Exemplo n.º 1
0
def test_stabilizer():
    S = SymmetricGroup(2)
    H = S.stabilizer(0)
    assert H.generators == [Permutation(1)]
    a = Permutation([2, 0, 1, 3, 4, 5])
    b = Permutation([2, 1, 3, 4, 5, 0])
    G = PermutationGroup([a, b])
    G0 = G.stabilizer(0)
    assert G0.order() == 60

    gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]]
    gens = [Permutation(p) for p in gens_cube]
    G = PermutationGroup(gens)
    G2 = G.stabilizer(2)
    assert G2.order() == 6
    G2_1 = G2.stabilizer(1)
    v = list(G2_1.generate(af=True))
    assert v == [[0, 1, 2, 3, 4, 5, 6, 7], [3, 1, 2, 0, 7, 5, 6, 4]]

    gens = (
        (1, 2, 0, 4, 5, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19),
        (0, 1, 2, 3, 4, 5, 19, 6, 8, 9, 10, 11, 12, 13, 14,
         15, 16, 7, 17, 18),
        (0, 1, 2, 3, 4, 5, 6, 7, 9, 18, 16, 11, 12, 13, 14, 15, 8, 17, 10, 19))
    gens = [Permutation(p) for p in gens]
    G = PermutationGroup(gens)
    G2 = G.stabilizer(2)
    assert G2.order() == 181440
    S = SymmetricGroup(3)
    assert [G.order() for G in S.basic_stabilizers] == [6, 2]
Exemplo n.º 2
0
def test_commutator():
    # the commutator of the trivial group and the trivial group is trivial
    S = SymmetricGroup(3)
    triv = PermutationGroup([Permutation([0, 1, 2])])
    assert S.commutator(triv, triv).is_subgroup(triv)
    # the commutator of the trivial group and any other group is again trivial
    A = AlternatingGroup(3)
    assert S.commutator(triv, A).is_subgroup(triv)
    # the commutator is commutative
    for i in (3, 4, 5):
        S = SymmetricGroup(i)
        A = AlternatingGroup(i)
        D = DihedralGroup(i)
        assert S.commutator(A, D).is_subgroup(S.commutator(D, A))
    # the commutator of an abelian group is trivial
    S = SymmetricGroup(7)
    A1 = AbelianGroup(2, 5)
    A2 = AbelianGroup(3, 4)
    triv = PermutationGroup([Permutation([0, 1, 2, 3, 4, 5, 6])])
    assert S.commutator(A1, A1).is_subgroup(triv)
    assert S.commutator(A2, A2).is_subgroup(triv)
    # examples calculated by hand
    S = SymmetricGroup(3)
    A = AlternatingGroup(3)
    assert S.commutator(A, S).is_subgroup(A)
Exemplo n.º 3
0
def test_is_alt_sym():
    G = DihedralGroup(10)
    assert G.is_alt_sym() is False
    S = SymmetricGroup(10)
    N_eps = 10
    _random_prec = {'N_eps': N_eps,
                    0: Permutation([[2], [1, 4], [0, 6, 7, 8, 9, 3, 5]]),
                    1: Permutation([[1, 8, 7, 6, 3, 5, 2, 9], [0, 4]]),
                    2: Permutation([[5, 8], [4, 7], [0, 1, 2, 3, 6, 9]]),
                    3: Permutation([[3], [0, 8, 2, 7, 4, 1, 6, 9, 5]]),
                    4: Permutation([[8], [4, 7, 9], [3, 6], [0, 5, 1, 2]]),
                    5: Permutation([[6], [0, 2, 4, 5, 1, 8, 3, 9, 7]]),
                    6: Permutation([[6, 9, 8], [4, 5], [1, 3, 7], [0, 2]]),
                    7: Permutation([[4], [0, 2, 9, 1, 3, 8, 6, 5, 7]]),
                    8: Permutation([[1, 5, 6, 3], [0, 2, 7, 8, 4, 9]]),
                    9: Permutation([[8], [6, 7], [2, 3, 4, 5], [0, 1, 9]])}
    assert S.is_alt_sym(_random_prec=_random_prec) is True
    A = AlternatingGroup(10)
    _random_prec = {'N_eps': N_eps,
                    0: Permutation([[1, 6, 4, 2, 7, 8, 5, 9, 3], [0]]),
                    1: Permutation([[1], [0, 5, 8, 4, 9, 2, 3, 6, 7]]),
                    2: Permutation([[1, 9, 8, 3, 2, 5], [0, 6, 7, 4]]),
                    3: Permutation([[6, 8, 9], [4, 5], [1, 3, 7, 2], [0]]),
                    4: Permutation([[8], [5], [4], [2, 6, 9, 3], [1], [0, 7]]),
                    5: Permutation([[3, 6], [0, 8, 1, 7, 5, 9, 4, 2]]),
                    6: Permutation([[5], [2, 9], [1, 8, 3], [0, 4, 7, 6]]),
                    7: Permutation([[1, 8, 4, 7, 2, 3], [0, 6, 9, 5]]),
                    8: Permutation([[5, 8, 7], [3], [1, 4, 2, 6], [0, 9]]),
                    9: Permutation([[4, 9, 6], [3, 8], [1, 2], [0, 5, 7]])}
    assert A.is_alt_sym(_random_prec=_random_prec) is False
Exemplo n.º 4
0
def test_is_alt_sym():
    G = DihedralGroup(10)
    assert G.is_alt_sym() is False
    S = SymmetricGroup(10)
    N_eps = 10
    _random_prec = {
        'N_eps': N_eps,
        0: Permutation([[2], [1, 4], [0, 6, 7, 8, 9, 3, 5]]),
        1: Permutation([[1, 8, 7, 6, 3, 5, 2, 9], [0, 4]]),
        2: Permutation([[5, 8], [4, 7], [0, 1, 2, 3, 6, 9]]),
        3: Permutation([[3], [0, 8, 2, 7, 4, 1, 6, 9, 5]]),
        4: Permutation([[8], [4, 7, 9], [3, 6], [0, 5, 1, 2]]),
        5: Permutation([[6], [0, 2, 4, 5, 1, 8, 3, 9, 7]]),
        6: Permutation([[6, 9, 8], [4, 5], [1, 3, 7], [0, 2]]),
        7: Permutation([[4], [0, 2, 9, 1, 3, 8, 6, 5, 7]]),
        8: Permutation([[1, 5, 6, 3], [0, 2, 7, 8, 4, 9]]),
        9: Permutation([[8], [6, 7], [2, 3, 4, 5], [0, 1, 9]])
    }
    assert S.is_alt_sym(_random_prec=_random_prec) is True
    A = AlternatingGroup(10)
    _random_prec = {
        'N_eps': N_eps,
        0: Permutation([[1, 6, 4, 2, 7, 8, 5, 9, 3], [0]]),
        1: Permutation([[1], [0, 5, 8, 4, 9, 2, 3, 6, 7]]),
        2: Permutation([[1, 9, 8, 3, 2, 5], [0, 6, 7, 4]]),
        3: Permutation([[6, 8, 9], [4, 5], [1, 3, 7, 2], [0]]),
        4: Permutation([[8], [5], [4], [2, 6, 9, 3], [1], [0, 7]]),
        5: Permutation([[3, 6], [0, 8, 1, 7, 5, 9, 4, 2]]),
        6: Permutation([[5], [2, 9], [1, 8, 3], [0, 4, 7, 6]]),
        7: Permutation([[1, 8, 4, 7, 2, 3], [0, 6, 9, 5]]),
        8: Permutation([[5, 8, 7], [3], [1, 4, 2, 6], [0, 9]]),
        9: Permutation([[4, 9, 6], [3, 8], [1, 2], [0, 5, 7]])
    }
    assert A.is_alt_sym(_random_prec=_random_prec) is False
Exemplo n.º 5
0
def test_schreier_sims_random():
    assert sorted(Tetra.pgroup.base) == [0, 1]

