Exemplo n.º 1
0
def test_LS_commutation_relations():
  
    eps = 1e-7
    
    Re = dieke.RareEarthIon(2)  # Pr

    L = Re.FreeIonMatrix['L']
    Lx = Re.FreeIonMatrix['Lx']
    Ly = Re.FreeIonMatrix['Ly']
    Lz = Re.FreeIonMatrix['Lz']
    S = Re.FreeIonMatrix['S']
    Sx = Re.FreeIonMatrix['Sx']
    Sy = Re.FreeIonMatrix['Sy']
    Sz = Re.FreeIonMatrix['Sz']
    
    J = Re.FreeIonMatrix['J']
    Jx = Lx+Sx
    Jy = Ly+Sy
    Jz = Lz+Sz
    
    Lvec = [Lx,Ly,Lz]
    Svec = [Sx,Sy,Sz]

    for k in range(3):
        for j in range(3):
            assert(norm((Lvec[k]@Svec[j]-Svec[j]@Lvec[k]).A)<eps)

    assert(norm((Lx@Ly-Ly@Lx-1j*Lz).A)<eps)
    assert(norm((Sx@Sy-Sy@Sx-1j*Sz).A)<eps)
    assert(norm((Jx@Jy-Jy@Jx-1j*Jz).A)<eps)

    assert(norm((Lx@Lx + Ly@Ly + Lz@ Lz - L@(L+np.eye(Re.numstates()))).A) < eps)
    assert(norm((Sx@Sx + Sy@Sy + Sz@ Sz - S@(S+np.eye(Re.numstates()))).A) < eps)
    assert(norm((Jx@Jx + Jy@Jy + Jz@ Jz - J@(J+np.eye(Re.numstates()))).A) < eps)
Exemplo n.º 2
0
def test_Er_LaF3():
    """
    Tests that we give the same results as Carnall 1989 for Pr:LaF3
    """

    #energy levels from Carnall's paper
    carnall_levels = [-22, 27, 92, 176, 193, 289, 375, 420,
                      6612, 6637, 6686, 6699, 6732, 6771, 6830,
                      10300, 10314, 10336, 10351, 10365, 10405]
    carnall_levels = np.array(carnall_levels)
    carnall_levels = carnall_levels -np.min(carnall_levels)
    
    nf = 11  # 11 f-electrons means we're dealing with Er
    Er = dieke.RareEarthIon(nf)
    cfparams = dieke.readLaF3params(nf)
    
    # Number of levels and states
    numLSJ = Er.numlevels()
    numLSJmJ = Er.numstates()

    # Make a free-ion Hamiltonian
    H0 = np.zeros([numLSJmJ, numLSJmJ])
    for k in cfparams.keys():
        if k in Er.FreeIonMatrix:
            H0 = H0+cfparams[k]*Er.FreeIonMatrix[k]

    # Add in the crystal field terms 
    H = H0
    for k in [2, 4, 6]:
        for q in range(0, k+1):
            if 'B%d%d' % (k, q) in cfparams:
                if q == 0:
                    H = H+cfparams['B%d%d' % (k, q)]*Er.Cmatrix(k, q)
                else:
                    Bkq = cfparams['B%d%d' % (k, q)]
                    Bkmq = (-1)**q*np.conj(Bkq)  # B_{k,-q}
                    Ckq = Er.Cmatrix(k, q)
                    Ckmq = Er.Cmatrix(k, -q)
                    # See page 44, eq 3.1 of the crystal field handbook
                    H = H + Bkq*Ckq + Bkmq*Ckmq



    # Diagonalise the result
    (evals, evects) = np.linalg.eig(H)
    E0 = np.min(evals)
    calc_nrg_levels = np.sort(evals-E0)
    calc_nrg_levels = calc_nrg_levels[::2]
    
    print('    Jevon  Carnall  Difference')
    for k in range(len(carnall_levels)):
        print("%9.1f %9.1f %6.1f"%(np.real(calc_nrg_levels[k]),carnall_levels[k],np.real(calc_nrg_levels[k]) - carnall_levels[k]))



