Exemplo n.º 1
0
    def test_threading(self):
        np.random.seed(0)
        m = 20
        n = 10
        As, bs, cs, cone_dicts = [], [], [], []
        results = []

        for _ in range(50):
            A, b, c, cone_dims = utils.least_squares_eq_scs_data(m, n)
            As += [A]
            bs += [b]
            cs += [c]
            cone_dicts += [cone_dims]
            results.append(cone_prog.solve_and_derivative(A, b, c, cone_dims))

        for n_jobs in [1, -1]:
            xs, ys, ss, _, DT_batch = cone_prog.solve_and_derivative_batch(
                As, bs, cs, cone_dicts, n_jobs_forward=n_jobs, n_jobs_backward=n_jobs)

            for i in range(50):
                np.testing.assert_allclose(results[i][0], xs[i])
                np.testing.assert_allclose(results[i][1], ys[i])
                np.testing.assert_allclose(results[i][2], ss[i])
            
            dAs, dbs, dcs = DT_batch(xs, ys, ss)
            for i in range(50):
                dA, db, dc = results[i][-1](results[i][0], results[i][1], results[i][2])
                np.testing.assert_allclose(dA.todense(), dAs[i].todense())
                np.testing.assert_allclose(dbs[i], db)
                np.testing.assert_allclose(dcs[i], dc)
Exemplo n.º 2
0
    def test_threading(self):
        m = 20
        n = 10
        As, bs, cs, cone_dicts = [], [], [], []
        results = []

        serial_time = 0.0
        for _ in range(50):
            A, b, c, cone_dims = utils.least_squares_eq_scs_data(m, n)
            As += [A]
            bs += [b]
            cs += [c]
            cone_dicts += [cone_dims]
            tic = time.time()
            results.append(cone_prog.solve_and_derivative(A, b, c, cone_dims))
            toc = time.time()
            serial_time += toc - tic

        tic = time.time()
        results_thread = cone_prog.solve_and_derivative_batch(
            As, bs, cs, cone_dicts)
        toc = time.time()
        parallel_time = toc - tic

        self.assertTrue(parallel_time < serial_time)

        for i in range(50):
            np.testing.assert_allclose(results[i][0], results_thread[i][0])
            np.testing.assert_allclose(results[i][1], results_thread[i][1])
            np.testing.assert_allclose(results[i][2], results_thread[i][2])
Exemplo n.º 3
0
    def test_ecos_solve(self):
        np.random.seed(0)
        m = 20
        n = 10

        A, b, c, cone_dims = utils.least_squares_eq_scs_data(m, n)
        cone_dims.pop("q")
        cone_dims.pop("s")
        cone_dims.pop("ep")
        x, y, s, derivative, adjoint_derivative = cone_prog.solve_and_derivative(
            A, b, c, cone_dims, solve_method="ECOS")

        # check optimality conditions
        np.testing.assert_allclose(A @ x + s, b, atol=1e-8)
        np.testing.assert_allclose(A.T @ y + c, 0, atol=1e-8)
        np.testing.assert_allclose(s @ y, 0, atol=1e-8)
        np.testing.assert_allclose(s,
                                   cone_lib.pi(
                                       s,
                                       cone_lib.parse_cone_dict(cone_dims),
                                       dual=False),
                                   atol=1e-8)
        np.testing.assert_allclose(y,
                                   cone_lib.pi(
                                       y,
                                       cone_lib.parse_cone_dict(cone_dims),
                                       dual=True),
                                   atol=1e-8)

        x = cp.Variable(10)
        prob = cp.Problem(
            cp.Minimize(
                cp.sum_squares(np.random.randn(5, 10) @ x) +
                np.random.randn(10) @ x), [
                    cp.norm2(x) <= 1,
                    np.random.randn(2, 10) @ x == np.random.randn(2)
                ])
        A, b, c, cone_dims = utils.scs_data_from_cvxpy_problem(prob)
        x, y, s, derivative, adjoint_derivative = cone_prog.solve_and_derivative(
            A, b, c, cone_dims, solve_method="ECOS")

