Exemplo n.º 1
0
 def fdiff(self, argindex=4):
     from diofant import Sum
     if argindex == 1:
         # Diff wrt n
         raise ArgumentIndexError(self, argindex)
     elif argindex == 2:
         # Diff wrt a
         n, a, b, x = self.args
         k = Dummy("k")
         f1 = 1 / (a + b + n + k + 1)
         f2 = ((a + b + 2*k + 1) * RisingFactorial(b + k + 1, n - k) /
               ((n - k) * RisingFactorial(a + b + k + 1, n - k)))
         return Sum(f1 * (jacobi(n, a, b, x) + f2*jacobi(k, a, b, x)), (k, 0, n - 1))
     elif argindex == 3:
         # Diff wrt b
         n, a, b, x = self.args
         k = Dummy("k")
         f1 = 1 / (a + b + n + k + 1)
         f2 = (-1)**(n - k) * ((a + b + 2*k + 1) * RisingFactorial(a + k + 1, n - k) /
               ((n - k) * RisingFactorial(a + b + k + 1, n - k)))
         return Sum(f1 * (jacobi(n, a, b, x) + f2*jacobi(k, a, b, x)), (k, 0, n - 1))
     elif argindex == 4:
         # Diff wrt x
         n, a, b, x = self.args
         return S.Half * (a + b + n + 1) * jacobi(n - 1, a + 1, b + 1, x)
     else:
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 2
0
 def fdiff(self, argindex=2):
     if argindex == 2:
         # Diff wrt x
         n, x = self.args
         return 2*n*hermite(n - 1, x)
     else:  # wrt n
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 3
0
 def fdiff(self, argindex=2):
     if argindex == 2:
         # Diff wrt x
         n, x = self.args
         return ((n + 1) * chebyshevt(n + 1, x) - x * chebyshevu(n, x)) / (x**2 - 1)
     else:  # wrt n
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 4
0
 def fdiff(self, argindex=2):
     if argindex == 2:
         # Diff wrt x
         n, x = self.args
         return n * chebyshevu(n - 1, x)
     else:  # wrt n
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 5
0
 def fdiff(self, argindex=3):
     if argindex != 3:
         raise ArgumentIndexError(self, argindex)
     nap = Tuple(*[a + 1 for a in self.ap])
     nbq = Tuple(*[b + 1 for b in self.bq])
     fac = Mul(*self.ap) / Mul(*self.bq)
     return fac * hyper(nap, nbq, self.argument)
Exemplo n.º 6
0
 def fdiff(self, argindex=1):
     if len(self.args) == 3:
         n, z, m = self.args
         fm, fn = sqrt(1 - m * sin(z)**2), 1 - n * sin(z)**2
         if argindex == 1:
             return (elliptic_e(z, m) + (m - n) * elliptic_f(z, m) / n +
                     (n**2 - m) * elliptic_pi(n, z, m) / n -
                     n * fm * sin(2 * z) / (2 * fn)) / (2 * (m - n) *
                                                        (n - 1))
         elif argindex == 2:
             return 1 / (fm * fn)
         elif argindex == 3:
             return (elliptic_e(z, m) /
                     (m - 1) + elliptic_pi(n, z, m) - m * sin(2 * z) /
                     (2 * (m - 1) * fm)) / (2 * (n - m))
     else:
         n, m = self.args
         if argindex == 1:
             return (elliptic_e(m) + (m - n) * elliptic_k(m) / n +
                     (n**2 - m) * elliptic_pi(n, m) / n) / (2 * (m - n) *
                                                            (n - 1))
         elif argindex == 2:
             return (elliptic_e(m) /
                     (m - 1) + elliptic_pi(n, m)) / (2 * (n - m))
     raise ArgumentIndexError(self, argindex)
Exemplo n.º 7
0
 def fdiff(self, argindex=2):
     if argindex == 2:
         # Diff wrt x
         n, x = self.args
         return -assoc_laguerre(n - 1, 1, x)
     else:  # wrt n
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 8
0
 def fdiff(self, argindex=1):
     """
     Returns the first derivative of the function.
