axis.hist(scatter[i][1] - scatter[i][0], histtype='step', bins=bins, normed=normed, color='C%d' % (i % 9), label='%0.2e' % mbins[i]) if normed: x0 = [1 / (bins[-1] - bins[0]), mean, std] #if normed: x0 = [scatter[i][0].size, mean, std] else: x0 = [scatter[i][0].size, mean, std] #if normed: x0 = [10, 0, 1] #else: x0 = [scatter[i][1].size/10., 0, 1] xx, yy, res = dg.fitpdf(scatter[i][1] - scatter[i][0], func, bins=bins, normed=normed, x0=x0) axis.plot(xx, func(xx, *res.x), 'k--', label='%0.2f, %0.2f' % (res.x[1], res.x[2])) tosave.append([msave[i], msave[i + 1], res.x[1], res.x[2]]) axis.legend() ff = mtpath + 'noisehist_ovd_M%02d_gal.png' % (10 * np.log10(M0)) if Rsm != 3: ff = ff[:-4] + '_R%d.png' % Rsm fig.savefig(ff) fpath = mtpath + 'hist_ovd_M%02d_gal.txt' % (10 * np.log10(M0)) if Rsm != 3: fpath = fpath[:-4] + 'R%d.txt' % Rsm
mbins, datapR[...]) tosave = [] #bins = np.linspace(-0.5, 0.7) fig, ax = plt.subplots(4, 4, figsize=(15, 15)) for i in range(16): bins = np.linspace(-10 / (i + 1), 10 / (i + 1)) axis = ax.flatten()[i] axis.hist(scatter[i][1] - scatter[i][0], histtype='step', bins=bins, normed=True, color='C%d' % (i % 9), label='%0.2e' % mbins[i]) xx, yy, res = dg.fitpdf(scatter[i][1] - scatter[i][0], dg.normal, bins=bins, normed=True, x0=[10, 0., 1]) axis.plot(xx, dg.normal(xx, *res.x), 'k--', label='%0.2f, %0.2f' % (res.x[1], res.x[2])) tosave.append([msave[i], msave[i + 1], res.x[1], res.x[2]]) axis.legend() ff = mtpath + 'noisehist_ovd_M%02d_na.png' % (10 * np.log10(M0)) if Rsm != 3: ff = ff[:-4] + '_R%d.png' % Rsm fig.savefig(ff) fpath = mtpath + 'hist_ovd_M%02d_na.txt' % (10 * np.log10(M0)) if Rsm != 3: fpath = fpath[:-4] + 'R%d.txt' % Rsm