Exemplo n.º 1
0
    def find(self, n):

        # not possible
        if n <= 1 or not n & 1:
            return False
       
        if n <= self.config["BIGGEST_ONES"][-1]:

            # we find the segment
            c = self.find_segment(n)

            if type(c) is tuple:
                
                # we use the dichotomy algo to frame the prime number
                seg = 0 if c == (0, -1) else c[-1]
                
                c = dichotomy.dichotomy(self.get(seg), n)

                if isinstance(c, tuple):
                    return False
                else:
                    return c + self.SEGMENT_SIZE * seg
            else:
                return (c + 1) * self.SEGMENT_SIZE - 1
        else:
            return False
Exemplo n.º 2
0
def main():
    
    input_is_enabled = False

    for i in range(1, len(sys.argv)):
        if sys.argv[i] == '--input':
            input_is_enabled = True

    if input_is_enabled:
        input_data()
    else:
        print_data()

    p = dt.dichotomy(3, 25, F, EPSILON)
    print("P = %g"%(p))
Exemplo n.º 3
0
def Nt(t, p):

    X = [-1, 3, -1, -10, -20, -35]
    dX = [0] * len(X)
    dx_x = 1

    while dx_x >= EPSILON:

        for i in range(len(X)):
            X[i] += dX[i]

        gamma = dt.dichotomy(0, 3, lambda g: Gamma(g, t, X), EPSILON)
        k = K(t, gamma)
        alpha = 0.285 * 10**-11 * (gamma * t)**3

        expV = math.exp(X[0])
        expX1 = math.exp(X[1])
        expX2 = math.exp(X[2])
        expX3 = math.exp(X[3])
        expX4 = math.exp(X[4])
        expX5 = math.exp(X[5])

        lnK0 = math.log(k[0])
        lnK1 = math.log(k[1])
        lnK2 = math.log(k[2])
        lnK3 = math.log(k[3])

        z_right = Z[1]*expX2 + Z[2]*expX3 + Z[3]*expX4 + Z[4]*expX5 - expV
        a_right = expV + expX1 + expX2 + expX3 + expX4 + expX5 - alpha - p*7243/t;

        eqsystem = [
            [      1,           -1,            1,            0,            0,            0,  lnK0 + X[1] - X[2] - X[0]],
            [      1,            0,           -1,            1,            0,            0,  lnK1 + X[2] - X[3] - X[0]],
            [      1,            0,            0,           -1,            1,            0,  lnK2 + X[3] - X[4] - X[0]],
            [      1,            0,            0,            0,           -1,            1,  lnK3 + X[4] - X[5] - X[0]],
            [   expV,  -Z[0]*expX1,  -Z[1]*expX2,  -Z[2]*expX3,  -Z[3]*expX4,  -Z[4]*expX5,                    z_right],
            [  -expV,       -expX1,       -expX2,       -expX3,       -expX4,       -expX5,                    a_right]
        ]
        
        dX = gs.gauss(eqsystem)
        dx_x = max([ (dX[i] / X[i]) for i in range(len(X)) ])
    
    return sum([math.exp(x) for x in X])
Exemplo n.º 4
0
def Nt(T, P):
    X = [-1, 3, -1, -10, -20, -35]

    while True:
        gamma = dichotomy(0, 3, EPS,
                          lambda cur_gamma: gamma_func(cur_gamma, T, X))
        d_e = find_d_e(T, gamma)
        K = find_K(T, d_e)

        alpha = 0.285 * pow(10, -11) * pow(gamma * T, 3)

        system = [[1, -1, 1, 0, 0, 0,
                   log(K[0]) + X[1] - X[2] - X[0]],
                  [1, 0, -1, 1, 0, 0,
                   log(K[1]) + X[2] - X[3] - X[0]],
                  [1, 0, 0, -1, 1, 0,
                   log(K[2]) + X[3] - X[4] - X[0]],
                  [1, 0, 0, 0, -1, 1,
                   log(K[3]) + X[4] - X[5] - X[0]],
                  [
                      -exp(X[0]), -exp(X[1]), -exp(X[2]), -exp(X[3]),
                      -exp(X[4]), -exp(X[5]),
                      exp(X[0]) + exp(X[1]) + exp(X[2]) + exp(X[3]) +
                      exp(X[4]) + exp(X[5]) - alpha - P * 7243 / T
                  ],
                  [
                      exp(X[0]), 0, -Z_c[1] * exp(X[2]), -Z_c[2] * exp(X[3]),
                      -Z_c[3] * exp(X[4]), -Z_c[4] * exp(X[5]),
                      Z_c[1] * exp(X[2]) + Z_c[2] * exp(X[3]) +
                      Z_c[3] * exp(X[4]) + Z_c[4] * exp(X[5]) - exp(X[0])
                  ]]

        d_X = Gauss(system)

        if max([d_X[i] / X[i] for i in range(len(X))]) < 1e-4:
            break

        for i in range(len(X)):
            X[i] += d_X[i]

    return sum([exp(i) for i in X])
Exemplo n.º 5
0
from swenn import swenn
from dichotomy import dichotomy
from fibonacci import fibonacci
from golden_ratio import golden_ratio

A = 7
X0 = 5.5
E = 0.2
DELTA = 0.1


def o_my_work_function(x):
    return x**2 - A * x

interval = swenn(o_my_work_function, X0, DELTA)

print('result swen', interval)

print('result dichotomy', dichotomy(o_my_work_function, interval[0], interval[1], E))

print('result fibonacci', fibonacci(o_my_work_function, interval[0], interval[1], 15))

print('result golden', golden_ratio(o_my_work_function, interval[0], interval[1], 0.1))


Exemplo n.º 6
0
                      -Z_c[3] * exp(X[4]), -Z_c[4] * exp(X[5]),
                      Z_c[1] * exp(X[2]) + Z_c[2] * exp(X[3]) +
                      Z_c[3] * exp(X[4]) + Z_c[4] * exp(X[5]) - exp(X[0])
                  ]]

        d_X = Gauss(system)

        if max([d_X[i] / X[i] for i in range(len(X))]) < 1e-4:
            break

        for i in range(len(X)):
            X[i] += d_X[i]

    return sum([exp(i) for i in X])


Pn = 0.5  #float(input("Pнач: "))
Tn = 300  #float(input("Tнач: ")
T0 = 12000  #float(input("T0: "))
Tw = 6000  #float(input("Tw: "))
m = 12  #float(input("m: "))

coeff = 7243 * (Pn / Tn)

if __name__ == '__main__':
    a = time()
    res_p = dichotomy(2, 25, EPS, F)
    b = time()
    print("Result: ", res_p)
    t = b - a
Exemplo n.º 7
0
 def find_segment(self, n):
     if n <= self.config["BIGGEST_ONES"][-1]:
         return dichotomy.dichotomy(self.config["BIGGEST_ONES"], n)
     else:
         return False