Exemplo n.º 1
0
def test_Domain_preprocess():
    assert Domain.preprocess(ZZ) == ZZ
    assert Domain.preprocess(QQ) == QQ
    assert Domain.preprocess(EX) == EX
    assert Domain.preprocess(FF(2)) == FF(2)
    assert Domain.preprocess(ZZ[x, y]) == ZZ[x, y]

    assert Domain.preprocess('Z') == ZZ
    assert Domain.preprocess('Q') == QQ

    assert Domain.preprocess('ZZ') == ZZ
    assert Domain.preprocess('QQ') == QQ

    assert Domain.preprocess('EX') == EX

    assert Domain.preprocess('FF(23)') == FF(23)
    assert Domain.preprocess('GF(23)') == GF(23)

    pytest.raises(OptionError, lambda: Domain.preprocess('Z[]'))

    assert Domain.preprocess('Z[x]') == ZZ[x]
    assert Domain.preprocess('Q[x]') == QQ[x]

    assert Domain.preprocess('ZZ[x]') == ZZ[x]
    assert Domain.preprocess('QQ[x]') == QQ[x]

    assert Domain.preprocess('Z[x,y]') == ZZ[x, y]
    assert Domain.preprocess('Q[x,y]') == QQ[x, y]

    assert Domain.preprocess('ZZ[x,y]') == ZZ[x, y]
    assert Domain.preprocess('QQ[x,y]') == QQ[x, y]

    pytest.raises(OptionError, lambda: Domain.preprocess('Z()'))

    assert Domain.preprocess('Z(x)') == ZZ.frac_field(x)
    assert Domain.preprocess('Q(x)') == QQ.frac_field(x)

    assert Domain.preprocess('ZZ(x)') == ZZ.frac_field(x)
    assert Domain.preprocess('QQ(x)') == QQ.frac_field(x)

    assert Domain.preprocess('Z(x,y)') == ZZ.frac_field(x, y)
    assert Domain.preprocess('Q(x,y)') == QQ.frac_field(x, y)

    assert Domain.preprocess('ZZ(x,y)') == ZZ.frac_field(x, y)
    assert Domain.preprocess('QQ(x,y)') == QQ.frac_field(x, y)

    assert Domain.preprocess('Q<I>') == QQ.algebraic_field(I)
    assert Domain.preprocess('QQ<I>') == QQ.algebraic_field(I)

    assert Domain.preprocess('Q<sqrt(2), I>') == QQ.algebraic_field(sqrt(2), I)
    assert Domain.preprocess('QQ<sqrt(2), I>') == QQ.algebraic_field(
        sqrt(2), I)

    pytest.raises(OptionError, lambda: Domain.preprocess('abc'))
Exemplo n.º 2
0
def test_Domain_convert():
    assert QQ.convert(10e-52) == QQ(
        1684996666696915,
        1684996666696914987166688442938726917102321526408785780068975640576)

    R, x = ring("x", ZZ)
    assert ZZ.convert(x - x) == 0
    assert ZZ.convert(x - x, R.to_domain()) == 0

    F3 = FF(3)
    assert F3.convert(Float(2.0)) == F3.dtype(2)
    assert F3.convert(PythonRational(2, 1)) == F3.dtype(2)
    pytest.raises(CoercionFailed, lambda: F3.convert(PythonRational(1, 2)))
    assert F3.convert(2.0) == F3.dtype(2)
    pytest.raises(CoercionFailed, lambda: F3.convert(2.1))
Exemplo n.º 3
0
def test_dup_diff():
    assert dup_diff([], 1, ZZ) == []
    assert dup_diff([7], 1, ZZ) == []
    assert dup_diff([2, 7], 1, ZZ) == [2]
    assert dup_diff([1, 2, 1], 1, ZZ) == [2, 2]
    assert dup_diff([1, 2, 3, 4], 1, ZZ) == [3, 4, 3]
    assert dup_diff([1, -1, 0, 0, 2], 1, ZZ) == [4, -3, 0, 0]

    f = dup_normal([17, 34, 56, -345, 23, 76, 0, 0, 12, 3, 7], ZZ)

    assert dup_diff(f, 0, ZZ) == f
    assert dup_diff(f, 1, ZZ) == dup_diff(f, 1, ZZ)
    assert dup_diff(f, 2, ZZ) == dup_diff(dup_diff(f, 1, ZZ), 1, ZZ)
    assert dup_diff(f, 3, ZZ) == dup_diff(dup_diff(dup_diff(f, 1, ZZ), 1, ZZ),
                                          1, ZZ)

    K = FF(3)
    f = dup_normal([17, 34, 56, -345, 23, 76, 0, 0, 12, 3, 7], K)

    assert dup_diff(f, 1, K) == dup_normal([2, 0, 1, 0, 0, 2, 0, 0, 0, 0], K)
    assert dup_diff(f, 2, K) == dup_normal([1, 0, 0, 2, 0, 0, 0], K)
    assert dup_diff(f, 3, K) == dup_normal([], K)

    assert dup_diff(f, 0, K) == f
    assert dup_diff(f, 1, K) == dup_diff(f, 1, K)
    assert dup_diff(f, 2, K) == dup_diff(dup_diff(f, 1, K), 1, K)
    assert dup_diff(f, 3, K) == dup_diff(dup_diff(dup_diff(f, 1, K), 1, K), 1,
                                         K)
Exemplo n.º 4
0
def test_dmp_diff():
    assert dmp_diff([], 1, 0, ZZ) == []
    assert dmp_diff([[]], 1, 1, ZZ) == [[]]
    assert dmp_diff([[[]]], 1, 2, ZZ) == [[[]]]

