Exemplo n.º 1
0
 def test_resize(self):
     # make ndarray an Dimaray with identical data
     arr = np.random.rand(5,12,3,1)
     dat = DimArray(arr,dims=[Dim(range(5),name='one'),
                              Dim(range(12),name='two'),
                              Dim(range(3),name='three'),
                              Dim(range(1),name='four')],test='tst')
     self.assertRaises(NotImplementedError,dat.resize,(5,2,2,3,3))
Exemplo n.º 2
0
 def test_select(self):
     # check indexing with a tuple of arrays and with 1-level dimensions:
     dim1=Dim(['dim'],'dim1')
     dim2=Dim([1,2],'dim2')
     dim3=Dim([3,4,5],'dim3')
     dat=DimArray([[[6,7,8],[9,10,11]]],[dim1,dim2,dim3])
     self.assertEquals(dat.select(dim2=dat['dim2']>1,
                                  dim3=dat['dim3']>3).shape,(1,1,2))
Exemplo n.º 3
0
 def test_find(self):
     # check indexing with a tuple of arrays and with 1-level dimensions:
     dim1=Dim(['dim'],'dim1')
     dim2=Dim([1,2],'dim2')
     dim3=Dim([3,4,5],'dim3')
     dat=DimArray([[[6,7,8],[9,10,11]]],[dim1,dim2,dim3])
     indx = dat.find(dim2=dat['dim2']>1,dim3=dat['dim3']>3)
     assert_array_equal(dat.select(dim2=dat['dim2']>1,dim3=dat['dim3']>3),
                         dat[indx])
Exemplo n.º 4
0
    def get_data(self, *args, **kwargs):
        """
        Return the requested range of data for each event by using the
        proper data retrieval mechanism for each event.

        The result will be an TimeSeries instance with dimensions
        (events,time) for the data and also some information about the
        data returned.
        """
        # get ready to load dat
        eventdata = None

        # events = self.data

        # speed up by getting unique event sources first
        usources = np.unique1d(self['tssrc'])

        # loop over unique sources
        for src in usources:
            # get the eventOffsets from that source
            ind = np.atleast_1d(self['tssrc'] == src)

            if len(ind) == 1:
                src_events = self
            else:
                src_events = self[ind]

            #print "Loading %d events from %s" % (ind.sum(),src)
            # get the timeseries for those events
            # newdat = src.get_event_data(channel,
            #                             src_events,
            #                             dur,
            #                             offset,
            #                             buf,
            #                             resampled_rate,
            #                             filt_freq,
            #                             filt_type,
            #                             filt_order,
            #                             keep_buffer)
            newdat = src.get_event_data(*args, **kwargs)

            # see if concatenate
            if eventdata is None:
                # start the new eventdata
                eventdata = newdat
            else:
                # append it to the existing
                np.concatenate(eventdata, newdat, eventdata.tdim)

        if eventdata is None:
            dims = [Dim(np.array(None), 'event'), Dim(np.array(None), 'time')]
            eventdata = TimeSeries(np.atleast_2d(np.array(None)),
                                   samplerate=None,
                                   tdim='time',
                                   dims=dims)
        return eventdata
Exemplo n.º 5
0
 def test_get_axis(self):
     dat = DimArray(np.random.rand(5,10,3),
                    dims=[Dim(range(5),name='one'),
                          Dim(range(10),name='two'),
                          Dim(range(3),name='three')],test='tst')
     self.assertEqual(dat.get_axis(0),0)
     self.assertEqual(dat.get_axis(1),1)
     self.assertEqual(dat.get_axis(2),2)
     self.assertEqual(dat.get_axis('one'),0)
     self.assertEqual(dat.get_axis('two'),1)
     self.assertEqual(dat.get_axis('three'),2)
Exemplo n.º 6
0
 def test_reshape(self):
     # make ndarray an Dimaray with identical data
     arr = np.random.rand(5,12,3,1)
     dat = DimArray(arr,dims=[Dim(range(5),name='one'),
                              Dim(range(12),name='two'),
                              Dim(range(3),name='three'),
                              Dim(range(1),name='four')],test='tst')
     newshapes = [(5,2,2,3,3),(2,3,5,3,2),(15,12),(6,2,15,1,1,1,1,1,1,1),
                  180,(1,1,1,180,1,1,1)]
     for newshape in newshapes:
         assert_array_equal(arr.reshape(newshape),dat.reshape(newshape))
         assert_array_equal(np.reshape(arr,newshape),
                            np.reshape(dat,newshape))
Exemplo n.º 7
0
 def test_add_dim(self):
     # make ndarray an Dimaray with identical data        
     arr = np.random.rand(5)
     dat = DimArray(arr,dims=[Dim(range(5),name='one')])
     # make new dim to add
     d = Dim(range(10),name='replicate')
     # add it to the dat
     ndat = dat.add_dim(d)
     # test that it worked
     # verify shape
     self.assertEquals(len(ndat.shape),len(dat.shape)+1)
     self.assertEquals(ndat.shape[0],10)
     self.assertEquals(ndat.shape[1],5)
     # verify contents (a couple random spots)
     assert_array_equal(ndat[4],dat)
     assert_array_equal(ndat[7],dat)
     assert_array_equal(ndat.dims[0],d)
     assert_array_equal(ndat.dims[1],dat.dims[0])
Exemplo n.º 8
0
 def test_new(self):
     # should raise AttributeError if no name is specified:
     self.assertRaises(AttributeError,Dim,range(3))
     # should raise ValueError if not 1-D:
     self.assertRaises(ValueError,Dim,rnd((2,3)),name='test')
     # should raise ValueError if data is not unique
     self.assertRaises(ValueError,Dim,[1,2,2,3],name='test')
     # should work fine with any number of dimensions as long as it
     # is squeezable or expandable to 1-D:
     tst = Dim(rnd((3,1,1,1,1)),name='test')
     self.assertEquals(tst.name,'test')
     tst = Dim(np.array(5),name='test2')
     self.assertEquals(tst.name,'test2')
     # custom attributes should work, too:
     tst = Dim(range(2),name='test3',custom='attribute')
     self.assertEquals(tst.name,'test3')
     self.assertEquals(tst.custom,'attribute')
     # should raise Attribute Error if name is removed:
     self.assertRaises(AttributeError,tst.__setattr__,'name',None)
Exemplo n.º 9
0
 def test_newaxis(self):
     # make ndarray an Dimaray with identical data        
     arr = np.random.rand(5,12,3,1)
     dat = DimArray(arr,dims=[Dim(range(5),name='one'),
                              Dim(range(12),name='two'),
                              Dim(range(3),name='three'),
                              Dim(range(1),name='four')],test='tst')
     # add a new axis at beginning
     d0 = dat[np.newaxis,:]
     self.assertEquals(d0.dim_names[0],'newaxis_0')
     self.assertEquals(d0.dim_names[-1],'four')
     self.assertEquals(len(d0.shape),len(arr.shape)+1)
     # add a new axis at end
     d0 = dat[:,:,:,:,np.newaxis]
     self.assertEquals(d0.dim_names[-1],'newaxis_4')
     self.assertEquals(d0.dim_names[0],'one')
     self.assertEquals(len(d0.shape),len(arr.shape)+1)
     # add two axes at once
     d0 = dat[np.newaxis,:,:,:,:,np.newaxis]
     self.assertEquals(d0.dim_names[-1],'newaxis_5')
     self.assertEquals(d0.dim_names[0],'newaxis_0')
     self.assertEquals(len(d0.shape),len(arr.shape)+2)
     # make sure the attribute is still there
     d0.test = 'tst'
Exemplo n.º 10
0
    def test_ufuncs(self):
        """Test the numpy u-functions"""
        # make ndarray an Dimaray with identical data
        arr = np.random.rand(5)
        dat = DimArray(arr,dims=[Dim(range(5),name='one')],
                       test='tst')