    S = SymmetricGroup(3)
    base = [0, 1]
    strong_gens = [
        Permutation([1, 2, 0]),
        Permutation([1, 0, 2]),
        Permutation([0, 2, 1])
    ]
    assert S.schreier_sims_random(base, strong_gens, 5) == (base, strong_gens)
    D = DihedralGroup(3)
    _random_prec = {
        'g': [
            Permutation([2, 0, 1]),
            Permutation([1, 2, 0]),
            Permutation([1, 0, 2])
        ]
    }
    base = [0, 1]
    strong_gens = [
        Permutation([1, 2, 0]),
        Permutation([2, 1, 0]),
        Permutation([0, 2, 1])
    ]
    assert D.schreier_sims_random([],
                                  D.generators,
                                  2,
                                  _random_prec=_random_prec) == (base,
                                                                 strong_gens)
Exemplo n.º 6
0
def test_stabilizer():
    S = SymmetricGroup(2)
    H = S.stabilizer(0)
    assert H.generators == [Permutation(1)]
    a = Permutation([2, 0, 1, 3, 4, 5])
    b = Permutation([2, 1, 3, 4, 5, 0])
    G = PermutationGroup([a, b])
    G0 = G.stabilizer(0)
    assert G0.order() == 60

    gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]]
    gens = [Permutation(p) for p in gens_cube]
    G = PermutationGroup(gens)
    G2 = G.stabilizer(2)
    assert G2.order() == 6
    G2_1 = G2.stabilizer(1)
    v = list(G2_1.generate(af=True))
    assert v == [[0, 1, 2, 3, 4, 5, 6, 7], [3, 1, 2, 0, 7, 5, 6, 4]]