    assert dmp_diff([[[1], [2]]], 1, 2, ZZ) == [[[]]]

    assert dmp_diff([[[1]], [[]]], 1, 2, ZZ) == [[[1]]]
    assert dmp_diff([[[3]], [[1]], [[]]], 1, 2, ZZ) == [[[6]], [[1]]]

    assert dmp_diff([1, -1, 0, 0, 2], 1, 0, ZZ) == \
        dup_diff([1, -1, 0, 0, 2], 1, ZZ)

    assert dmp_diff(f_6, 0, 3, ZZ) == f_6
    assert dmp_diff(f_6, 1, 3, ZZ) == dmp_diff(f_6, 1, 3, ZZ)
    assert dmp_diff(f_6, 2, 3, ZZ) == dmp_diff(dmp_diff(f_6, 1, 3, ZZ), 1, 3,
                                               ZZ)
    assert dmp_diff(f_6, 3, 3, ZZ) == dmp_diff(
        dmp_diff(dmp_diff(f_6, 1, 3, ZZ), 1, 3, ZZ), 1, 3, ZZ)

    K = FF(23)
    F_6 = dmp_normal(f_6, 3, K)

    assert dmp_diff(F_6, 0, 3, K) == F_6
    assert dmp_diff(F_6, 1, 3, K) == dmp_diff(F_6, 1, 3, K)
    assert dmp_diff(F_6, 2, 3, K) == dmp_diff(dmp_diff(F_6, 1, 3, K), 1, 3, K)
    assert dmp_diff(F_6, 3, 3,
                    K) == dmp_diff(dmp_diff(dmp_diff(F_6, 1, 3, K), 1, 3, K),
                                   1, 3, K)
Exemplo n.º 5
0
def test_dmp_sqf():
    R, x, y = ring("x,y", ZZ)
    assert R.dmp_sqf_part(0) == 0
    assert R.dmp_sqf_p(0) is True

    assert R.dmp_sqf_part(7) == 1
    assert R.dmp_sqf_p(7) is True

    assert R.dmp_sqf_list(3) == (3, [])
    assert R.dmp_sqf_list_include(3) == [(3, 1)]

    R, x, y, z = ring("x,y,z", ZZ)
    assert R.dmp_sqf_p(f_0) is True
    assert R.dmp_sqf_p(f_0**2) is False
    assert R.dmp_sqf_p(f_1) is True
    assert R.dmp_sqf_p(f_1**2) is False
    assert R.dmp_sqf_p(f_2) is True
    assert R.dmp_sqf_p(f_2**2) is False
    assert R.dmp_sqf_p(f_3) is True
    assert R.dmp_sqf_p(f_3**2) is False
    assert R.dmp_sqf_p(f_5) is False
    assert R.dmp_sqf_p(f_5**2) is False

    assert R.dmp_sqf_p(f_4) is True
    assert R.dmp_sqf_part(f_4) == -f_4

    assert R.dmp_sqf_part(f_5) == x + y - z

    R, x, y, z, t = ring("x,y,z,t", ZZ)
    assert R.dmp_sqf_p(f_6) is True
    assert R.dmp_sqf_part(f_6) == f_6

    R, x = ring("x", ZZ)
    f = -x**5 + x**4 + x - 1

    assert R.dmp_sqf_list(f) == (-1, [(x**3 + x**2 + x + 1, 1), (x - 1, 2)])
    assert R.dmp_sqf_list_include(f) == [(-x**3 - x**2 - x - 1, 1), (x - 1, 2)]

    R, x, y = ring("x,y", ZZ)
    f = -x**5 + x**4 + x - 1

    assert R.dmp_sqf_list(f) == (-1, [(x**3 + x**2 + x + 1, 1), (x - 1, 2)])
    assert R.dmp_sqf_list_include(f) == [(-x**3 - x**2 - x - 1, 1), (x - 1, 2)]

    pytest.raises(DomainError, lambda: R.dmp_sqf_norm(x**2 + y**2))
    pytest.raises(MultivariatePolynomialError,
                  lambda: R.dmp_gff_list(x**2 + y**2))

    f = -x**2 + 2 * x - 1
    assert R.dmp_sqf_list_include(f) == [(-1, 1), (x - 1, 2)]

    R, x, y = ring("x,y", FF(2))
    pytest.raises(NotImplementedError, lambda: R.dmp_sqf_list(y**2 + 1))
    pytest.raises(NotImplementedError,
                  lambda: R.dmp_sqf_part(x**3 + 2 * x**2 * y + x * y**2))

    R, x, y = ring("x,y", QQ.algebraic_field(I))
    assert R.dmp_sqf_list(x**2 + 2 * I * x - 1) == (R.one.to_dense()[0][0],
                                                    [(x + I, 2)])
Exemplo n.º 6
0
def test_Modulus_postprocess():
    opt = {'modulus': 5}
    Modulus.postprocess(opt)

    assert opt == {
        'modulus': 5,
        'domain': FF(5),
    }

    opt = {'modulus': 5, 'symmetric': False}
    Modulus.postprocess(opt)

    assert opt == {
        'modulus': 5,
        'domain': FF(5, False),
        'symmetric': False,
    }
Exemplo n.º 7
0
def test_dmp_sqr():
    assert dmp_sqr([ZZ(1), ZZ(2)], 0, ZZ) == \
        dup_sqr([ZZ(1), ZZ(2)], ZZ)

    assert dmp_sqr([[[]]], 2, ZZ) == [[[]]]
    assert dmp_sqr([[[ZZ(2)]]], 2, ZZ) == [[[ZZ(4)]]]

    assert dmp_sqr([[[]]], 2, QQ) == [[[]]]
    assert dmp_sqr([[[QQ(2, 3)]]], 2, QQ) == [[[QQ(4, 9)]]]