     """
     if argindex == 1:
         return 1/self.args[0]
     else:
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 9
0
 def fdiff(self, argindex=3):
     if argindex == 3:
         # Diff wrt x
         # Find better formula, this is unsuitable for x = 1
         n, m, x = self.args
         return 1/(x**2 - 1)*(x*n*assoc_legendre(n, m, x) - (m + n)*assoc_legendre(n - 1, m, x))
     else:  # wrt n, m
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 10
0
 def fdiff(self, argindex=2):
     if argindex == 2:
         # Diff wrt x
         # Find better formula, this is unsuitable for x = 1
         n, x = self.args
         return n/(x**2 - 1)*(x*legendre(n, x) - legendre(n - 1, x))
     else:  # wrt n
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 11
0
 def fdiff(self, argindex=1):
     if argindex == 1:
         # I didn't know if there is a better way to handle default arguments
         k = 0
         if len(self.args) > 1:
             k = self.args[1]
         return self.func(self.args[0], k + 1)
     else:
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 12
0
 def fdiff(self, argindex=1):
     z, m = self.args
     fm = sqrt(1 - m * sin(z)**2)
     if argindex == 1:
         return 1 / fm
     elif argindex == 2:
         return (elliptic_e(z, m) / (2 * m * (1 - m)) - elliptic_f(z, m) /
                 (2 * m) - sin(2 * z) / (4 * (1 - m) * fm))
     raise ArgumentIndexError(self, argindex)
Exemplo n.º 13
0
 def fdiff(self, argindex):
     x, y = self.args
     if argindex == 1:
         # Diff wrt x
         return beta(x, y) * (digamma(x) - digamma(x + y))
     elif argindex == 2:
         # Diff wrt y
         return beta(x, y) * (digamma(y) - digamma(x + y))
     else:
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 14
0
 def fdiff(self, argindex=2):
     from diofant import meijerg, unpolarify
     if argindex == 2:
         a, z = self.args
         return -exp(-unpolarify(z)) * z**(a - 1)
     elif argindex == 1:
         a, z = self.args
         return uppergamma(a, z) * log(z) + meijerg([], [1, 1], [0, 0, a],
                                                    [], z)
     else:
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 15
0
 def fdiff(self, argindex=3):
     from diofant import Sum
     if argindex == 1:
         # Diff wrt n
         raise ArgumentIndexError(self, argindex)
     elif argindex == 2:
         # Diff wrt a
         n, a, x = self.args
         k = Dummy("k")
         factor1 = 2 * (1 + (-1)**(n - k)) * (k + a) / ((k +
                        n + 2*a) * (n - k))
         factor2 = 2*(k + 1) / ((k + 2*a) * (2*k + 2*a + 1)) + \
             2 / (k + n + 2*a)
         kern = factor1*gegenbauer(k, a, x) + factor2*gegenbauer(n, a, x)
         return Sum(kern, (k, 0, n - 1))
     elif argindex == 3:
         # Diff wrt x
         n, a, x = self.args
         return 2*a*gegenbauer(n - 1, a + 1, x)
     else:
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 16
0
 def fdiff(self, argindex=1):
     if len(self.args) == 2:
         z, m = self.args
         if argindex == 1:
             return sqrt(1 - m * sin(z)**2)
         elif argindex == 2:
             return (elliptic_e(z, m) - elliptic_f(z, m)) / (2 * m)
     else:
         z = self.args[0]
         if argindex == 1:
             return (elliptic_e(z) - elliptic_k(z)) / (2 * z)
     raise ArgumentIndexError(self, argindex)
Exemplo n.º 17
0
 def fdiff(self, argindex=4):
     if argindex == 3:
         # Diff wrt theta
         n, m, theta, phi = self.args
         return (m * cot(theta) * Ynm(n, m, theta, phi) +
                 sqrt((n - m)*(n + m + 1)) * exp(-I*phi) * Ynm(n, m + 1, theta, phi))
     elif argindex == 4:
         # Diff wrt phi
         n, m, theta, phi = self.args
         return I * m * Ynm(n, m, theta, phi)
     else:  # diff wrt n, m, etc
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 18
0
 def fdiff(self, argindex=3):
     from diofant import Sum
     if argindex == 2:
         # Diff wrt alpha
         n, alpha, x = self.args
         k = Dummy("k")
         return Sum(assoc_laguerre(k, alpha, x) / (n - alpha), (k, 0, n - 1))
     elif argindex == 3:
         # Diff wrt x
         n, alpha, x = self.args
         return -assoc_laguerre(n - 1, alpha + 1, x)
     else:  # wrt n
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 19
0
 def fdiff(self, argindex=1):
     from diofant import polygamma
     if argindex == 1:
         # http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/01/
         n, k = self.args
         return binomial(n, k)*(polygamma(0, n + 1) -
             polygamma(0, n - k + 1))
     elif argindex == 2:
         # http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/02/
         n, k = self.args
         return binomial(n, k)*(polygamma(0, n - k + 1) -
             polygamma(0, k + 1))
     else:
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 20
0
    def fdiff(self, argindex=1):
        """
        Return the first derivative of this function.
        """
        x = self.args[0]

        if len(self.args) == 1:
            if argindex == 1:
                return LambertW(x)/(x*(1 + LambertW(x)))
        else:
            k = self.args[1]
            if argindex == 1:
                return LambertW(x, k)/(x*(1 + LambertW(x, k)))

        raise ArgumentIndexError(self, argindex)
Exemplo n.º 21
0
 def fdiff(self, argindex=2):
     if argindex != 2:
         raise ArgumentIndexError(self, argindex)
     return self.__class__(self.order - 1, self.argument) - \
         self * (self.order + 1)/self.argument
Exemplo n.º 22
0
 def fdiff(self, argindex=1):
     if argindex == 1:
         return DiracDelta(self.args[0])
     else:
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 23
0
 def fdiff(self, argindex=1):
     if argindex == 1:
         return polygamma(0, self.args[0])
     else:
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 24
0
 def fdiff(self, argindex=2):
     if argindex == 2:
         n, z = self.args[:2]
         return polygamma(n + 1, z)
     else:
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 25
0
 def fdiff(self, argindex=1):
     from diofant import gamma, polygamma
     if argindex == 1:
         return gamma(self.args[0] + 1)*polygamma(0, self.args[0] + 1)
     else:
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 26
0
 def fdiff(self, argindex=1):
     if argindex == 1:
         return airyaiprime(self.args[0])
     else:
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 27
0
 def fdiff(self, argindex=1):
     if argindex == 1:
         return self.args[0] * airybi(self.args[0])
     else:
         raise ArgumentIndexError(self, argindex)
Exemplo n.º 28
0
 def fdiff(self, argindex=2):
     if argindex != 2:
         raise ArgumentIndexError(self, argindex)
     return (self._b / 2 * self.__class__(self.order - 1, self.argument) -
             self._a / 2 * self.__class__(self.order + 1, self.argument))