    gens = ((1, 2, 0, 4, 5, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
             19), (0, 1, 2, 3, 4, 5, 19, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16,
                   7, 17, 18), (0, 1, 2, 3, 4, 5, 6, 7, 9, 18, 16, 11, 12, 13,
                                14, 15, 8, 17, 10, 19))
    gens = [Permutation(p) for p in gens]
    G = PermutationGroup(gens)
    G2 = G.stabilizer(2)
    assert G2.order() == 181440
    S = SymmetricGroup(3)
    assert [G.order() for G in S.basic_stabilizers] == [6, 2]
Exemplo n.º 7
0
def test_normal_closure():
    # the normal closure of the trivial group is trivial
    S = SymmetricGroup(3)
    identity = Permutation([0, 1, 2])
    closure = S.normal_closure(identity)
    assert closure.is_trivial
    # the normal closure of the entire group is the entire group
    A = AlternatingGroup(4)
    assert A.normal_closure(A).is_subgroup(A)
    # brute-force verifications for subgroups
    for i in (3, 4, 5):
        S = SymmetricGroup(i)
        A = AlternatingGroup(i)
        D = DihedralGroup(i)
        C = CyclicGroup(i)
        for gp in (A, D, C):
            assert _verify_normal_closure(S, gp)
    # brute-force verifications for all elements of a group
    S = SymmetricGroup(5)
    elements = list(S.generate_dimino())
    for element in elements:
        assert _verify_normal_closure(S, element)
    # small groups
    small = []
    for i in (1, 2, 3):
        small.append(SymmetricGroup(i))
        small.append(AlternatingGroup(i))
        small.append(DihedralGroup(i))
        small.append(CyclicGroup(i))
    for gp in small:
        for gp2 in small:
            if gp2.is_subgroup(gp, 0) and gp2.degree == gp.degree:
                assert _verify_normal_closure(gp, gp2)
Exemplo n.º 8
0
def test_random_stab():
    S = SymmetricGroup(5)
    _random_el = Permutation([1, 3, 2, 0, 4])
    _random_prec = {'rand': _random_el}
    g = S.random_stab(2, _random_prec=_random_prec)
    assert g == Permutation([1, 3, 2, 0, 4])
    h = S.random_stab(1)
    assert h(1) == 1
Exemplo n.º 9
0
def test_verify_bsgs():
    S = SymmetricGroup(5)
    S.schreier_sims()
    base = S.base
    strong_gens = S.strong_gens
    assert _verify_bsgs(S, base, strong_gens) is True
    assert _verify_bsgs(S, base[:-1], strong_gens) is False
    assert _verify_bsgs(S, base, S.generators) is False
Exemplo n.º 10
0
def test_random_stab():
    S = SymmetricGroup(5)
    _random_el = Permutation([1, 3, 2, 0, 4])
    _random_prec = {'rand': _random_el}
    g = S.random_stab(2, _random_prec=_random_prec)
    assert g == Permutation([1, 3, 2, 0, 4])
    h = S.random_stab(1)
    assert h(1) == 1
Exemplo n.º 11
0
def test_verify_bsgs():
    S = SymmetricGroup(5)
    S.schreier_sims()
    base = S.base
    strong_gens = S.strong_gens
    assert _verify_bsgs(S, base, strong_gens) is True
    assert _verify_bsgs(S, base[:-1], strong_gens) is False
    assert _verify_bsgs(S, base, S.generators) is False
Exemplo n.º 12
0
def test_minimal_block():
    D = DihedralGroup(6)
    block_system = D.minimal_block([0, 3])
    for i in range(3):
        assert block_system[i] == block_system[i + 3]
    S = SymmetricGroup(6)
    assert S.minimal_block([0, 1]) == [0, 0, 0, 0, 0, 0]

    assert tetra.pgroup.minimal_block([0, 1]) == [0, 0, 0, 0]
Exemplo n.º 13
0
def test_schreier_vector():
    G = CyclicGroup(50)
    v = [0]*50
    v[23] = -1
    assert G.schreier_vector(23) == v
    H = DihedralGroup(8)
    assert H.schreier_vector(2) == [0, 1, -1, 0, 0, 1, 0, 0]
    L = SymmetricGroup(4)
    assert L.schreier_vector(1) == [1, -1, 0, 0]
Exemplo n.º 14
0
def test_minimal_block():
    D = DihedralGroup(6)
    block_system = D.minimal_block([0, 3])
    for i in range(3):
        assert block_system[i] == block_system[i + 3]
    S = SymmetricGroup(6)
    assert S.minimal_block([0, 1]) == [0, 0, 0, 0, 0, 0]