    K = FF(9)

    assert dmp_sqr([[K(3)], [K(4)]], 1, K) == [[K(6)], [K(7)]]
Exemplo n.º 8
0
def test_dmp_sqf():
    R, x, y = ring("x,y", ZZ)
    assert R.dmp_sqf_part(0) == 0
    assert R.dmp_sqf_p(0) is True

    assert R.dmp_sqf_part(7) == 1
    assert R.dmp_sqf_p(7) is True

    assert R.dmp_sqf_list(3) == (3, [])
    assert R.dmp_sqf_list_include(3) == [(3, 1)]

    R, x, y, z = ring("x,y,z", ZZ)
    assert R.dmp_sqf_p(f_0) is True
    assert R.dmp_sqf_p(f_0**2) is False
    assert R.dmp_sqf_p(f_1) is True
    assert R.dmp_sqf_p(f_1**2) is False
    assert R.dmp_sqf_p(f_2) is True
    assert R.dmp_sqf_p(f_2**2) is False
    assert R.dmp_sqf_p(f_3) is True
    assert R.dmp_sqf_p(f_3**2) is False
    assert R.dmp_sqf_p(f_5) is False
    assert R.dmp_sqf_p(f_5**2) is False

    assert R.dmp_sqf_p(f_4) is True
    assert R.dmp_sqf_part(f_4) == -f_4

    assert R.dmp_sqf_part(f_5) == x + y - z

    R, x, y, z, t = ring("x,y,z,t", ZZ)
    assert R.dmp_sqf_p(f_6) is True
    assert R.dmp_sqf_part(f_6) == f_6

    R, x = ring("x", ZZ)
    f = -x**5 + x**4 + x - 1

    assert R.dmp_sqf_list(f) == (-1, [(x**3 + x**2 + x + 1, 1), (x - 1, 2)])
    assert R.dmp_sqf_list_include(f) == [(-x**3 - x**2 - x - 1, 1), (x - 1, 2)]

    R, x, y = ring("x,y", ZZ)
    f = -x**5 + x**4 + x - 1

    assert R.dmp_sqf_list(f) == (-1, [(x**3 + x**2 + x + 1, 1), (x - 1, 2)])
    assert R.dmp_sqf_list_include(f) == [(-x**3 - x**2 - x - 1, 1), (x - 1, 2)]

    f = -x**2 + 2 * x - 1
    assert R.dmp_sqf_list_include(f) == [(-1, 1), (x - 1, 2)]

    R, x, y = ring("x,y", FF(2))
    pytest.raises(NotImplementedError, lambda: R.dmp_sqf_list(y**2 + 1))
Exemplo n.º 9
0
def test_dup_sqr():
    assert dup_sqr([], ZZ) == []
    assert dup_sqr([ZZ(2)], ZZ) == [ZZ(4)]
    assert dup_sqr([ZZ(1), ZZ(2)], ZZ) == [ZZ(1), ZZ(4), ZZ(4)]

    assert dup_sqr([], QQ) == []
    assert dup_sqr([QQ(2, 3)], QQ) == [QQ(4, 9)]
    assert dup_sqr([QQ(1, 3), QQ(2, 3)], QQ) == [QQ(1, 9), QQ(4, 9), QQ(4, 9)]

    f = dup_normal([2, 0, 0, 1, 7], ZZ)

    assert dup_sqr(f, ZZ) == dup_normal([4, 0, 0, 4, 28, 0, 1, 14, 49], ZZ)

    K = FF(9)

    assert dup_sqr([K(3), K(4)], K) == [K(6), K(7)]
Exemplo n.º 10
0
def test_dmp_mul():
    assert dmp_mul([ZZ(5)], [ZZ(7)], 0, ZZ) == \
        dup_mul([ZZ(5)], [ZZ(7)], ZZ)
    assert dmp_mul([QQ(5, 7)], [QQ(3, 7)], 0, QQ) == \
        dup_mul([QQ(5, 7)], [QQ(3, 7)], QQ)

    assert dmp_mul([[[]]], [[[]]], 2, ZZ) == [[[]]]
    assert dmp_mul([[[ZZ(1)]]], [[[]]], 2, ZZ) == [[[]]]
    assert dmp_mul([[[]]], [[[ZZ(1)]]], 2, ZZ) == [[[]]]
    assert dmp_mul([[[ZZ(2)]]], [[[ZZ(1)]]], 2, ZZ) == [[[ZZ(2)]]]
    assert dmp_mul([[[ZZ(1)]]], [[[ZZ(2)]]], 2, ZZ) == [[[ZZ(2)]]]

    assert dmp_mul([[[]]], [[[]]], 2, QQ) == [[[]]]
    assert dmp_mul([[[QQ(1, 2)]]], [[[]]], 2, QQ) == [[[]]]
    assert dmp_mul([[[]]], [[[QQ(1, 2)]]], 2, QQ) == [[[]]]
    assert dmp_mul([[[QQ(2, 7)]]], [[[QQ(1, 3)]]], 2, QQ) == [[[QQ(2, 21)]]]
    assert dmp_mul([[[QQ(1, 7)]]], [[[QQ(2, 3)]]], 2, QQ) == [[[QQ(2, 21)]]]