        x = np.ones(10) * dat[[0]]
        self.assertTrue(isinstance(x,np.ndarray))

        x = np.ones(1) * dat[[0]]
        self.assertTrue(isinstance(x,DimArray))

        x = 22 * dat
        self.assertTrue(isinstance(x,DimArray))
        assert_array_equal(x,arr*22)
Exemplo n.º 11
0
 def test_extend(self):
     """Test the extend method"""
     # make ndarrays and DimArrays with identical data
     arr1 = np.arange(256).reshape((4,4,4,4))
     dat1 = DimArray(arr1,dims=[Dim(np.arange(100,500,100),name='one'),
                                Dim(np.arange(30,70,10),name='two'),
                                Dim(np.arange(4),name='three'),
                                Dim(np.arange(1000,1200,50),name='four')],
                     test='tst')
     arr2 = np.arange(256,512).reshape((4,4,4,4))
     dat2 = DimArray(arr2,dims=[Dim(np.arange(100,500,100),name='one'),
                                Dim(np.arange(30,70,10),name='two'),
                                Dim(np.arange(4,8),name='three'),
                                Dim(np.arange(1000,1200,50),name='four')],
                     test='tst')
     # extend
     dat1dat2 = dat1.extend(dat2,'three')
     arr1arr2 = np.concatenate([arr1,arr2],2)
     assert_array_equal(dat1dat2,arr1arr2)
Exemplo n.º 12
0
    def test_pickle(self):
        # make sure we can pickle this thing
        dat = Dim(np.random.rand(10),name='randvals')

        # dump to string
        pstr = pickle.dumps(dat)

        # load to new variable
        dat2 = pickle.loads(pstr)

        # make sure data same
        assert_array_equal(dat,dat2)

        # make sure has attr and it's correct
        self.assertTrue(hasattr(dat2,'_attrs'))
        self.assertTrue(hasattr(dat2,'name'))
        self.assertEquals(dat2.name, 'randvals')

        # make sure has required attr
        self.assertTrue(hasattr(dat2,'_required_attrs'))
        self.assertEquals(dat._required_attrs,dat2._required_attrs)
Exemplo n.º 13
0
#
# Pythonic fancy indexing of DimArrays!
#

import numpy as np
from dimarray import Dim,DimArray,AttrArray

if __name__ == "__main__":

    dims = [Dim(data=np.arange(20), name='time'),
            Dim(data=np.arange(10), name='freqs'),
            Dim(data=np.arange(30), name='events')]

    dat = DimArray(data=np.random.rand(20,10,30), dims=dims)

    # select some data
    ind = ((dat['time'] > 10) &
           ((dat['events']<10) | (dat['events']>20)) &
           (dat['freqs'].is_in(range(0,10,2))))

    subdat = dat[ind]

    print dat.shape
    print subdat.shape
Exemplo n.º 14
0
    def resampled(self, resampled_rate, window=None,
                  loop_axis=None, num_mp_procs=0, pad_to_pow2=False):
        """
        Resample the data and reset all the time ranges.

        Uses the resample function from scipy.  This method seems to
        be more accurate than the decimate method.

        Parameters
        ----------
        resampled_rate : {float}
            New sample rate to resample to.
        window : {None,str,float,tuple}, optional
            See scipy.signal.resample for details
        loop_axis: {None,str,int}, optional
            Sometimes it might be faster to loop over an axis.
        num_mp_procs: int, optional
            Whether to try and use multiprocessing to loop over axis.
            0 means no multiprocessing
            >0 specifies num procs to use
            None means yes, and use all possible procs
        pad_to_pow2: bool, optional
            Pad along the time dimension to the next power of 2 so
            that the resampling is much faster (experimental).

        Returns
        -------
        ts : {TimeSeries}
            A TimeSeries instance with the resampled data.