    assert Tetra.pgroup.minimal_block([0, 1]) == [0, 0, 0, 0]
Exemplo n.º 15
0
def test_schreier_vector():
    G = CyclicGroup(50)
    v = [0] * 50
    v[23] = -1
    assert G.schreier_vector(23) == v
    H = DihedralGroup(8)
    assert H.schreier_vector(2) == [0, 1, -1, 0, 0, 1, 0, 0]
    L = SymmetricGroup(4)
    assert L.schreier_vector(1) == [1, -1, 0, 0]
Exemplo n.º 16
0
def test_verify_normal_closure():
    # verified by GAP
    S = SymmetricGroup(3)
    A = AlternatingGroup(3)
    assert _verify_normal_closure(S, A, closure=A)
    S = SymmetricGroup(5)
    A = AlternatingGroup(5)
    C = CyclicGroup(5)
    assert _verify_normal_closure(S, A, closure=A)
    assert _verify_normal_closure(S, C, closure=A)
Exemplo n.º 17
0
def test_normal_closure():
    # the normal closure of the trivial group is trivial
    S = SymmetricGroup(3)
    identity = Permutation([0, 1, 2])
    closure = S.normal_closure(identity)
    assert closure.is_trivial
    # the normal closure of the entire group is the entire group
    A = AlternatingGroup(4)
    assert A.normal_closure(A).is_subgroup(A)
    # brute-force verifications for subgroups
    for i in (3, 4, 5):
        S = SymmetricGroup(i)
        A = AlternatingGroup(i)
        D = DihedralGroup(i)
        C = CyclicGroup(i)
        for gp in (A, D, C):
            assert _verify_normal_closure(S, gp)
    # brute-force verifications for all elements of a group
    S = SymmetricGroup(5)
    elements = list(S.generate_dimino())
    for element in elements:
        assert _verify_normal_closure(S, element)
    # small groups
    small = []
    for i in (1, 2, 3):
        small.append(SymmetricGroup(i))
        small.append(AlternatingGroup(i))
        small.append(DihedralGroup(i))
        small.append(CyclicGroup(i))
    for gp in small:
        for gp2 in small:
            if gp2.is_subgroup(gp, 0) and gp2.degree == gp.degree:
                assert _verify_normal_closure(gp, gp2)
Exemplo n.º 18
0
def test_pointwise_stabilizer():
    S = SymmetricGroup(2)
    stab = S.pointwise_stabilizer([0])
    assert stab.generators == [Permutation(1)]
    S = SymmetricGroup(5)
    points = []
    stab = S
    for point in (2, 0, 3, 4, 1):
        stab = stab.stabilizer(point)
        points.append(point)
        assert S.pointwise_stabilizer(points).is_subgroup(stab)
Exemplo n.º 19
0
def test_baseswap():
    S = SymmetricGroup(4)
    S.schreier_sims()
    base = S.base
    strong_gens = S.strong_gens
    assert base == [0, 1, 2]
    deterministic = S.baseswap(base, strong_gens, 1, randomized=False)
    randomized = S.baseswap(base, strong_gens, 1)
    assert deterministic[0] == [0, 2, 1]
    assert _verify_bsgs(S, deterministic[0], deterministic[1]) is True
    assert randomized[0] == [0, 2, 1]
    assert _verify_bsgs(S, randomized[0], randomized[1]) is True
Exemplo n.º 20
0
def test_remove_gens():
    S = SymmetricGroup(10)
    base, strong_gens = S.schreier_sims_incremental()
    new_gens = _remove_gens(base, strong_gens)
    assert _verify_bsgs(S, base, new_gens) is True
    A = AlternatingGroup(7)
    base, strong_gens = A.schreier_sims_incremental()
    new_gens = _remove_gens(base, strong_gens)
    assert _verify_bsgs(A, base, new_gens) is True
    D = DihedralGroup(2)
    base, strong_gens = D.schreier_sims_incremental()
    new_gens = _remove_gens(base, strong_gens)
    assert _verify_bsgs(D, base, new_gens) is True
Exemplo n.º 21
0
def test_SymmetricGroup():
    G = SymmetricGroup(5)
    elements = list(G.generate())
    assert (G.generators[0]).size == 5
    assert len(elements) == 120
    assert G.is_solvable is False
    assert G.is_abelian is False
    assert G.is_nilpotent is False
    assert G.is_transitive() is True
    H = SymmetricGroup(1)
    assert H.order() == 1
    L = SymmetricGroup(2)
    assert L.order() == 2
Exemplo n.º 22
0
def test_derived_series():
    # the derived series of the trivial group consists only of the trivial group
    triv = PermutationGroup([Permutation([0, 1, 2])])
    assert triv.derived_series()[0].is_subgroup(triv)
    # the derived series for a simple group consists only of the group itself
    for i in (5, 6, 7):
        A = AlternatingGroup(i)
        assert A.derived_series()[0].is_subgroup(A)
    # the derived series for S_4 is S_4 > A_4 > K_4 > triv
    S = SymmetricGroup(4)
    series = S.derived_series()
    assert series[1].is_subgroup(AlternatingGroup(4))
    assert series[2].is_subgroup(DihedralGroup(2))
    assert series[3].is_trivial
Exemplo n.º 23
0
def test_lower_central_series():
    # the lower central series of the trivial group consists of the trivial
    # group
    triv = PermutationGroup([Permutation([0, 1, 2])])
    assert triv.lower_central_series()[0].is_subgroup(triv)
    # the lower central series of a simple group consists of the group itself
    for i in (5, 6, 7):
        A = AlternatingGroup(i)
        assert A.lower_central_series()[0].is_subgroup(A)
    # GAP-verified example
    S = SymmetricGroup(6)
    series = S.lower_central_series()
    assert len(series) == 2
    assert series[1].is_subgroup(AlternatingGroup(6))
Exemplo n.º 24
0
def test_lower_central_series():
    # the lower central series of the trivial group consists of the trivial
    # group
    triv = PermutationGroup([Permutation([0, 1, 2])])
    assert triv.lower_central_series()[0].is_subgroup(triv)
    # the lower central series of a simple group consists of the group itself
    for i in (5, 6, 7):
        A = AlternatingGroup(i)
        assert A.lower_central_series()[0].is_subgroup(A)
    # GAP-verified example
    S = SymmetricGroup(6)
    series = S.lower_central_series()
    assert len(series) == 2
    assert series[1].is_subgroup(AlternatingGroup(6))
Exemplo n.º 25
0
def test_derived_series():
    # the derived series of the trivial group consists only of the trivial group
    triv = PermutationGroup([Permutation([0, 1, 2])])
    assert triv.derived_series()[0].is_subgroup(triv)
    # the derived series for a simple group consists only of the group itself
    for i in (5, 6, 7):
        A = AlternatingGroup(i)
        assert A.derived_series()[0].is_subgroup(A)
    # the derived series for S_4 is S_4 > A_4 > K_4 > triv
    S = SymmetricGroup(4)
    series = S.derived_series()
    assert series[1].is_subgroup(AlternatingGroup(4))
    assert series[2].is_subgroup(DihedralGroup(2))
    assert series[3].is_trivial
Exemplo n.º 26
0
def test_verify_centralizer():
    # verified by GAP
    S = SymmetricGroup(3)
    A = AlternatingGroup(3)
    triv = PermutationGroup([Permutation([0, 1, 2])])
    assert _verify_centralizer(S, S, centr=triv)
    assert _verify_centralizer(S, A, centr=A)
Exemplo n.º 27
0
def test_schreier_sims_random():
    assert sorted(tetra.pgroup.base) == [0, 1]