    K = FF(6)

    assert dmp_mul([[K(2)], [K(1)]], [[K(3)], [K(4)]], 1, K) == [[K(5)],
                                                                 [K(4)]]
Exemplo n.º 11
0
def test_dup_sqf():
    R, x = ring("x", ZZ)

    assert R.dup_sqf_part(0) == 0
    assert R.dup_sqf_p(0) is True

    assert R.dup_sqf_part(7) == 1
    assert R.dup_sqf_p(7) is True

    assert R.dup_sqf_part(2 * x + 2) == x + 1
    assert R.dup_sqf_p(2 * x + 2) is True

    assert R.dup_sqf_part(x**3 + x + 1) == x**3 + x + 1
    assert R.dup_sqf_p(x**3 + x + 1) is True

    assert R.dup_sqf_part(-x**3 + x + 1) == x**3 - x - 1
    assert R.dup_sqf_p(-x**3 + x + 1) is True

    assert R.dup_sqf_part(2 * x**3 + 3 * x**2) == 2 * x**2 + 3 * x
    assert R.dup_sqf_p(2 * x**3 + 3 * x**2) is False

    assert R.dup_sqf_part(-2 * x**3 + 3 * x**2) == 2 * x**2 - 3 * x
    assert R.dup_sqf_p(-2 * x**3 + 3 * x**2) is False

    assert R.dup_sqf_list(0) == (0, [])
    assert R.dup_sqf_list(1) == (1, [])

    assert R.dup_sqf_list(x) == (1, [(x, 1)])
    assert R.dup_sqf_list(2 * x**2) == (2, [(x, 2)])
    assert R.dup_sqf_list(3 * x**3) == (3, [(x, 3)])

    assert R.dup_sqf_list(-x**5 + x**4 + x - 1) == \
        (-1, [(x**3 + x**2 + x + 1, 1), (x - 1, 2)])
    assert R.dup_sqf_list(x**8 + 6*x**6 + 12*x**4 + 8*x**2) == \
        ( 1, [(x, 2), (x**2 + 2, 3)])

    assert R.dup_sqf_list(2 * x**2 + 4 * x + 2) == (2, [(x + 1, 2)])

    R, x = ring("x", QQ)
    assert R.dup_sqf_list(2 * x**2 + 4 * x + 2) == (2, [(x + 1, 2)])

    R, x = ring("x", FF(2))
    assert R.dup_sqf_list(x**2 + 1) == (1, [(x + 1, 2)])

    R, x = ring("x", FF(3))
    assert R.dup_sqf_list(x**10 + 2*x**7 + 2*x**4 + x) == \
        (1, [(x, 1),
             (x + 1, 3),
             (x + 2, 6)])

    R1, x = ring("x", ZZ)
    R2, y = ring("y", FF(3))

    f = x**3 + 1
    g = y**3 + 1

    assert R1.dup_sqf_part(f) == f
    assert R2.dup_sqf_part(g) == y + 1

    assert R1.dup_sqf_p(f) is True
    assert R2.dup_sqf_p(g) is False

    R, x, y = ring("x,y", ZZ)

    A = x**4 - 3 * x**2 + 6
    D = x**6 - 5 * x**4 + 5 * x**2 + 4

    f, g = D, R.dmp_sub(A, R.dmp_mul(R.dmp_diff(D, 1), y))
    res = R.dmp_resultant(f, g)
    h = (4 * y**2 + 1).drop(x)

    assert R.drop(x).dup_sqf_list(res) == (45796, [(h, 3)])

    Rt, t = ring("t", ZZ)
    R, x = ring("x", Rt)
    assert R.dup_sqf_list_include(t**3 * x**2) == [(t**3, 1), (x, 2)]
Exemplo n.º 12
0
def test_dup_mul():
    assert dup_mul([], [], ZZ) == []
    assert dup_mul([], [ZZ(1)], ZZ) == []
    assert dup_mul([ZZ(1)], [], ZZ) == []
    assert dup_mul([ZZ(1)], [ZZ(1)], ZZ) == [ZZ(1)]
    assert dup_mul([ZZ(5)], [ZZ(7)], ZZ) == [ZZ(35)]

    assert dup_mul([], [], QQ) == []
    assert dup_mul([], [QQ(1, 2)], QQ) == []
    assert dup_mul([QQ(1, 2)], [], QQ) == []
    assert dup_mul([QQ(1, 2)], [QQ(4, 7)], QQ) == [QQ(2, 7)]
    assert dup_mul([QQ(5, 7)], [QQ(3, 7)], QQ) == [QQ(15, 49)]

    f = dup_normal([3, 0, 0, 6, 1, 2], ZZ)
    g = dup_normal([4, 0, 1, 0], ZZ)
    h = dup_normal([12, 0, 3, 24, 4, 14, 1, 2, 0], ZZ)

    assert dup_mul(f, g, ZZ) == h
    assert dup_mul(g, f, ZZ) == h

    f = dup_normal([2, 0, 0, 1, 7], ZZ)
    h = dup_normal([4, 0, 0, 4, 28, 0, 1, 14, 49], ZZ)

    assert dup_mul(f, f, ZZ) == h

    K = FF(6)

    assert dup_mul([K(2), K(1)], [K(3), K(4)], K) == [K(5), K(4)]