        See Also
        --------
        scipy.signal.resample
        """
        # resample the data, getting new time range
        time_range = self[self.tdim]
        new_length = int(np.round(len(time_range)*resampled_rate/self.samplerate))

        if pad_to_pow2:
            padded_length = 2**next_pow2(len(time_range))
            padded_new_length = int(np.round(padded_length*resampled_rate/self.samplerate))
            time_range = np.hstack([time_range, 
                                    (np.arange(1,padded_length-len(time_range)+1)*np.diff(time_range[-2:]))+time_range[-1]])

        if loop_axis is None:
            # just do standard method on all data at once
            if pad_to_pow2:
                newdat,new_time_range = resample(pad_to_next_pow2(np.asarray(self),axis=self.taxis), 
                                                 padded_new_length, t=time_range,
                                                 axis=self.taxis, window=window)
            else:
                newdat,new_time_range = resample(np.asarray(self),
                                                 new_length, t=time_range,
                                                 axis=self.taxis, window=window)

        else:
            # loop over specified axis
            # get the loop axis name and length
            loop_dim = self.get_dim_name(loop_axis)
            loop_dim_len = len(self[loop_dim])
            # specify empty boolean index
            ind = np.zeros(loop_dim_len,dtype=np.bool)
            newdat = []
            if has_mp and num_mp_procs != 0:
                po = mp.Pool(num_mp_procs)

            for i in range(loop_dim_len):
                ind[i] = True
                dat = self.select(**{loop_dim:ind})
                taxis = dat.taxis
                if has_mp and num_mp_procs != 0:
                    # start async proc
                    if pad_to_pow2:
                        dat = pad_to_next_pow2(np.asarray(dat), axis=dat.taxis)
                        newdat.append(po.apply_async(resample,
                                                     (np.asarray(dat), padded_new_length, time_range,
                                                      taxis, window)))
                    else:
                        newdat.append(po.apply_async(resample,
                                                     (np.asarray(dat), new_length, time_range,
                                                      taxis, window)))
                else:
                    # just call on that dataset
                    sys.stdout.write('%d '%i)
                    sys.stdout.flush()
                    if pad_to_pow2:
                        dat = pad_to_next_pow2(np.asarray(dat), axis=dat.taxis)
                        ndat,new_time_range = resample(np.asarray(dat), padded_new_length, t=time_range,
                                                       axis=taxis, window=window)
                    else:
                        ndat,new_time_range = resample(np.asarray(dat), new_length, t=time_range,
                                                       axis=taxis, window=window)
                    newdat.append(ndat)
                ind[i] = False
            if has_mp and num_mp_procs != 0:
                # aggregate mp results
                po.close()
                #po.join()
                out = []
                for i in range(len(newdat)):
                    sys.stdout.write('%d '%i)
                    sys.stdout.flush()
                    out.append(newdat[i].get())
                #out = [newdat[i].get() for i in range(len(newdat))]
                newdat = [out[i][0] for i in range(len(out))]
                new_time_range = out[i][1]

            # concatenate the new data
            newdat = np.concatenate(newdat,axis=self.get_axis(loop_axis))

            sys.stdout.write('\n')
            sys.stdout.flush()

        # remove pad if we padded it
        if pad_to_pow2:
            newdat = newdat.take(range(new_length),axis=self.taxis)
            new_time_range = new_time_range[:new_length]

        # set the time dimension
        newdims = self.dims.copy()
        attrs = self.dims[self.taxis]._attrs.copy()
        for k in self.dims[self.taxis]._required_attrs.keys():
            attrs.pop(k,None)
        newdims[self.taxis] = Dim(new_time_range,
                                  self.dims[self.taxis].name,
                                  **attrs)

        attrs = self._attrs.copy()
        for k in self._required_attrs.keys():
            attrs.pop(k,None)
        return TimeSeries(newdat, self.tdim, resampled_rate,
                          dims=newdims, **attrs)
Exemplo n.º 15
0
    def test_funcs(self):
        """Test the numpy functions"""
        # make ndarray an Dimaray with identical data
        arr = np.random.rand(5,12,3,1)
        dat = DimArray(arr,dims=[Dim(range(5),name='one'),
                                 Dim(range(12),name='two'),
                                 Dim(range(3),name='three'),
                                 Dim(range(1),name='four')],test='tst')
        
        # these are functions that take an axis argument:
        funcs = [np.mean,np.all,np.any,np.argmax,np.argmin,np.argsort,
                 np.cumprod,np.cumsum,np.max,np.mean,np.min,np.prod,
                 np.ptp,np.std,np.sum,np.var]
        
        # The axes for the ndarray:
        axes_arr = [None,0,1,2,3,0,1,2,3]
        # The axes for the DimArray (we want to test indexing them by
        # number and name):
        axes_dat = [None,0,1,2,3,'one','two','three','four']

        # loop through the functions and axes:
        for func in funcs:
            for a in range(len(axes_arr)):
                # apply the function to the ndarray and the DimArray
                arr_func = func(arr,axis=axes_arr[a])
                dat_func = func(dat,axis=axes_dat[a])
                # make sure they are the same:
                assert_array_equal(arr_func,dat_func)
                if not(axes_dat[a] is None):
                    # ensure we still have a DimArray
                    self.assertTrue(isinstance(dat_func,DimArray))
                    # ensure that the attributes are preserved
                    self.assertEquals(dat_func.test,'tst')
                    