    S = SymmetricGroup(3)
    base = [0, 1]
    strong_gens = [Permutation([1, 2, 0]), Permutation([1, 0, 2]),
                   Permutation([0, 2, 1])]
    assert S.schreier_sims_random(base, strong_gens, 5) == (base, strong_gens)
    D = DihedralGroup(3)
    _random_prec = {'g': [Permutation([2, 0, 1]), Permutation([1, 2, 0]),
                          Permutation([1, 0, 2])]}
    base = [0, 1]
    strong_gens = [Permutation([1, 2, 0]), Permutation([2, 1, 0]),
                   Permutation([0, 2, 1])]
    assert D.schreier_sims_random([], D.generators, 2,
                                  _random_prec=_random_prec) == (base, strong_gens)
Exemplo n.º 28
0
def test_centralizer():
    # the centralizer of the trivial group is the entire group
    S = SymmetricGroup(2)
    assert S.centralizer(Permutation(list(range(2)))).is_subgroup(S)
    A = AlternatingGroup(5)
    assert A.centralizer(Permutation(list(range(5)))).is_subgroup(A)
    # a centralizer in the trivial group is the trivial group itself
    triv = PermutationGroup([Permutation([0, 1, 2, 3])])
    D = DihedralGroup(4)
    assert triv.centralizer(D).is_subgroup(triv)
    # brute-force verifications for centralizers of groups
    for i in (4, 5, 6):
        S = SymmetricGroup(i)
        A = AlternatingGroup(i)
        C = CyclicGroup(i)
        D = DihedralGroup(i)
        for gp in (S, A, C, D):
            for gp2 in (S, A, C, D):
                if not gp2.is_subgroup(gp):
                    assert _verify_centralizer(gp, gp2)
    # verify the centralizer for all elements of several groups
    S = SymmetricGroup(5)
    elements = list(S.generate_dimino())
    for element in elements:
        assert _verify_centralizer(S, element)
    A = AlternatingGroup(5)
    elements = list(A.generate_dimino())
    for element in elements:
        assert _verify_centralizer(A, element)
    D = DihedralGroup(7)
    elements = list(D.generate_dimino())
    for element in elements:
        assert _verify_centralizer(D, element)
    # verify centralizers of small groups within small groups
    small = []
    for i in (1, 2, 3):
        small.append(SymmetricGroup(i))
        small.append(AlternatingGroup(i))
        small.append(DihedralGroup(i))
        small.append(CyclicGroup(i))
    for gp in small:
        for gp2 in small:
            if gp.degree == gp2.degree:
                assert _verify_centralizer(gp, gp2)
Exemplo n.º 29
0
def test_remove_gens():
    S = SymmetricGroup(10)
    base, strong_gens = S.schreier_sims_incremental()
    new_gens = _remove_gens(base, strong_gens)
    assert _verify_bsgs(S, base, new_gens) is True
    A = AlternatingGroup(7)
    base, strong_gens = A.schreier_sims_incremental()
    new_gens = _remove_gens(base, strong_gens)
    assert _verify_bsgs(A, base, new_gens) is True
    D = DihedralGroup(2)
    base, strong_gens = D.schreier_sims_incremental()
    new_gens = _remove_gens(base, strong_gens)
    assert _verify_bsgs(D, base, new_gens) is True
    D = DihedralGroup(2)
    base, strong_gens = D.schreier_sims_incremental()
    strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
    _, transversals = _orbits_transversals_from_bsgs(base, strong_gens_distr)
    new_gens = _remove_gens(base, strong_gens, transversals, strong_gens_distr)
    assert _verify_bsgs(D, base, new_gens) is True
Exemplo n.º 30
0
def test_orbits_transversals_from_bsgs():
    S = SymmetricGroup(4)
    S.schreier_sims()
    base = S.base
    strong_gens = S.strong_gens
    strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
    result = _orbits_transversals_from_bsgs(base, strong_gens_distr)
    orbits = result[0]
    transversals = result[1]
    base_len = len(base)
    for i in range(base_len):
        for el in orbits[i]:
            assert transversals[i][el](base[i]) == el
            for j in range(i):
                assert transversals[i][el](base[j]) == base[j]
    order = 1
    for i in range(base_len):
        order *= len(orbits[i])
    assert S.order() == order
Exemplo n.º 31
0
def test_remove_gens():
    S = SymmetricGroup(10)
    base, strong_gens = S.schreier_sims_incremental()
    new_gens = _remove_gens(base, strong_gens)
    assert _verify_bsgs(S, base, new_gens) is True
    A = AlternatingGroup(7)
    base, strong_gens = A.schreier_sims_incremental()
    new_gens = _remove_gens(base, strong_gens)
    assert _verify_bsgs(A, base, new_gens) is True
    D = DihedralGroup(2)
    base, strong_gens = D.schreier_sims_incremental()
    new_gens = _remove_gens(base, strong_gens)
    assert _verify_bsgs(D, base, new_gens) is True
    D = DihedralGroup(2)
    base, strong_gens = D.schreier_sims_incremental()
    strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
    _, transversals = _orbits_transversals_from_bsgs(base, strong_gens_distr)
    new_gens = _remove_gens(base, strong_gens, transversals, strong_gens_distr)
    assert _verify_bsgs(D, base, new_gens) is True
Exemplo n.º 32
0
def test_orbits_transversals_from_bsgs():