    # Assert that they all agree within 1.1 wave number
    assert(np.max(np.abs(
        calc_nrg_levels[0:len(carnall_levels)]-carnall_levels))
           < 1.1 )
Exemplo n.º 3
0
def test_content(response):
    """Sample pytest test function with the pytest fixture as an argument."""
    # from bs4 import BeautifulSoup
    # assert 'GitHub' in BeautifulSoup(response.content).title.string
    rare_earths = ["La", "Ce", "Pr", "Nd", "Pm", "Sm", "Eu", "Gd",
                   "Tb", "Dy", "Ho", "Er", "Tm", "Yb"]

    for k in [2]:  # range(2, 13):
        print("Making matricies for %s (nf=%d)\n" % (rare_earths[k], k))
        dieke.RareEarthIon(k)
Exemplo n.º 4
0
def test_Pr_LaF3():
    """
    Tests that we give the same results as Carnall 1989 for Pr:LaF3
    """

    #energy levels from Carnall's paper
    carnall_levels = [0.2, 71, 95, 138, 183, 221, 333, 444, 463,
                      2126, 2158, 2191, 2284, 2290, 2295, 2318,
                      2399, 2412,2438, 2540, 4179,4200, 4283,
                      4321, 4384, 4467, 4478, 4496]
    carnall_levels = np.array(carnall_levels)
    
    nf = 2  # 2 f-electrons means we're dealing with Pr
    Pr = dieke.RareEarthIon(nf)
    cfparams = dieke.readLaF3params(nf)
    
    # Number of levels and states
    numLSJ = Pr.numlevels()
    numLSJmJ = Pr.numstates()

    

    # Make a free-ion Hamiltonian
    H0 = np.zeros([numLSJmJ, numLSJmJ])
    for k in cfparams.keys():
        if k in Pr.FreeIonMatrix:
            H0 = H0+cfparams[k]*Pr.FreeIonMatrix[k]

    # Add in the crystal field terms 
    H = H0
    for k in [2, 4, 6]:
        for q in range(0, k+1):
            if 'B%d%d' % (k, q) in cfparams:
                if q == 0:
                    H = H+cfparams['B%d%d' % (k, q)]*Pr.Cmatrix(k, q)
                else:
                    Bkq = cfparams['B%d%d' % (k, q)]
                    Bkmq = (-1)**q*np.conj(Bkq)  # B_{k,-q}
                    Ckq = Pr.Cmatrix(k, q)
                    Ckmq = Pr.Cmatrix(k, -q)
                    # See page 44, eq 3.1 of the crystal field handbook
                    H = H + Bkq*Ckq + Bkmq*Ckmq



    # Diagonalise the result
    (evals, evects) = np.linalg.eig(H)
    E0 = np.min(evals)
    calc_nrg_levels = np.sort(evals-E0)

    # Assert that they all agree within one wave number
    assert(np.max(np.abs(
        calc_nrg_levels[0:len(carnall_levels)]-carnall_levels))
           < 1.0 )
Exemplo n.º 5
0
sebmats = pickle.load(gzip.open('f11cf_matel.p.gz', 'rb'))

nf = 11  # 2 f-electrons means we're dealing with Er

# This object contains the matricies we need for the
# calculations all in the dictionary "FreeIonMatrix"
# or via the function "Cmatrix"

#cache my version of the matrix elements to make stuff faster
try:
    f = gzip.open('erbium.dat.gz', 'rb')
    print("Loading Er object")
    Er = pickle.load(f)
except FileNotFoundError:
    print("Making Er ojbect")
    Er = dieke.RareEarthIon(nf)
    pickle.dump(Er, gzip.open('erbium.dat.gz', 'wb'))

#Er = dieke.RareEarthIon(nf)
#pickle.dump(Er, gzip.open('erbium.dat.gz', 'wb'))

jevmats = Er.FreeIonMatrix
# Add the crystal field matricies to my dict
for k in [2, 4, 6]:
    for q in range(k + 1):
        jevmats['C%d%d' % (k, q)] = Er.Cmatrix(k, q)

statedict = {}
for i in range(364):
    statedict[Er.LSJmJstateLabels[i]] = i
cfparams = {'nf': 2.0, 'F2': 68878.0, 'F4': 50347.0, 'F6': 32901.0}

numLSJ = Pr.numlevels()

for operator in ['F2', 'F4', 'F6', 'ZETA']:
    mat = Pr.FreeIonMatrix[operator]
    print(operator)
    for i in range(numLSJ):
        for j in range(i, numLSJ):
            if np.abs(mat[i, j]) > 1e-6:
                print("<%s | %s | %s > = %f" %
                      (Pr.LSJlevelLabels[i], operator, Pr.LSJlevelLabels[i],
                       mat[i, j]))