        # same tests as above but this time calling the DimArray
        # methods directly (this test is necessary because it is in
        # principle possible for the numpy function to work and the
        # DimArray method not to work (or vice versa):
        for a in range(len(axes_arr)):
            assert_array_equal(arr.all(axes_arr[a]),
                               dat.all(axes_dat[a]))
            assert_array_equal(arr.any(axes_arr[a]),
                               dat.any(axes_dat[a]))
            assert_array_equal(arr.argmax(axes_arr[a]),
                               dat.argmax(axes_dat[a]))
            assert_array_equal(arr.argmin(axes_arr[a]),
                               dat.argmin(axes_dat[a]))
            assert_array_equal(arr.argsort(axes_arr[a]),
                               dat.argsort(axes_dat[a]))
            assert_array_equal(arr.cumprod(axes_arr[a]),
                               dat.cumprod(axes_dat[a]))
            assert_array_equal(arr.cumsum(axes_arr[a]),
                               dat.cumsum(axes_dat[a]))
            assert_array_equal(arr.max(axes_arr[a]),
                               dat.max(axes_dat[a]))
            assert_array_equal(arr.mean(axes_arr[a]),
                               dat.mean(axes_dat[a]))
            assert_array_equal(arr.min(axes_arr[a]),
                               dat.min(axes_dat[a]))
            assert_array_equal(arr.prod(axes_arr[a]),
                               dat.prod(axes_dat[a]))
            assert_array_equal(arr.ptp(axes_arr[a]),
                               dat.ptp(axes_dat[a]))
            assert_array_equal(arr.std(axes_arr[a]),
                               dat.std(axes_dat[a]))
            assert_array_equal(arr.sum(axes_arr[a]),
                               dat.sum(axes_dat[a]))
            assert_array_equal(arr.var(axes_arr[a]),
                               dat.var(axes_dat[a]))
            if not(axes_dat[a] is None):
                self.assertTrue(isinstance(dat.all(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.any(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.argmax(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.argmin(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.argsort(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.cumprod(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.cumsum(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.max(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.mean(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.min(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.prod(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.ptp(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.std(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.sum(axes_arr[a]),DimArray))
                self.assertTrue(isinstance(dat.var(axes_arr[a]),DimArray))
                
                self.assertEquals(dat.all(axes_arr[a]).test,'tst')
                self.assertEquals(dat.any(axes_arr[a]).test,'tst')
                self.assertEquals(dat.argmax(axes_arr[a]).test,'tst')
                self.assertEquals(dat.argmin(axes_arr[a]).test,'tst')
                self.assertEquals(dat.argsort(axes_arr[a]).test,'tst')
                self.assertEquals(dat.cumprod(axes_arr[a]).test,'tst')
                self.assertEquals(dat.cumsum(axes_arr[a]).test,'tst')
                self.assertEquals(dat.max(axes_arr[a]).test,'tst')
                self.assertEquals(dat.mean(axes_arr[a]).test,'tst')
                self.assertEquals(dat.min(axes_arr[a]).test,'tst')
                self.assertEquals(dat.prod(axes_arr[a]).test,'tst')
                self.assertEquals(dat.ptp(axes_arr[a]).test,'tst')
                self.assertEquals(dat.std(axes_arr[a]).test,'tst')
                self.assertEquals(dat.sum(axes_arr[a]).test,'tst')
                self.assertEquals(dat.var(axes_arr[a]).test,'tst')
                
        # test functions that require function specific input:
        for a in range(len(axes_arr)):
            if axes_arr[a] is None:
                length = len(arr)
            else:
                length = np.shape(arr)[axes_arr[a]]
            cond = np.random.random(length)>0.5
            # calling the compress method directly:
            arr_func = arr.compress(cond,axis=axes_arr[a])
            dat_func = dat.compress(cond,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a] is not None:
                self.assertTrue(isinstance(dat_func,DimArray))
                self.assertEquals(dat_func.test,'tst')
            # calling the numpy compress function:
            arr_func = np.compress(cond,arr,axis=axes_arr[a])
            dat_func = np.compress(cond,dat,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a] is not None:
                self.assertTrue(isinstance(dat_func,DimArray))
                self.assertEquals(dat_func.test,'tst')            

            # the below tests should not run with axis==None:
            if axes_arr[a] is None:
                continue
            
            reps = np.random.random_integers(low=1, high=10, size=length)
            # calling the repeat method directly:
            arr_func = arr.repeat(reps,axis=axes_arr[a])
            dat_func = dat.repeat(reps,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a] is not None:
                self.assertTrue(isinstance(dat_func,AttrArray))
                self.assertEquals(dat_func.test,'tst')
            # calling the numpy repeat function:
            arr_func = np.repeat(arr,reps,axis=axes_arr[a])
            dat_func = np.repeat(dat,reps,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a] is not None:
                self.assertTrue(isinstance(dat_func,AttrArray))
                self.assertEquals(dat_func.test,'tst')

            # skip the last dimension for this test for
            # convenience (the last dimension only has 1 level):
            if a >= 3:
                continue
            indcs = np.arange(len(arr.shape))
            # calling the take method directly (squeeze, to get rid of
            # the last dimension):
            arr_func = arr.squeeze().take(indcs,axis=axes_arr[a])
            dat_func = dat.squeeze().take(indcs,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a]:
                self.assertTrue(isinstance(dat_func,AttrArray))
                self.assertEquals(dat_func.test,'tst')
            # calling the numpy take function directly (squeeze, to get rid of
            # the last dimension):
            arr_func = np.take(arr.squeeze(),indcs,axis=axes_arr[a])
            dat_func = np.take(dat.squeeze(),indcs,axis=axes_dat[a])
            assert_array_equal(arr_func,dat_func)
            if axes_dat[a]:
                self.assertTrue(isinstance(dat_func,AttrArray))
                self.assertEquals(dat_func.test,'tst')

        # This should work with numpy 1.2 but doesn't
        # with 1.1.1 or below (therfore commented out for now):
        # arr_func = arr.clip(0.4,0.6)
        # dat_func = dat.clip(0.4,0.6)
        # assert_array_equal(arr_func,dat_func)
        #self.assertTrue(isinstance(dat_func,DimArray))
        #self.assertEquals(dat_func.test,'tst')
        #arr_func = np.clip(arr,0.4,0.6)
        #dat_func = np.clip(dat,0.4,0.6)
        #assert_array_equal(arr_func,dat_func)
        #self.assertTrue(isinstance(dat_func,DimArray))
        #self.assertEquals(dat_func.test,'tst')