    S = SymmetricGroup(4)
    S.schreier_sims()
    base = S.base
    strong_gens = S.strong_gens
    strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
    result = _orbits_transversals_from_bsgs(base, strong_gens_distr)
    orbits = result[0]
    transversals = result[1]
    base_len = len(base)
    for i in range(base_len):
        for el in orbits[i]:
            assert transversals[i][el](base[i]) == el
            for j in range(i):
                assert transversals[i][el](base[j]) == base[j]
    order = 1
    for i in range(base_len):
        order *= len(orbits[i])
    assert S.order() == order
Exemplo n.º 33
0
def test_centralizer():
    # the centralizer of the trivial group is the entire group
    S = SymmetricGroup(2)
    assert S.centralizer(Permutation(list(range(2)))).is_subgroup(S)
    A = AlternatingGroup(5)
    assert A.centralizer(Permutation(list(range(5)))).is_subgroup(A)
    # a centralizer in the trivial group is the trivial group itself
    triv = PermutationGroup([Permutation([0, 1, 2, 3])])
    D = DihedralGroup(4)
    assert triv.centralizer(D).is_subgroup(triv)
    # brute-force verifications for centralizers of groups
    for i in (4, 5, 6):
        S = SymmetricGroup(i)
        A = AlternatingGroup(i)
        C = CyclicGroup(i)
        D = DihedralGroup(i)
        for gp in (S, A, C, D):
            for gp2 in (S, A, C, D):
                if not gp2.is_subgroup(gp):
                    assert _verify_centralizer(gp, gp2)
    # verify the centralizer for all elements of several groups
    S = SymmetricGroup(5)
    elements = list(S.generate_dimino())
    for element in elements:
        assert _verify_centralizer(S, element)
    A = AlternatingGroup(5)
    elements = list(A.generate_dimino())
    for element in elements:
        assert _verify_centralizer(A, element)
    D = DihedralGroup(7)
    elements = list(D.generate_dimino())
    for element in elements:
        assert _verify_centralizer(D, element)
    # verify centralizers of small groups within small groups
    small = []
    for i in (1, 2, 3):
        small.append(SymmetricGroup(i))
        small.append(AlternatingGroup(i))
        small.append(DihedralGroup(i))
        small.append(CyclicGroup(i))
    for gp in small:
        for gp2 in small:
            if gp.degree == gp2.degree:
                assert _verify_centralizer(gp, gp2)
Exemplo n.º 34
0
def test_SymmetricGroup():
    G = SymmetricGroup(5)
    elements = list(G.generate())
    assert (G.generators[0]).size == 5
    assert len(elements) == 120
    assert G.is_solvable is False
    assert G.is_abelian is False
    assert G.is_nilpotent is False
    assert G.is_transitive() is True
    H = SymmetricGroup(1)
    assert H.order() == 1
    L = SymmetricGroup(2)
    assert L.order() == 2
Exemplo n.º 35
0
def test_schreier_sims_incremental():
    identity = Permutation([0, 1, 2, 3, 4])
    TrivialGroup = PermutationGroup([identity])
    base, strong_gens = TrivialGroup.schreier_sims_incremental(base=[0, 1, 2])
    assert _verify_bsgs(TrivialGroup, base, strong_gens) is True
    S = SymmetricGroup(5)
    base, strong_gens = S.schreier_sims_incremental(base=[0, 1, 2])
    assert _verify_bsgs(S, base, strong_gens) is True
    D = DihedralGroup(2)
    base, strong_gens = D.schreier_sims_incremental(base=[1])
    assert _verify_bsgs(D, base, strong_gens) is True
    A = AlternatingGroup(7)
    gens = A.generators[:]
    gen0 = gens[0]
    gen1 = gens[1]
    gen1 = rmul(gen1, ~gen0)
    gen0 = rmul(gen0, gen1)
    gen1 = rmul(gen0, gen1)
    base, strong_gens = A.schreier_sims_incremental(base=[0, 1], gens=gens)
    assert _verify_bsgs(A, base, strong_gens) is True
    C = CyclicGroup(11)
    gen = C.generators[0]
    base, strong_gens = C.schreier_sims_incremental(gens=[gen**3])
    assert _verify_bsgs(C, base, strong_gens) is True
Exemplo n.º 36
0
def test_schreier_sims_incremental():
    identity = Permutation([0, 1, 2, 3, 4])
    TrivialGroup = PermutationGroup([identity])
    base, strong_gens = TrivialGroup.schreier_sims_incremental(base=[0, 1, 2])
    assert _verify_bsgs(TrivialGroup, base, strong_gens) is True
    S = SymmetricGroup(5)
    base, strong_gens = S.schreier_sims_incremental(base=[0, 1, 2])
    assert _verify_bsgs(S, base, strong_gens) is True
    D = DihedralGroup(2)
    base, strong_gens = D.schreier_sims_incremental(base=[1])
    assert _verify_bsgs(D, base, strong_gens) is True
    A = AlternatingGroup(7)
    gens = A.generators[:]
    gen0 = gens[0]
    gen1 = gens[1]
    gen1 = rmul(gen1, ~gen0)
    gen0 = rmul(gen0, gen1)
    gen1 = rmul(gen0, gen1)
    base, strong_gens = A.schreier_sims_incremental(base=[0, 1], gens=gens)
    assert _verify_bsgs(A, base, strong_gens) is True
    C = CyclicGroup(11)
    gen = C.generators[0]
    base, strong_gens = C.schreier_sims_incremental(gens=[gen**3])
    assert _verify_bsgs(C, base, strong_gens) is True
Exemplo n.º 37
0
def _subgroup_search(i, j, k):
    def prop_true(x):
        return True

