Exemplo n.º 1
0
def test_stats_per_image(centroid_test_data):
    experiments, reflections = centroid_test_data
    stats = per_image_analysis.stats_per_image(experiments[0], reflections)
    result = stats._asdict()
    for v in result.values():
        assert len(v) == len(experiments[0].scan)
    assert stats.n_spots_total == [90, 100, 67, 49, 54, 62, 68, 83, 81]
    t = stats.as_table()
    assert len(t) == len(experiments[0].scan) + 1
    assert t[0] == [
        "image",
        "#spots",
        "#spots_no_ice",
        "total_intensity",
        "d_min",
        "d_min (distl method 1)",
        "d_min (distl method 2)",
    ]
    assert t[1] == ["1", "90", "77", "28214", "1.56", "2.08 (0.09)", "1.59 (0.27)"]
    # Test n_rows option
    t = stats.as_table(n_rows=3)
    assert len(t) == 4
    # Test perm option
    perm = flex.random_permutation(len(experiments[0].scan))
    t = stats.as_table(perm=perm)
    assert [tt[0] for tt in t[1:]] == [str(i + 1) for i in perm]
Exemplo n.º 2
0
def setup(request):
    space_group_symbol = request.param
    sgi = sgtbx.space_group_info(space_group_symbol)
    cs = sgi.any_compatible_crystal_symmetry(volume=random.randint(1e4, 1e6))
    ms = cs.build_miller_set(anomalous_flag=True, d_min=3).expand_to_p1()

    # the reciprocal matrix
    B = scitbx.matrix.sqr(cs.unit_cell().fractionalization_matrix()).transpose()

    # randomly select 25% of reflections
    ms = ms.select(flex.random_permutation(ms.size())[: int(0.25 * ms.size())])

    refl = flex.reflection_table()
    refl["rlp"] = B.elems * ms.indices().as_vec3_double()
    refl["imageset_id"] = flex.int(len(refl))
    refl["xyzobs.mm.value"] = flex.vec3_double(len(refl))

    d = {}
    d["crystal_symmetry"] = cs
    d["reflections"] = refl
    return d
Exemplo n.º 3
0
def split_reflections(experiments, reflections, params):
    """Split reflections into equal sized groups, ensuring that each unique
    Miller index is split proportionately"""

    # Check the space group is the same for all experiments
    sg = experiments[0].crystal.get_space_group()
    if not all((e.crystal.get_space_group() == sg for e in experiments)):
        raise RuntimeError("Not all space groups are equal")

    # create new column containing the reduced Miller index
    xl = experiments[0].crystal
    symm = cctbx.crystal.symmetry(xl.get_unit_cell(), space_group=sg)
    hkl_set = cctbx.miller.set(symm, reflections["miller_index"])
    asu_set = hkl_set.map_to_asu()
    reflections["asu_miller_index"] = asu_set.indices()

    # Set up a cycle through sets and a column to store values
    cyc = cycle(range(params.N))
    reflections["disjoint_set"] = flex.size_t(len(reflections))

    # Loop over unique Miller indices and split matching reflections into sets
    for uniq in set(asu_set.indices()):
        sel = (reflections["miller_index"] == uniq).iselection()
        vals = flex.size_t(next(cyc) for i in sel)
        vals = vals.select(flex.random_permutation(len(vals)))
        reflections["disjoint_set"].set_selected(sel, vals)

    # Now split the table
    splits = []
    for i in range(params.N):
        subset = reflections.select(reflections["disjoint_set"] == i)
        del subset["disjoint_set"]
        splits.append(subset)

    # Write out the splits
    for i, refls in enumerate(splits):
        fname = (params.output.reflections_prefix +
                 "_{:d}_of_{:d}".format(i + 1, len(splits)) + ".refl")
        logger.info("Writing {:d} reflections to {}".format(len(refls), fname))
        refls.as_file(fname)
Exemplo n.º 4
0
def run(args):
    user_phil = []
    for arg in args:
        if os.path.isfile(arg):
            filename = arg
        else:
            try:
                user_phil.append(parse(arg))
            except Exception as e:
                raise Sorry("Unrecognized argument: %s" % arg)

    params = phil_scope.fetch(sources=user_phil).extract()

    name = os.path.basename(filename)
    base, ext = os.path.splitext(name)
    filea = base + "_a" + ext
    fileb = base + "_b" + ext

    data = easy_pickle.load(filename)

    if params.use_selection is None:
        sel = flex.random_permutation(len(data))
    else:
        sel = easy_pickle.load(params.use_selection)
        assert len(sel) == len(
            data), "Length of selection doesn't match length of input"

    data_a = data.select(sel[:len(data) // 2])
    data_b = data.select(sel[len(data) // 2:])
    data_a = data_a.select(flex.sort_permutation(data_a["id"]))
    data_b = data_b.select(flex.sort_permutation(data_b["id"]))

    assert len(data_a) + len(data_b) == len(data)

    easy_pickle.dump(filea, data_a)
    easy_pickle.dump(fileb, data_b)

    if params.output_selection is not None:
        easy_pickle.dump(params.output_selection, sel)
Exemplo n.º 5
0
 def update_minimum_covering_sphere(self):
     n_points = min(1000, self.points.size())
     isel = flex.random_permutation(self.points.size())[:n_points]
     self.minimum_covering_sphere = minimum_covering_sphere(
         self.points.select(isel))