        # other functions that don't necessarily take return a
        # DimArray:
        funcs = [np.diagonal,np.nonzero,np.ravel,np.squeeze,
                 np.sort,np.trace,np.transpose]
        for func in funcs:
            arr_func = func(arr)
            dat_func = func(dat)
            assert_array_equal(arr_func,dat_func)

        # same tests as above, but calling the methods directly:
        assert_array_equal(arr.diagonal(),dat.diagonal())
        assert_array_equal(arr.nonzero(),dat.nonzero())
        assert_array_equal(arr.ravel(),dat.ravel())
        assert_array_equal(arr.squeeze(),dat.squeeze())
        assert_array_equal(arr.sort(),dat.sort())
        assert_array_equal(arr.trace(),dat.trace())
        assert_array_equal(arr.transpose(),dat.transpose())
        # there is no numpy.flatten() function, so we only call the
        # method directly:
        assert_array_equal(arr.flatten(),dat.flatten())
        
        assert_array_equal(arr.swapaxes(0,1),dat.swapaxes(0,1))
        self.assertTrue(isinstance(dat.swapaxes(0,1),DimArray))
        self.assertEquals(dat.swapaxes(0,1).test,'tst')
        assert_array_equal(arr.swapaxes(0,1),dat.swapaxes('one','two'))
        self.assertTrue(isinstance(dat.swapaxes('one','two'),DimArray))
        self.assertEquals(dat.swapaxes('one','two').test,'tst')
        assert_array_equal(arr.swapaxes(1,3),dat.swapaxes(1,3))
        self.assertTrue(isinstance(dat.swapaxes(1,3),DimArray))
        self.assertEquals(dat.swapaxes(1,3).test,'tst')
        assert_array_equal(arr.swapaxes(1,3),dat.swapaxes('two','four'))
        self.assertTrue(isinstance(dat.swapaxes('two','four'),DimArray))
        self.assertEquals(dat.swapaxes('two','four').test,'tst')
Exemplo n.º 16
0
    def test_new(self):
        # should raise Error if dims contains non-Dim instances:
        self.assertRaises(AttributeError,DimArray,np.random.rand(5,10),
                          dims = np.arange(4))
        self.assertRaises(AttributeError,DimArray,np.random.rand(5,10),
                          dims=[Dim(range(5),name='freqs',unit='Hz'),
                                AttrArray(range(10),name='time',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(5,10),
                          dims=[AttrArray(range(5),name='freqs',unit='Hz'),
                                Dim(range(10),name='time',unit='sec')])
 
        # should throw Error if dims do not match data shape:
        self.assertRaises(AttributeError,DimArray,np.random.rand(5,10),
                          dims=[Dim(range(10),name='freqs',unit='Hz'),
                                Dim(range(5),name='time',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(5,10),
                          dims=[Dim(range(5),name='freqs',unit='Hz')])

        # should throw Error if 2 dims have the same name:
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='dim1',unit='Hz'),
                                Dim(range(5),name='dim1',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,3,5),
                          dims=[Dim(range(10),name='dim1',unit='Hz'),
                                Dim(range(3),name='dim2',unit='Hz'),
                                Dim(range(5),name='dim1',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,3,5),
                          dims=[Dim(range(10),name='dim1',unit='Hz'),
                                Dim(range(3),name='dim1',unit='Hz'),
                                Dim(range(5),name='dim1',unit='sec')])

        # should throw Error if a dim name is not a valid identifier:
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='dim1',unit='Hz'),
                                Dim(range(5),name='dim 2',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='dim 1',unit='Hz'),
                                Dim(range(5),name='dim2',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='dim 1',unit='Hz'),
                                Dim(range(5),name='dim 2',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='dim1',unit='Hz'),
                                Dim(range(5),name='dim$2',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='$dim1',unit='Hz'),
                                Dim(range(5),name='dim2',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='1dim1',unit='Hz'),
                                Dim(range(5),name='dim:2',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='dim1',unit='Hz'),
                                Dim(range(5),name='',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='',unit='Hz'),
                                Dim(range(5),name='dim2',unit='sec')])
        self.assertRaises(AttributeError,DimArray,np.random.rand(10,5),
                          dims=[Dim(range(10),name='',unit='Hz'),
                                Dim(range(5),name='',unit='sec')])
        
        # this is a proper initialization:
        dat = DimArray(np.random.rand(5,10),
                       dims=[Dim(range(5),name='freqs',unit='Hz'),
                             Dim(range(10),name='time',unit='sec')])
        # should raise Attribute Error if dims is removed:
        self.assertRaises(AttributeError,dat.__setattr__,'dims',None)
        # ensure dim_names attribute is set properly:
        self.assertEquals(dat.dim_names,['freqs','time'])
        # ensure proper shape
        self.assertEquals(dat.shape,(5,10))
        # ensure dims have proper lengths:
        self.assertEquals(len(dat.dims[0]),5)
        self.assertEquals(len(dat.dims[1]),10)
        # ensure that dims attributes are copied properly:
        self.assertEquals(dat.dims[0].unit,'Hz')
        self.assertEquals(dat.dims[1].unit,'sec')
        # check that dims values are preserved:
        self.assertEquals(dat.dims[0][-1],4)
        self.assertEquals(dat.dims[1][-1],9)
        
        dat = DimArray(np.random.rand(2,4,5),
                       dims=[Dim(range(2),name='dim1',unit='Hz'),
                             Dim(range(4),name='dim2',bla='bla'),
                             Dim(range(5),name='dim3',attr1='attr1',
                                 attr2='attr2')])
        # ensure dim_names attribute is set properly:
        self.assertEquals(dat.dim_names,['dim1','dim2','dim3'])
        # ensure proper shape
        self.assertEquals(dat.shape,(2,4,5))
        # ensure dims have proper lengths:
        self.assertEquals(len(dat.dims[0]),2)
        self.assertEquals(len(dat.dims[1]),4)
        self.assertEquals(len(dat.dims[2]),5)
        # ensure that dims attributes are copied properly:
        self.assertEquals(dat.dims[0].unit,'Hz')
        self.assertEquals(dat.dims[1].bla,'bla')
        self.assertEquals(dat.dims[2].attr1,'attr1')
        self.assertEquals(dat.dims[2].attr2,'attr2')
        # check that dims values are preserved:
        self.assertEquals(dat.dims[0][-1],1)
        self.assertEquals(dat.dims[1][-1],3)
        self.assertEquals(dat.dims[2][-1],4)