    def prop_fix_points(x):
        return [x(point) for point in points] == points

    def prop_comm_g(x):
        return rmul(x, g) == rmul(g, x)

    def prop_even(x):
        return x.is_even

    for i in range(i, j, k):
        S = SymmetricGroup(i)
        A = AlternatingGroup(i)
        C = CyclicGroup(i)
        Sym = S.subgroup_search(prop_true)
        assert Sym.is_subgroup(S)
        Alt = S.subgroup_search(prop_even)
        assert Alt.is_subgroup(A)
        Sym = S.subgroup_search(prop_true, init_subgroup=C)
        assert Sym.is_subgroup(S)
        points = [7]
        assert S.stabilizer(7).is_subgroup(S.subgroup_search(prop_fix_points))
        points = [3, 4]
        assert S.stabilizer(3).stabilizer(4).is_subgroup(
            S.subgroup_search(prop_fix_points))
        points = [3, 5]
        fix35 = A.subgroup_search(prop_fix_points)
        points = [5]
        fix5 = A.subgroup_search(prop_fix_points)
        assert A.subgroup_search(prop_fix_points,
                                 init_subgroup=fix35).is_subgroup(fix5)
        base, strong_gens = A.schreier_sims_incremental()
        g = A.generators[0]
        comm_g = \
            A.subgroup_search(prop_comm_g, base=base, strong_gens=strong_gens)
        assert _verify_bsgs(comm_g, base, comm_g.generators) is True
        assert [prop_comm_g(gen) is True for gen in comm_g.generators]
Exemplo n.º 38
0
def test_pointwise_stabilizer():
    S = SymmetricGroup(2)
    stab = S.pointwise_stabilizer([0])
    assert stab.generators == [Permutation(1)]
    S = SymmetricGroup(5)
    points = []
    stab = S
    for point in (2, 0, 3, 4, 1):
        stab = stab.stabilizer(point)
        points.append(point)
        assert S.pointwise_stabilizer(points).is_subgroup(stab)
Exemplo n.º 39
0
def test_baseswap():
    S = SymmetricGroup(4)
    S.schreier_sims()
    base = S.base
    strong_gens = S.strong_gens
    assert base == [0, 1, 2]
    deterministic = S.baseswap(base, strong_gens, 1, randomized=False)
    randomized = S.baseswap(base, strong_gens, 1)
    assert deterministic[0] == [0, 2, 1]
    assert _verify_bsgs(S, deterministic[0], deterministic[1]) is True
    assert randomized[0] == [0, 2, 1]
    assert _verify_bsgs(S, randomized[0], randomized[1]) is True
Exemplo n.º 40
0
def _subgroup_search(i, j, k):
    def prop_true(x):
        return True

    def prop_fix_points(x):
        return [x(point) for point in points] == points

    def prop_comm_g(x):
        return rmul(x, g) == rmul(g, x)