    p1 = dup_normal([
        79, -1, 78, -94, -10, 11, 32, -19, 78, 2, -89, 30, 73, 42, 85, 77, 83,
        -30, -34, -2, 95, -81, 37, -49, -46, -58, -16, 37, 35, -11, -57, -15,
        -31, 67, -20, 27, 76, 2, 70, 67, -65, 65, -26, -93, -44, -12, -92, 57,
        -90, -57, -11, -67, -98, -69, 97, -41, 89, 33, 89, -50, 81, -31, 60,
        -27, 43, 29, -77, 44, 21, -91, 32, -57, 33, 3, 53, -51, -38, -99, -84,
        23, -50, 66, -100, 1, -75, -25, 27, -60, 98, -51, -87, 6, 8, 78, -28,
        -95, -88, 12, -35, 26, -9, 16, -92, 55, -7, -86, 68, -39, -46, 84, 94,
        45, 60, 92, 68, -75, -74, -19, 8, 75, 78, 91, 57, 34, 14, -3, -49, 65,
        78, -18, 6, -29, -80, -98, 17, 13, 58, 21, 20, 9, 37, 7, -30, -53, -20,
        34, 67, -42, 89, -22, 73, 43, -6, 5, 51, -8, -15, -52, -22, -58, -72,
        -3, 43, -92, 82, 83, -2, -13, -23, -60, 16, -94, -8, -28, -95, -72, 63,
        -90, 76, 6, -43, -100, -59, 76, 3, 3, 46, -85, 75, 62, -71, -76, 88,
        97, -72, -1, 30, -64, 72, -48, 14, -78, 58, 63, -91, 24, -87, -27, -80,
        -100, -44, 98, 70, 100, -29, -38, 11, 77, 100, 52, 86, 65, -5, -42,
        -81, -38, -42, 43, -2, -70, -63, -52
    ], ZZ)
    p2 = dup_normal([
        65, -19, -47, 1, 90, 81, -15, -34, 25, -75, 9, -83, 50, -5, -44, 31, 1,
        70, -7, 78, 74, 80, 85, 65, 21, 41, 66, 19, -40, 63, -21, -27, 32, 69,
        83, 34, -35, 14, 81, 57, -75, 32, -67, -89, -100, -61, 46, 84, -78,
        -29, -50, -94, -24, -32, -68, -16, 100, -7, -72, -89, 35, 82, 58, 81,
        -92, 62, 5, -47, -39, -58, -72, -13, 84, 44, 55, -25, 48, -54, -31,
        -56, -11, -50, -84, 10, 67, 17, 13, -14, 61, 76, -64, -44, -40, -96,
        11, -11, -94, 2, 6, 27, -6, 68, -54, 66, -74, -14, -1, -24, -73, 96,
        89, -11, -89, 56, -53, 72, -43, 96, 25, 63, -31, 29, 68, 83, 91, -93,
        -19, -38, -40, 40, -12, -19, -79, 44, 100, -66, -29, -77, 62, 39, -8,
        11, -97, 14, 87, 64, 21, -18, 13, 15, -59, -75, -99, -88, 57, 54, 56,
        -67, 6, -63, -59, -14, 28, 87, -20, -39, 84, -91, -2, 49, -75, 11, -24,
        -95, 36, 66, 5, 25, -72, -40, 86, 90, 37, -33, 57, -35, 29, -18, 4,
        -79, 64, -17, -27, 21, 29, -5, -44, -87, -24, 52, 78, 11, -23, -53, 36,
        42, 21, -68, 94, -91, -51, -21, 51, -76, 72, 31, 24, -48, -80, -9, 37,
        -47, -6, -8, -63, -91, 79, -79, -100, 38, -20, 38, 100, 83, -90, 87,
        63, -36, 82, -19, 18, -98, -38, 26, 98, -70, 79, 92, 12, 12, 70, 74,
        36, 48, -13, 31, 31, -47, -71, -12, -64, 36, -42, 32, -86, 60, 83, 70,
        55, 0, 1, 29, -35, 8, -82, 8, -73, -46, -50, 43, 48, -5, -86, -72, 44,
        -90, 19, 19, 5, -20, 97, -13, -66, -5, 5, -69, 64, -30, 41, 51, 36, 13,
        -99, -61, 94, -12, 74, 98, 68, 24, 46, -97, -87, -6, -27, 82, 62, -11,
        -77, 86, 66, -47, -49, -50, 13, 18, 89, -89, 46, -80, 13, 98, -35, -36,
        -25, 12, 20, 26, -52, 79, 27, 79, 100, 8, 62, -58, -28, 37
    ], ZZ)
    res = dup_normal([
        5135, -1566, 1376, -7466, 4579, 11710, 8001, -7183, -3737, -7439, 345,
        -10084, 24522, -1201, 1070, -10245, 9582, 9264, 1903, 23312, 18953,
        10037, -15268, -5450, 6442, -6243, -3777, 5110, 10936, -16649, -6022,
        16255, 31300, 24818, 31922, 32760, 7854, 27080, 15766, 29596, 7139,
        31945, -19810, 465, -38026, -3971, 9641, 465, -19375, 5524, -30112,
        -11960, -12813, 13535, 30670, 5925, -43725, -14089, 11503, -22782,
        6371, 43881, 37465, -33529, -33590, -39798, -37854, -18466, -7908,
        -35825, -26020, -36923, -11332, -5699, 25166, -3147, 19885, 12962,
        -20659, -1642, 27723, -56331, -24580, -11010, -20206, 20087, -23772,
        -16038, 38580, 20901, -50731, 32037, -4299, 26508, 18038, -28357,
        31846, -7405, -20172, -15894, 2096, 25110, -45786, 45918, -55333,
        -31928, -49428, -29824, -58796, -24609, -15408, 69, -35415, -18439,