        # check filling in of default dims if left out
        dat = DimArray(np.random.rand(4,3))
        self.assertEquals(dat.dim_names, ['dim1','dim2'])
        assert_array_equal(dat['dim1'],np.arange(dat.shape[0]))
        assert_array_equal(dat['dim2'],np.arange(dat.shape[1]))
Exemplo n.º 17
0
    def test_make_bins(self):
        """Test the make_bins method"""
        # make ndarray and DimArray with identical data
        arr = np.arange(256).reshape((4,4,4,4))
        dat = DimArray(arr,dims=[Dim(np.arange(100,500,100),name='one'),
                                 Dim(np.arange(30,70,10),name='two'),
                                 Dim(np.arange(4),name='three'),
                                 Dim(np.arange(1000,1200,50),name='four')],
                       test='tst')
        
        # test making bins on all dimensions:
        test1a = dat.make_bins('one',2,np.mean)
        assert_array_equal(test1a.dims[0],np.array([150,350]))
        test1b = dat.make_bins(0,2,np.mean,bin_labels='sequential')
        assert_array_equal(test1b.dims[0],np.array([0,1]))
        assert_array_equal(test1a,test1b)
        test2a = dat.make_bins('two',2,np.mean)
        assert_array_equal(test2a.dims[1],np.array([35,55]))
        test2b = dat.make_bins(1,2,np.mean,bin_labels=['a','b'])
        assert_array_equal(test2b.dims[1],np.array(['a','b']))
        assert_array_equal(test2a,test2b)
        test3a = dat.make_bins('three',2,np.mean,bin_labels='function')
        assert_array_equal(test3a.dims[2],np.array([0.5,2.5]))
        test3b = dat.make_bins(2,2,np.mean)
        assert_array_equal(test3b.dims[2],np.array([0.5,2.5]))
        assert_array_equal(test3a,test3b)
        test4a = dat.make_bins('four',2,np.mean)
        assert_array_equal(test4a.dims[3],np.array([1025,1125]))
        test4b = dat.make_bins(3,2,np.mean)
        assert_array_equal(test4b.dims[3],np.array([1025,1125]))
        assert_array_equal(test4a,test4b)
        # test specifiying bins:
        test4c = dat.make_bins('four',[[1000,1100],[1100,2000]],np.mean)
        test4d = dat.make_bins(3,[[1000,1100],[1100,2000]],np.mean)
        assert_array_equal(test4c,test4d)
        assert_array_equal(test4a,test4d)

        split = np.split
        # compare output to reproduced output for ndarray:
        test1c = np.array(split(arr,2,axis=0)).mean(1)
        assert_array_equal(test1a,test1c)
        test2c = np.array(split(arr,2,axis=1)).mean(2).transpose([1,0,2,3])
        assert_array_equal(test2a,test2c)
        test3c = np.array(split(arr,2,axis=2)).mean(3).transpose([1,2,0,3])
        assert_array_equal(test3a,test3c)
        test4e = np.array(split(arr,2,axis=3)).mean(4).transpose([1,2,3,0])
        assert_array_equal(test4a,test4e)

        # compare sequential applications of make_bins to desired output:
        test12a = test1a.make_bins('two',2,np.mean)
        assert_array_equal(test1a.dims[0],test12a.dims[0])
        assert_array_equal(test2a.dims[1],test12a.dims[1])
        test21a = test2a.make_bins('one',2,np.mean)
        assert_array_equal(test1a.dims[0],test21a.dims[0])
        assert_array_equal(test2a.dims[1],test21a.dims[1])
        assert_array_equal(test12a,test21a)
        test12b = test1a.make_bins(1,2,np.mean)
        assert_array_equal(test1a.dims[0],test12b.dims[0])
        assert_array_equal(test2a.dims[1],test12b.dims[1])
        test21b = test2a.make_bins(0,2,np.mean)
        assert_array_equal(test1a.dims[0],test21b.dims[0])
        assert_array_equal(test2a.dims[1],test21b.dims[1])
        assert_array_equal(test12b,test21b)

        # check that attributes are preserved:
        for a in dat._attrs:
            if a == 'dims': continue
            self.assertEqual(dat.__getattribute__(a),
                             test1a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test1b.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test2a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test2b.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test3a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test3b.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test4a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test4b.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test4d.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test12a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test12b.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test21a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test21b.__getattribute__(a))
        for d,dn in enumerate(dat.dim_names):
            self.assertEquals(test1a.dim_names[d],dn)
            self.assertEquals(test1b.dim_names[d],dn)
            self.assertEquals(test2a.dim_names[d],dn)
            self.assertEquals(test2b.dim_names[d],dn)
            self.assertEquals(test3a.dim_names[d],dn)
            self.assertEquals(test3b.dim_names[d],dn)
            self.assertEquals(test4a.dim_names[d],dn)
            self.assertEquals(test4b.dim_names[d],dn)
            self.assertEquals(test12a.dim_names[d],dn)
            self.assertEquals(test12b.dim_names[d],dn)
            self.assertEquals(test21a.dim_names[d],dn)
            self.assertEquals(test21b.dim_names[d],dn)