Ce = dieke.RareEarthIon(1)
mat = Ce.Cmatrix(2, 0)
for i in range(Ce.numstates()):
    for j in range(Ce.numstates()):
        if np.abs(mat[i, j]) > 1e-6:
            print("<%s | C20 | %s > = %f" %
                  (Ce.LSJmJstateLabels[i], Ce.LSJmJstateLabels[j], mat[i, j]))

# # Make an empy matrix to put the results in as well as an
# # empty matrix for the Hamiltonian
# numLSJ = Pr.numlevels()

H0 = np.zeros([numLSJ, numLSJ])

# Make the Hamiltonian, diagonalise it and work out the
# energy of the ground state
Exemplo n.º 7
0
def test_ErYSO():
    """
     Tests that we give the same as Sebastians calcs for ErYSO
     (arXiv:1809.01058)
    """
    
    #energy levels from Paper 
    seb_levels = [15, 47, 75, 130, 199, 388, 462, 508,
                  6522, 6560, 6583, 6640, 6777, 6833, 6867,
                  10206, 10236, 10267, 10339, 10381, 10398]
    seb_levels = np.array(seb_levels)
    

    nf = 11  # 11 f-electrons means we're dealing with Er

    Er = dieke.RareEarthIon(nf)


    
    # Number of levels and states
    numLSJ = Er.numlevels()
    numLSJmJ = Er.numstates()

    cfparams = dieke.readLaF3params(nf)
    cfparams['E0'] = 35503.5 #this is ignored
    cfparams['ZETA'] = 2362.9
    cfparams['F2'] = 96029.6
    cfparams['F4'] = 67670.6
    cfparams['F6'] = 53167.1

    cfparams['B20'] = -149.8
    cfparams['B21'] = 420.6+396.0j
    cfparams['B22'] = -228.5+27.6j
    cfparams['B40'] = 1131.2
    cfparams['B41'] = 985.7+34.2j
    cfparams['B42'] = 296.8+145.0j
    cfparams['B43'] = -402.3-381.7j
    cfparams['B44'] = -282.3+1114.3j
    cfparams['B60'] = -263.2
    cfparams['B61'] = 111.9+222.9j
    cfparams['B62'] = 124.7+195.9j
    cfparams['B63'] = -97.9+139.7j
    cfparams['B64'] = -93.7-145.0j
    cfparams['B65'] = 13.9+109.5j
    cfparams['B66'] = 3.0-108.6j
    cfparams['A'] = 0.005466 #this is ignored
    cfparams['Q'] = 0.0716 #this is ignored



    # Make a free-ion Hamiltonian
    H0 = np.zeros([numLSJmJ, numLSJmJ])
    for k in sorted(cfparams.keys()):
        if k in Er.FreeIonMatrix:
            print("Adding free ion parameter \'%s\' = %g" % (k, cfparams[k]))
            H0 = H0+cfparams[k]*Er.FreeIonMatrix[k]

    # Add in the crystal field terms and diagonalise the result

    H = H0
    for k in [2, 4, 6]:
        for q in range(0, k+1):
            if 'B%d%d' % (k, q) in cfparams:
                if q == 0:
                    H = H+cfparams['B%d%d' % (k, q)]*Er.Cmatrix(k, q)
                else:
                    Bkq = cfparams['B%d%d' % (k, q)]
                    Bkmq = (-1)**q*np.conj(Bkq)
                    Ckq = Er.Cmatrix(k, q)
                    Ckmq = Er.Cmatrix(k, -q)
                    #See page 44, eq 3.1 of the crystal field handbook
                    H = H + Bkq*Ckq + Bkmq*Ckmq


    (evals, evects) = np.linalg.eig(H)
    E0 = np.min(evals)
    calc_nrg_levels = np.sort(evals-E0)
    calc_nrg_levels = calc_nrg_levels[::2]  # ignore every second element
    E0seb = np.min(seb_levels)
    seb_levels = seb_levels-E0seb

    print('    Jevon  Sebastian Difference')
    for k in range(len(seb_levels)):
        print("%9.1f %9.1f %6.1f"%(np.real(calc_nrg_levels[k]),seb_levels[k],np.real(calc_nrg_levels[k]) - seb_levels[k]))
    

    
    # This isn't much of a test at the moment because there seems to be
    # an issue with the free ion parameters
    
    assert(np.max(np.abs(
        calc_nrg_levels[0:len(seb_levels)]-seb_levels))
           < 26.0 )

    # This is more of a test because it it only looks at the ground multiplet
    assert(np.max(np.abs(
        calc_nrg_levels[0:8]-seb_levels[0:8]))
           < 0.6 )