def __delitem__(self, key):
        if is_float(key):
            msg = 'float index is not supported; please cast to int'
            raise KeyError(msg)
        elif is_bool(key):
            msg = 'logical indexing must provide a list of full length'
            raise KeyError(msg)
        elif is_integer(key):
            key = [key]
            self._delitem_colkey(key)
        elif is_string(key):
            key = [self._names_to_index[key]]
            self._delitem_colkey(key)
        elif isinstance(key, (slice, Iterable)) and not isinstance(key, tuple):
            self._delitem_colkey(key)
        elif isinstance(key, tuple):
            # Dual Indexing. Set both rows and columns.
            if len(key) == 2:
                rowkey = key[0]
                colkey = key[1]
                if isinstance(colkey, tuple):
                    colkey = list(colkey)
                if colkey == slice(None):
                    # Form: del df[<something>, :]
                    self._delitem_rowkey(rowkey)
                else:
                    # colkey is not `:`
                    if rowkey == slice(None):
                        # Form: del df[:, <something-but-not-:>]
                        del self[colkey]
                    else:
                        # Neither colkey nor rowkey is `:`
                        msg = 'either row key or column key must be :'
                        raise KeyError(msg)
            else:
                msg = 'tuple indexing must have exactly 2 elements'
                raise KeyError(msg)

    def reset_names(self):
        self.names = _get_generic_names(self.ncol)

    def rename(self, rename_dict):
        '''
            Rename the columns of the DataFrame object. Renaming happens
            in place.

            Args
            -----
            rename_dict (dict): a dictionary of the form
                {'existing_column_name': 'new_column_name', ... }. Keys of
                `rename_dict` are the existing column names. Values of
                `rename_dict` are the intended new column names.

            Returns
            --------
            Nothing. Renaming happens in place.
        '''
        assert isinstance(rename_dict, dict)
        updated_names = Array(self._names)
        for current, new in rename_dict.items():
            # FIXME: This will fail when some names are unicode but
            # others are not.
            updated_names[self._names_to_index[current]] = new
        if is_iterable_string(updated_names):
            if is_iterable_unique(updated_names):
                self._names = updated_names
                self._update_names_to_index()
                if set(self._names_to_index.keys()) != set(self._names):
                    msg = ('renaming violated internal consistency ',
                           'this is a bug, please report it')
                    raise InternalError(msg)
            else:
                msg = 'renaming cannot create duplicate names'
                raise ValueError(msg)
        else:
            msg = 'non string names are not allowed'
            raise ValueError(msg)

    def equals(self, other):
        if self is other:
            return True
        else:
            if type(self) is type(other):
                if self.shape == other.shape:
                    if self._names.equals(other._names):
                        if self._data.equals(other._data):
                            if self._print_max_nrows == other._print_max_nrows:
                                return True
                            else:
                                return False
                        else:
                            return False
                    else:
                        return False
                else:
                    return False
            else:
                return False

    def _get_groupby_dict(self, names=None):
        if names is None:
            selected_columns = range(self._ncol)
        else:
            selected_columns = [self._names_to_index[name] for name in names]
        groupby_dict = {}
        for row_index in range(self._nrow):
            # print('row_index = ', row_index)
            row = tuple(
                column[row_index]
                for _, column in enumerate(self._data[selected_columns]))
            if row not in groupby_dict:
                groupby_dict[row] = []
        return groupby_dict, selected_columns

    def groupby(self, names=None):
        groupby_dict, selected_columns = self._get_groupby_dict(names)
        print('selected_columns =', selected_columns)
        print('len(groupby_dict) =', len(groupby_dict))
        for row in groupby_dict.iterkeys():
            import time
            start = time.time()
            selected_rows = Array([True] * self._nrow)
            for i, e in zip(selected_columns, row):
                if any(selected_rows):
                    tmp = self._data[i][selected_rows]._eqnone(e)
                    selected_rows[selected_rows] = \
                        selected_rows[selected_rows] & tmp
                else:
                    break
            groupby_dict[row] = selected_rows
            end = time.time()
            time_taken = end - start
            print('time_taken =', time_taken)
        return groupby_dict
Exemplo n.º 10
0
 def keys(self):
     # Copy and provide to user to avoid accidental changes.
     # Use Array over list so user can use array functions.
     return Array(self._names)
Exemplo n.º 11
0
 def dtypes(self):
     return Array([column.dtype for column in self._data])
Exemplo n.º 12
0
def is_na(array):
    assert isinstance(array, Array)
    return Array([e is None for e in array])
Exemplo n.º 13
0
def unique(array):
    return Array(list(set(array)))