        # test unequal bins:
        arr = np.arange(256).reshape((4,16,4))
        dat = DimArray(arr,dims=[Dim(np.arange(4),name='one'),
                                 Dim(np.arange(16),name='two'),
                                 Dim(np.arange(4),name='three')],test='tst')
        
        self.assertRaises(ValueError,dat.make_bins,'two',3,np.mean)
        test5a = dat.make_bins('two',3,np.mean,bin_labels=['1st','2nd','3rd'],
                               error_on_nonexact=False)
        test5b = dat.make_bins(1,[[0,6,'1st'],[6,11,'2nd'],[11,16,'3rd']],
                               np.mean)
        assert_array_equal(test5a,test5b)
        assert_array_equal(test5a.dims[1],np.array(['1st','2nd','3rd']))
        assert_array_equal(test5a.dims[1],test5b.dims[1])
        # check that attributes are preserved:
        for a in dat._attrs:
            if a == 'dims': continue
            self.assertEqual(dat.__getattribute__(a),
                             test5a.__getattribute__(a))
            self.assertEqual(dat.__getattribute__(a),
                             test5b.__getattribute__(a))
        for d,dn in enumerate(dat.dim_names):
            self.assertEquals(test5a.dim_names[d],dn)
            self.assertEquals(test5b.dim_names[d],dn)
Exemplo n.º 18
0
    def test_getitem(self):
        # make ndarray an Dimaray with identical data
        arr = np.random.rand(3)
        dat = DimArray(arr,dims=[Dim(range(3),name='dim1')])
        self.assertEquals(dat[0],dat['dim1==0'])
        self.assertEquals(dat[1],dat['dim1==1'])
        self.assertEquals(dat[2],dat['dim1==2'])
        self.assertEquals(arr[0],dat['dim1==0'])
        self.assertEquals(arr[1],dat['dim1==1'])
        self.assertEquals(arr[2],dat['dim1==2'])
        
        arr = np.random.rand(3,2)
        dat = DimArray(arr,dims=[Dim(range(3),name='dim1'),
                                 Dim(range(2),name='dim2')])
        assert_array_equal(dat[:,0],dat['dim2==0'])
        assert_array_equal(dat[1],dat['dim1==1'])
        assert_array_equal(dat[2],dat['dim1==2'])
        assert_array_equal(arr[0],dat['dim1==0'])
        assert_array_equal(arr[1],dat['dim1==1'])
        assert_array_equal(arr[2],dat['dim1==2'])

        assert_array_equal(dat[0,0],dat['dim1==0','dim2==0'])
        assert_array_equal(dat[0,1],dat['dim1==0','dim2==1'])
        assert_array_equal(dat[1,0],dat['dim1==1','dim2==0'])
        assert_array_equal(dat[1,1],dat['dim1==1','dim2==1'])
        assert_array_equal(dat[2,0],dat['dim1==2','dim2==0'])
        assert_array_equal(dat[2,1],dat['dim1==2','dim2==1'])

        bool_indx = np.zeros(arr.shape,np.bool)
        bool_indx[2,1] = True
        assert_array_equal(dat[2,1],dat[bool_indx])
        bool_indx[1,1] = True
        assert_array_equal(dat[1:3,1],dat[bool_indx])
        # The below test makes sure that one can work with the results
        # of a Boolean slice into a DimArray object. Because the
        # dimensions get lost with Boolean indices we need to test
        # that there are no complaints from dimension checking (the
        # result should be upcast as an AttrArray):
        test1 = dat[bool_indx] + 1
        test2 = dat[1:3,1] + 1
        assert_array_equal(test1,test2)

        arr = np.random.rand(3)
        dat = DimArray(arr)
        bool_indx = np.array([True,False,True])
        assert_array_equal(dat[bool_indx],arr[bool_indx])
        assert_array_equal(dat[bool_indx].dims[0],dat.dims[0][bool_indx])   

        dat_array = np.random.rand(2,4,5)
        dat = DimArray(dat_array,
                       dims=[Dim(range(2),name='dim1',unit='Hz'),
                             Dim(range(4),name='dim2',bla='bla'),
                             Dim(range(5),name='dim3',attr1='attr1',
                                 attr2='attr2')])

        # check that the correct elements are returned:
        self.assertEquals(dat[0,0,0],dat_array[0,0,0])
        self.assertEquals(dat[0,1,2],dat_array[0,1,2])
        self.assertEquals(dat[1,0,3],dat_array[1,0,3])
        
        # check that the correct elements are returned:
        self.assertEquals(dat['dim1==0','dim2==0','dim3==0'],dat_array[0,0,0])
        self.assertEquals(dat['dim1==0','dim2==1','dim3==2'],dat_array[0,1,2])
        self.assertEquals(dat['dim1==1','dim2==0','dim3==3'],dat_array[1,0,3])
        
        # check that the returned DimArray and its dims have proper shapes:
        self.assertEquals(dat[0].shape,dat_array[0].shape)
        self.assertEquals(len(dat[0].dims[0]),dat_array[0].shape[0])
        self.assertEquals(len(dat[0].dims[1]),dat_array[0].shape[1])
        self.assertEquals(dat[0].dim_names,['dim2','dim3'])
        
        self.assertEquals(dat[1].shape,dat_array[1].shape)
        self.assertEquals(len(dat[1].dims[0]),dat_array[1].shape[0])
        self.assertEquals(len(dat[1].dims[1]),dat_array[1].shape[1])
        self.assertEquals(dat[1].dim_names,['dim2','dim3'])

        self.assertEquals(dat[0,0].shape,dat_array[0,0].shape)
        self.assertEquals(len(dat[0,0].dims[0]),dat_array[0,0].shape[0])
        self.assertEquals(dat[0,0].dim_names,['dim3'])

        self.assertEquals(dat[:,:,0].shape,dat_array[:,:,0].shape)
        self.assertEquals(len(dat[:,:,0].dims[0]),dat_array[:,:,0].shape[0])
        self.assertEquals(len(dat[:,:,0].dims[1]),dat_array[:,:,0].shape[1])
        self.assertEquals(dat[:,:,0].dim_names,['dim1','dim2'])