        10123, -20360, -65949, 33356, -20333, 26476, -32073, 33621, 930, 28803,
        -42791, 44716, 38164, 12302, -1739, 11421, 73385, -7613, 14297, 38155,
        -414, 77587, 24338, -21415, 29367, 42639, 13901, -288, 51027, -11827,
        91260, 43407, 88521, -15186, 70572, -12049, 5090, -12208, -56374,
        15520, -623, -7742, 50825, 11199, -14894, 40892, 59591, -31356, -28696,
        -57842, -87751, -33744, -28436, -28945, -40287, 37957, -35638, 33401,
        -61534, 14870, 40292, 70366, -10803, 102290, -71719, -85251, 7902,
        -22409, 75009, 99927, 35298, -1175, -762, -34744, -10587, -47574,
        -62629, -19581, -43659, -54369, -32250, -39545, 15225, -24454, 11241,
        -67308, -30148, 39929, 37639, 14383, -73475, -77636, -81048, -35992,
        41601, -90143, 76937, -8112, 56588, 9124, -40094, -32340, 13253, 10898,
        -51639, 36390, 12086, -1885, 100714, -28561, -23784, -18735, 18916,
        16286, 10742, -87360, -13697, 10689, -19477, -29770, 5060, 20189,
        -8297, 112407, 47071, 47743, 45519, -4109, 17468, -68831, 78325, -6481,
        -21641, -19459, 30919, 96115, 8607, 53341, 32105, -16211, 23538, 57259,
        -76272, -40583, 62093, 38511, -34255, -40665, -40604, -37606, -15274,
        33156, -13885, 103636, 118678, -14101, -92682, -100791, 2634, 63791,
        98266, 19286, -34590, -21067, -71130, 25380, -40839, -27614, -26060,
        52358, -15537, 27138, -6749, 36269, -33306, 13207, -91084, -5540,
        -57116, 69548, 44169, -57742, -41234, -103327, -62904, -8566, 41149,
        -12866, 71188, 23980, 1838, 58230, 73950, 5594, 43113, -8159, -15925,
        6911, 85598, -75016, -16214, -62726, -39016, 8618, -63882, -4299,
        23182, 49959, 49342, -3238, -24913, -37138, 78361, 32451, 6337, -11438,
        -36241, -37737, 8169, -3077, -24829, 57953, 53016, -31511, -91168,
        12599, -41849, 41576, 55275, -62539, 47814, -62319, 12300, -32076,
        -55137, -84881, -27546, 4312, -3433, -54382, 113288, -30157, 74469,
        18219, 79880, -2124, 98911, 17655, -33499, -32861, 47242, -37393,
        99765, 14831, -44483, 10800, -31617, -52710, 37406, 22105, 29704,
        -20050, 13778, 43683, 36628, 8494, 60964, -22644, 31550, -17693, 33805,
        -124879, -12302, 19343, 20400, -30937, -21574, -34037, -33380, 56539,
        -24993, -75513, -1527, 53563, 65407, -101, 53577, 37991, 18717, -23795,
        -8090, -47987, -94717, 41967, 5170, -14815, -94311, 17896, -17734,
        -57718, -774, -38410, 24830, 29682, 76480, 58802, -46416, -20348,
        -61353, -68225, -68306, 23822, -31598, 42972, 36327, 28968, -65638,
        -21638, 24354, -8356, 26777, 52982, -11783, -44051, -26467, -44721,
        -28435, -53265, -25574, -2669, 44155, 22946, -18454, -30718, -11252,
        58420, 8711, 67447, 4425, 41749, 67543, 43162, 11793, -41907, 20477,
        -13080, 6559, -6104, -13244, 42853, 42935, 29793, 36730, -28087, 28657,
        17946, 7503, 7204, 21491, -27450, -24241, -98156, -18082, -42613,
        -24928, 10775, -14842, -44127, 55910, 14777, 31151, -2194, 39206,
        -2100, -4211, 11827, -8918, -19471, 72567, 36447, -65590, -34861,
        -17147, -45303, 9025, -7333, -35473, 11101, 11638, 3441, 6626, -41800,
        9416, 13679, 33508, 40502, -60542, 16358, 8392, -43242, -35864, -34127,
        -48721, 35878, 30598, 28630, 20279, -19983, -14638, -24455, -1851,
        -11344, 45150, 42051, 26034, -28889, -32382, -3527, -14532, 22564,
        -22346, 477, 11706, 28338, -25972, -9185, -22867, -12522, 32120, -4424,
        11339, -33913, -7184, 5101, -23552, -17115, -31401, -6104, 21906,
        25708, 8406, 6317, -7525, 5014, 20750, 20179, 22724, 11692, 13297,
        2493, -253, -16841, -17339, -6753, -4808, 2976, -10881, -10228, -13816,
        -12686, 1385, 2316, 2190, -875, -1924
    ], ZZ)