    def prop_even(x):
        return x.is_even

    for i in range(i, j, k):
        S = SymmetricGroup(i)
        A = AlternatingGroup(i)
        C = CyclicGroup(i)
        Sym = S.subgroup_search(prop_true)
        assert Sym.is_subgroup(S)
        Alt = S.subgroup_search(prop_even)
        assert Alt.is_subgroup(A)
        Sym = S.subgroup_search(prop_true, init_subgroup=C)
        assert Sym.is_subgroup(S)
        points = [7]
        assert S.stabilizer(7).is_subgroup(S.subgroup_search(prop_fix_points))
        points = [3, 4]
        assert S.stabilizer(3).stabilizer(4).is_subgroup(
            S.subgroup_search(prop_fix_points))
        points = [3, 5]
        fix35 = A.subgroup_search(prop_fix_points)
        points = [5]
        fix5 = A.subgroup_search(prop_fix_points)
        assert A.subgroup_search(prop_fix_points,
                                 init_subgroup=fix35).is_subgroup(fix5)
        base, strong_gens = A.schreier_sims_incremental()
        g = A.generators[0]
        comm_g = \
            A.subgroup_search(prop_comm_g, base=base, strong_gens=strong_gens)
        assert _verify_bsgs(comm_g, base, comm_g.generators) is True
        assert [prop_comm_g(gen) is True for gen in comm_g.generators]
Exemplo n.º 41
0
def test_eq():
    a = [[1, 2, 0, 3, 4, 5], [1, 0, 2, 3, 4, 5], [2, 1, 0, 3, 4, 5], [
        1, 2, 0, 3, 4, 5]]
    a = [Permutation(p) for p in a + [[1, 2, 3, 4, 5, 0]]]
    g = Permutation([1, 2, 3, 4, 5, 0])
    G1, G2, G3 = [PermutationGroup(x) for x in [a[:2], a[2:4], [g, g**2]]]
    assert G1.order() == G2.order() == G3.order() == 6
    assert G1.is_subgroup(G2)
    assert not G1.is_subgroup(G3)
    G4 = PermutationGroup([Permutation([0, 1])])
    assert not G1.is_subgroup(G4)
    assert G4.is_subgroup(G1, 0)
    assert PermutationGroup(g, g).is_subgroup(PermutationGroup(g))
    assert SymmetricGroup(3).is_subgroup(SymmetricGroup(4), 0)
    assert SymmetricGroup(3).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
    assert not CyclicGroup(5).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
    assert CyclicGroup(3).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
Exemplo n.º 42
0
def test_cmp_perm_lists():
    S = SymmetricGroup(4)
    els = list(S.generate_dimino())
    other = els[:]
    shuffle(other)
    assert _cmp_perm_lists(els, other) is True
Exemplo n.º 43
0
def test_is_primitive():
    S = SymmetricGroup(5)
    assert S.is_primitive() is True
    C = CyclicGroup(7)
    assert C.is_primitive() is True
Exemplo n.º 44
0
def test_naive_list_centralizer():
    # verified by GAP
    S = SymmetricGroup(3)
    A = AlternatingGroup(3)
    assert _naive_list_centralizer(S, S) == [Permutation([0, 1, 2])]
    assert PermutationGroup(_naive_list_centralizer(S, A)).is_subgroup(A)
Exemplo n.º 45
0
def test_cmp_perm_lists():
    S = SymmetricGroup(4)
    els = list(S.generate_dimino())
    other = els[:]
    shuffle(other)
    assert _cmp_perm_lists(els, other) is True
Exemplo n.º 46
0
def test_max_div():
    S = SymmetricGroup(10)
    assert S.max_div == 5
Exemplo n.º 47
0
def test_is_primitive():
    S = SymmetricGroup(5)
    assert S.is_primitive() is True
    C = CyclicGroup(7)
    assert C.is_primitive() is True
Exemplo n.º 48
0
def test_commutator():
    # the commutator of the trivial group and the trivial group is trivial
    S = SymmetricGroup(3)
    triv = PermutationGroup([Permutation([0, 1, 2])])
    assert S.commutator(triv, triv).is_subgroup(triv)
    # the commutator of the trivial group and any other group is again trivial
    A = AlternatingGroup(3)
    assert S.commutator(triv, A).is_subgroup(triv)
    # the commutator is commutative
    for i in (3, 4, 5):
        S = SymmetricGroup(i)
        A = AlternatingGroup(i)
        D = DihedralGroup(i)
        assert S.commutator(A, D).is_subgroup(S.commutator(D, A))
    # the commutator of an abelian group is trivial
    S = SymmetricGroup(7)
    A1 = AbelianGroup(2, 5)
    A2 = AbelianGroup(3, 4)
    triv = PermutationGroup([Permutation([0, 1, 2, 3, 4, 5, 6])])
    assert S.commutator(A1, A1).is_subgroup(triv)
    assert S.commutator(A2, A2).is_subgroup(triv)
    # examples calculated by hand
    S = SymmetricGroup(3)
    A = AlternatingGroup(3)
    assert S.commutator(A, S).is_subgroup(A)
Exemplo n.º 49
0
def test_is_group():
    assert PermutationGroup(Permutation(1, 2), Permutation(2,
                                                           4)).is_group is True
    assert SymmetricGroup(4).is_group is True