        self.assertEquals(dat[0:1,2,0:3].shape,dat_array[0:1,2,0:3].shape)
        self.assertEquals(len(dat[0:1,2,0:3].dims[0]),
                          dat_array[0:1,2,0:3].shape[0])
        self.assertEquals(len(dat[0:1,2,0:3].dims[1]),
                          dat_array[0:1,2,0:3].shape[1])
        self.assertEquals(dat[0:1,2,0:3].dim_names,['dim1','dim3'])

        self.assertEquals(dat[0:1].shape,dat_array[0:1].shape)
        self.assertEquals(len(dat[0:1].dims[0]),
                          dat_array[0:1].shape[0])
        self.assertEquals(len(dat[0:1].dims[1]),
                          dat_array[0:1].shape[1])
        self.assertEquals(dat[0:1].dim_names,['dim1','dim2','dim3'])

        self.assertEquals(dat[1].shape,dat_array[1].shape)
        self.assertEquals(len(dat[1].dims[0]),dat_array[1].shape[0])
        self.assertEquals(len(dat[1].dims[1]),dat_array[1].shape[1])
        self.assertEquals(dat[1].dim_names,['dim2','dim3'])

        self.assertEquals(dat[0,0].shape,dat_array[0,0].shape)
        self.assertEquals(len(dat[0,0].dims[0]),dat_array[0,0].shape[0])
        self.assertEquals(dat[0,0].dim_names,['dim3'])

        self.assertEquals(dat[:,:,0].shape,dat_array[:,:,0].shape)
        self.assertEquals(len(dat[:,:,0].dims[0]),dat_array[:,:,0].shape[0])
        self.assertEquals(len(dat[:,:,0].dims[1]),dat_array[:,:,0].shape[1])
        self.assertEquals(dat[:,:,0].dim_names,['dim1','dim2'])

        self.assertEquals(dat[0:1,2,0:3].shape,dat_array[0:1,2,0:3].shape)
        self.assertEquals(len(dat[0:1,2,0:3].dims[0]),
                          dat_array[0:1,2,0:3].shape[0])
        self.assertEquals(len(dat[0:1,2,0:3].dims[1]),
                          dat_array[0:1,2,0:3].shape[1])
        self.assertEquals(dat[0:1,2,0:3].dim_names,['dim1','dim3'])
        print dat.dims
        print dat['dim2>0'].dims
        assert_array_equal(dat['dim2>0'].dims[1],dat.dims[1][1:])

        assert_array_equal(dat[1:,1:],dat['dim1>0','dim2>0'])

        
        # when the name of a Dim instance is given, that dim should be
        # returned:
        self.assertTrue(isinstance(dat['dim1'],Dim))
        self.assertTrue(isinstance(dat['dim2'],Dim))
        self.assertTrue(isinstance(dat['dim3'],Dim))

        self.assertEquals(dat['dim1'].name,'dim1')
        self.assertEquals(dat['dim1'].unit,'Hz')
        self.assertEquals(dat['dim1'][-1],1)
        self.assertEquals(len(dat['dim1']),2)
        self.assertEquals(dat['dim2'].name,'dim2')
        self.assertEquals(dat['dim2'].bla,'bla')
        self.assertEquals(dat['dim2'][-1],3)
        self.assertEquals(len(dat['dim2']),4)
        self.assertEquals(dat['dim3'].name,'dim3')
        self.assertEquals(dat['dim3'].attr1,'attr1')
        self.assertEquals(dat['dim3'].attr2,'attr2')
        self.assertEquals(dat['dim3'][-1],4)
        self.assertEquals(len(dat['dim3']),5)

        # when another string is given, it should be evaluated:
        self.assertEquals(dat['dim1==0'].shape,(4,5))
        self.assertEquals(len(dat['dim1==0'].dims[0]),4)
        self.assertEquals(len(dat['dim1==0'].dims[1]),5)
        self.assertEquals(dat['dim1==0'].dim_names,['dim2','dim3'])

        self.assertEquals(dat['dim2==1'].shape,(2,5))
        self.assertEquals(len(dat['dim2==1'].dims[0]),2)
        self.assertEquals(len(dat['dim2==1'].dims[1]),5)
        self.assertEquals(dat['dim2==1'].dim_names,['dim1','dim3'])

        self.assertEquals(dat['dim2<2'].shape,(2,2,5))
        self.assertEquals(len(dat['dim2<2'].dims[0]),2)
        self.assertEquals(len(dat['dim2<2'].dims[1]),2)
        self.assertEquals(len(dat['dim2<2'].dims[2]),5)
        self.assertEquals(dat['dim2<2'].dim_names,['dim1','dim2','dim3'])
        
        self.assertEquals(dat['dim3!=2'].shape,(2,4,4))
        self.assertEquals(len(dat['dim3!=2'].dims[0]),2)
        self.assertEquals(len(dat['dim3!=2'].dims[1]),4)
        self.assertEquals(len(dat['dim3!=2'].dims[2]),4)
        self.assertEquals(dat['dim3!=2'].dim_names,['dim1','dim2','dim3'])

        # check that the right values are returned:
        self.assertEquals(dat['dim3!=2'][0,0,0],dat_array[0,0,0])
        self.assertEquals(dat['dim3!=2'][1,2,1],dat_array[1,2,1])
        self.assertEquals(dat['dim3!=2'][1,2,3],dat_array[1,2,4])

        # check indexing with a tuple of arrays and with 1-level dimensions:
        dim1=Dim(['dim'],'dim1')
        dim2=Dim([1,2],'dim2')
        dim3=Dim([3,4,5],'dim3')
        dat=DimArray([[[6,7,8],[9,10,11]]],[dim1,dim2,dim3])
        self.assertEquals(dat[np.ix_([0],[0,1],[0,1])].shape,(1,2,2))

        # test string index returning nothing

        # test list index
        dim1=Dim(['dim'],'dim1')
        dim2=Dim([1,2],'dim2')
        dim3=Dim([3,4,5],'dim3')
        dat=DimArray([[[6,7,8],[9,10,11]]],[dim1,dim2,dim3])
        assert_array_equal(dat[[0]],dat[np.array([0])])