    assert dup_mul(p1, p2, ZZ) == res

    p1 = dup_normal([
        83, -61, -86, -24, 12, 43, -88, -9, 42, 55, -66, 74, 95, -25, -12, 68,
        -99, 4, 45, 6, -15, -19, 78, 65, -55, 47, -13, 17, 86, 81, -58, -27,
        50, -40, -24, 39, -41, -92, 75, 90, -1, 40, -15, -27, -35, 68, 70, -64,
        -40, 78, -88, -58, -39, 69, 46, 12, 28, -94, -37, -50, -80, -96, -61,
        25, 1, 71, 4, 12, 48, 4, 34, -47, -75, 5, 48, 82, 88, 23, 98, 35, 17,
        -10, 48, -61, -95, 47, 65, -19, -66, -57, -6, -51, -42, -89, 66, -13,
        18, 37, 90, -23, 72, 96, -53, 0, 40, -73, -52, -68, 32, -25, -53, 79,
        -52, 18, 44, 73, -81, 31, -90, 70, 3, 36, 48, 76, -24, -44, 23, 98, -4,
        73, 69, 88, -70, 14, -68, 94, -78, -15, -64, -97, -70, -35, 65, 88, 49,
        -53, -7, 12, -45, -7, 59, -94, 99, -2, 67, -60, -71, 29, -62, -77, 1,
        51, 17, 80, -20, -47, -19, 24, -9, 39, -23, 21, -84, 10, 84, 56, -17,
        -21, -66, 85, 70, 46, -51, -22, -95, 78, -60, -96, -97, -45, 72, 35,
        30, -61, -92, -93, -60, -61, 4, -4, -81, -73, 46, 53, -11, 26, 94, 45,
        14, -78, 55, 84, -68, 98, 60, 23, 100, -63, 68, 96, -16, 3, 56, 21,
        -58, 62, -67, 66, 85, 41, -79, -22, 97, -67, 82, 82, -96, -20, -7, 48,
        -67, 48, -9, -39, 78
    ], ZZ)
    p2 = dup_normal([
        52, 88, 76, 66, 9, -64, 46, -20, -28, 69, 60, 96, -36, -92, -30, -11,
        -35, 35, 55, 63, -92, -7, 25, -58, 74, 55, -6, 4, 47, -92, -65, 67,
        -45, 74, -76, 59, -6, 69, 39, 24, -71, -7, 39, -45, 60, -68, 98, 97,
        -79, 17, 4, 94, -64, 68, -100, -96, -2, 3, 22, 96, 54, -77, -86, 67, 6,
        57, 37, 40, 89, -78, 64, -94, -45, -92, 57, 87, -26, 36, 19, 97, 25,
        77, -87, 24, 43, -5, 35, 57, 83, 71, 35, 63, 61, 96, -22, 8, -1, 96,
        43, 45, 94, -93, 36, 71, -41, -99, 85, -48, 59, 52, -17, 5, 87, -16,
        -68, -54, 76, -18, 100, 91, -42, -70, -66, -88, -12, 1, 95, -82, 52,
        43, -29, 3, 12, 72, -99, -43, -32, -93, -51, 16, -20, -12, -11, 5, 33,
        -38, 93, -5, -74, 25, 74, -58, 93, 59, -63, -86, 63, -20, -4, -74, -73,
        -95, 29, -28, 93, -91, -2, -38, -62, 77, -58, -85, -28, 95, 38, 19,
        -69, 86, 94, 25, -2, -4, 47, 34, -59, 35, -48, 29, -63, -53, 34, 29,
        66, 73, 6, 92, -84, 89, 15, 81, 93, 97, 51, -72, -78, 25, 60, 90, -45,
        39, 67, -84, -62, 57, 26, -32, -56, -14, -83, 76, 5, -2, 99, -100, 28,
        46, 94, -7, 53, -25, 16, -23, -36, 89, -78, -63, 31, 1, 84, -99, -52,
        76, 48, 90, -76, 44, -19, 54, -36, -9, -73, -100, -69, 31, 42, 25, -39,
        76, -26, -8, -14, 51, 3, 37, 45, 2, -54, 13, -34, -92, 17, -25, -65,
        53, -63, 30, 4, -70, -67, 90, 52, 51, 18, -3, 31, -45, -9, 59, 63, -87,
        22, -32, 29, -38, 21, 36, -82, 27, -11
    ], ZZ)
    res = dup_normal([
        4316, 4132, -3532, -7974, -11303, -10069, 5484, -3330, -5874, 7734,
        4673, 11327, -9884, -8031, 17343, 21035, -10570, -9285, 15893, 3780,
        -14083, 8819, 17592, 10159, 7174, -11587, 8598, -16479, 3602, 25596,
        9781, 12163, 150, 18749, -21782, -12307, 27578, -2757, -12573, 12565,
        6345, -18956, 19503, -15617, 1443, -16778, 36851, 23588, -28474, 5749,
        40695, -7521, -53669, -2497, -18530, 6770, 57038, 3926, -6927, -15399,
        1848, -64649, -27728, 3644, 49608, 15187, -8902, -9480, -7398, -40425,
        4824, 23767, -7594, -6905, 33089, 18786, 12192, 24670, 31114, 35334,
        -4501, -14676, 7107, -59018, -21352, 20777, 19661, 20653, 33754, -885,
        -43758, 6269, 51897, -28719, -97488, -9527, 13746, 11644, 17644,
        -21720, 23782, -10481, 47867, 20752, 33810, -1875, 39918, -7710,
        -40840, 19808, -47075, 23066, 46616, 25201, 9287, 35436, -1602, 9645,
        -11978, 13273, 15544, 33465, 20063, 44539, 11687, 27314, -6538, -37467,
        14031, 32970, -27086, 41323, 29551, 65910, -39027, -37800, -22232,
        8212, 46316, -28981, -55282, 50417, -44929, -44062, 73879, 37573,
        -2596, -10877, -21893, -133218, -33707, -25753, -9531, 17530, 61126,
        2748, -56235, 43874, -10872, -90459, -30387, 115267, -7264, -44452,
        122626, 14839, -599, 10337, 57166, -67467, -54957, 63669, 1202, 18488,
        52594, 7205, -97822, 612, 78069, -5403, -63562, 47236, 36873, -154827,
        -26188, 82427, -39521, 5628, 7416, 5276, -53095, 47050, 26121, -42207,
        79021, -13035, 2499, -66943, 29040, -72355, -23480, 23416, -12885,
        -44225, -42688, -4224, 19858, 55299, 15735, 11465, 101876, -39169,
        51786, 14723, 43280, -68697, 16410, 92295, 56767, 7183, 111850, 4550,
        115451, -38443, -19642, -35058, 10230, 93829, 8925, 63047, 3146, 29250,
        8530, 5255, -98117, -115517, -76817, -8724, 41044, 1312, -35974, 79333,
        -28567, 7547, -10580, -24559, -16238, 10794, -3867, 24848, 57770,
        -51536, -35040, 71033, 29853, 62029, -7125, -125585, -32169, -47907,
        156811, -65176, -58006, -15757, -57861, 11963, 30225, -41901, -41681,
        31310, 27982, 18613, 61760, 60746, -59096, 33499, 30097, -17997, 24032,
        56442, -83042, 23747, -20931, -21978, -158752, -9883, -73598, -7987,
        -7333, -125403, -116329, 30585, 53281, 51018, -29193, 88575, 8264,
        -40147, -16289, 113088, 12810, -6508, 101552, -13037, 34440, -41840,
        101643, 24263, 80532, 61748, 65574, 6423, -20672, 6591, -10834, -71716,
        86919, -92626, 39161, 28490, 81319, 46676, 106720, 43530, 26998, 57456,
        -8862, 60989, 13982, 3119, -2224, 14743, 55415, -49093, -29303, 28999,
        1789, 55953, -84043, -7780, -65013, 57129, -47251, 61484, 61994,
        -78361, -82778, 22487, -26894, 9756, -74637, -15519, -4360, 30115,
        42433, 35475, 15286, 69768, 21509, -20214, 78675, -21163, 13596, 11443,
        -10698, -53621, -53867, -24155, 64500, -42784, -33077, -16500, 873,
        -52788, 14546, -38011, 36974, -39849, -34029, -94311, 83068, -50437,
        -26169, -46746, 59185, 42259, -101379, -12943, 30089, -59086, 36271,
        22723, -30253, -52472, -70826, -23289, 3331, -31687, 14183, -857,
        -28627, 35246, -51284, 5636, -6933, 66539, 36654, 50927, 24783, 3457,
        33276, 45281, 45650, -4938, -9968, -22590, 47995, 69229, 5214, -58365,
        -17907, -14651, 18668, 18009, 12649, -11851, -13387, 20339, 52472,
        -1087, -21458, -68647, 52295, 15849, 40608, 15323, 25164, -29368,
        10352, -7055, 7159, 21695, -5373, -54849, 101103, -24963, -10511,
        33227, 7659, 41042, -69588, 26718, -20515, 6441, 38135, -63, 24088,
        -35364, -12785, -18709, 47843, 48533, -48575, 17251, -19394, 32878,
        -9010, -9050, 504, -12407, 28076, -3429, 25324, -4210, -26119, 752,
        -29203, 28251, -11324, -32140, -3366, -25135, 18702, -31588, -7047,
        -24267, 49987, -14975, -33169, 37744, -7720, -9035, 16964, -2807, -421,
        14114, -17097, -13662, 40628, -12139, -9427, 5369, 17551, -13232,
        -16211, 9804, -7422, 2677, 28635, -8280, -4906, 2908, -22558, 5604,
        12459, 8756, -3980, -4745, -18525, 7913, 5970, -16457, 20230, -6247,
        -13812, 2505, 11899, 1409, -15094, 22540, -18863, 137, 11123, -4516,
        2290, -8594, 12150, -10380, 3005, 5235, -7350, 2535, -858
    ], ZZ)