        # check optimality conditions
        np.testing.assert_allclose(A @ x + s, b, atol=1e-8)
        np.testing.assert_allclose(A.T @ y + c, 0, atol=1e-8)
        np.testing.assert_allclose(s @ y, 0, atol=1e-8)
        np.testing.assert_allclose(s,
                                   cone_lib.pi(
                                       s,
                                       cone_lib.parse_cone_dict(cone_dims),
                                       dual=False),
                                   atol=1e-8)
        np.testing.assert_allclose(y,
                                   cone_lib.pi(
                                       y,
                                       cone_lib.parse_cone_dict(cone_dims),
                                       dual=True),
                                   atol=1e-8)
Exemplo n.º 4
0
    def test_warm_start(self):
        np.random.seed(0)
        m = 20
        n = 10
        A, b, c, cone_dims = utils.least_squares_eq_scs_data(m, n)
        x, y, s, _, _ = cone_prog.solve_and_derivative(
            A, b, c, cone_dims, eps=1e-11)
        x_p, y_p, s_p, _, _ = cone_prog.solve_and_derivative(
            A, b, c, cone_dims, warm_start=(x, y, s), max_iters=1)

        np.testing.assert_allclose(x, x_p, atol=1e-7)
        np.testing.assert_allclose(y, y_p, atol=1e-7)
        np.testing.assert_allclose(s, s_p, atol=1e-7)
Exemplo n.º 5
0
    def test_solve_and_derivative(self):
        np.random.seed(0)
        m = 20
        n = 10

        A, b, c, cone_dims = utils.least_squares_eq_scs_data(m, n)
        for mode in ["lsqr", "dense"]:
            x, y, s, derivative, adjoint_derivative = cone_prog.solve_and_derivative(
                A, b, c, cone_dims, eps=1e-10, mode=mode, solve_method="SCS")

            dA = utils.get_random_like(
                A, lambda n: np.random.normal(0, 1e-6, size=n))
            db = np.random.normal(0, 1e-6, size=b.size)
            dc = np.random.normal(0, 1e-6, size=c.size)

            dx, dy, ds = derivative(dA, db, dc)

            x_pert, y_pert, s_pert, _, _ = cone_prog.solve_and_derivative(
                A + dA,
                b + db,
                c + dc,
                cone_dims,
                eps=1e-10,
                solve_method="SCS")

            np.testing.assert_allclose(x_pert - x, dx, atol=1e-8)
            np.testing.assert_allclose(y_pert - y, dy, atol=1e-8)
            np.testing.assert_allclose(s_pert - s, ds, atol=1e-8)

            x, y, s, derivative, adjoint_derivative = cone_prog.solve_and_derivative(
                A, b, c, cone_dims, eps=1e-10, mode=mode, solve_method="SCS")

            objective = c.T @ x
            dA, db, dc = adjoint_derivative(c, np.zeros(y.size),
                                            np.zeros(s.size))

            x_pert, _, _, _, _ = cone_prog.solve_and_derivative(
                A + 1e-6 * dA,
                b + 1e-6 * db,
                c + 1e-6 * dc,
                cone_dims,
                eps=1e-10,
                solve_method="SCS")
            objective_pert = c.T @ x_pert

            np.testing.assert_allclose(objective_pert - objective,
                                       1e-6 * dA.multiply(dA).sum() +
                                       1e-6 * db @ db + 1e-6 * dc @ dc,
                                       atol=1e-8)
Exemplo n.º 6
0
    def test_solve_and_derivative(self):
        m = 20
        n = 10
        A, b, c, cone_dims = utils.least_squares_eq_scs_data(m, n)

        x, y, s, derivative, _ = cone_prog.solve_and_derivative(A,
                                                                b,
                                                                c,
                                                                cone_dims,
                                                                eps=1e-8)

        dA = utils.get_random_like(A,
                                   lambda n: np.random.normal(0, 1e-6, size=n))
        db = np.random.normal(0, 1e-6, size=b.size)
        dc = np.random.normal(0, 1e-6, size=c.size)

        dx, dy, ds = derivative(dA, db, dc)

        x_pert, y_pert, s_pert, _, _ = cone_prog.solve_and_derivative(
            A + dA, b + db, c + dc, cone_dims, eps=1e-8)

        np.testing.assert_allclose(x_pert - x, dx, atol=1e-6, rtol=1e-6)
Exemplo n.º 7
0
import cvxpy as cp
import numpy as np
from scipy import sparse
from scipy.sparse import linalg as splinalg
import time

import diffcp.cone_program as cone_prog
import diffcp.cones as cone_lib
import diffcp.utils as utils


m = 100
n = 50

A, b, c, cone_dims = utils.least_squares_eq_scs_data(m, n)
for mode in ["lsqr", "dense"]:
    x, y, s, derivative, adjoint_derivative = cone_prog.solve_and_derivative(
        A, b, c, cone_dims, eps=1e-10, mode=mode)

    dA = utils.get_random_like(
        A, lambda n: np.random.normal(0, 1e-2, size=n))
    db = np.random.normal(0, 1e-2, size=b.size)
    dc = np.random.normal(0, 1e-2, size=c.size)

    derivative_time = 0.0
    for _ in range(10):
        tic = time.time()
        dx, dy, ds = derivative(dA, db, dc)
        toc = time.time()
        derivative_time += (toc - tic) / 10