    assert dup_mul(p1, p2, ZZ) == res
Exemplo n.º 13
0
def test_dmp_factor_list():
    R, x, y = ring("x,y", ZZ)
    assert R.dmp_factor_list(0) == (ZZ(0), [])
    assert R.dmp_factor_list(7) == (7, [])

    R, x, y = ring("x,y", QQ)
    assert R.dmp_factor_list(0) == (QQ(0), [])
    assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), [])

    Rt, t = ring("t", ZZ)
    R, x, y = ring("x,y", Rt)
    assert R.dmp_factor_list(0) == (0, [])
    assert R.dmp_factor_list(7) == (ZZ(7), [])

    Rt, t = ring("t", QQ)
    R, x, y = ring("x,y", Rt)
    assert R.dmp_factor_list(0) == (0, [])
    assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), [])

    R, x, y = ring("x,y", ZZ)
    assert R.dmp_factor_list_include(0) == [(0, 1)]
    assert R.dmp_factor_list_include(7) == [(7, 1)]

    R, *X = ring("x:200", ZZ)

    f, g = X[0]**2 + 2 * X[0] + 1, X[0] + 1
    assert R.dmp_factor_list(f) == (1, [(g, 2)])

    f, g = X[-1]**2 + 2 * X[-1] + 1, X[-1] + 1
    assert R.dmp_factor_list(f) == (1, [(g, 2)])

    R, x = ring("x", ZZ)
    assert R.dmp_factor_list(x**2 + 2 * x + 1) == (1, [(x + 1, 2)])
    R, x = ring("x", QQ)
    assert R.dmp_factor_list(QQ(1, 2) * x**2 + x + QQ(1, 2)) == (QQ(1, 2),
                                                                 [(x + 1, 2)])

    R, x, y = ring("x,y", ZZ)
    assert R.dmp_factor_list(x**2 + 2 * x + 1) == (1, [(x + 1, 2)])
    R, x, y = ring("x,y", QQ)
    assert R.dmp_factor_list(QQ(1, 2) * x**2 + x + QQ(1, 2)) == (QQ(1, 2),
                                                                 [(x + 1, 2)])

    R, x, y = ring("x,y", ZZ)
    f = 4 * x**2 * y + 4 * x * y**2

    assert R.dmp_factor_list(f) == \
        (4, [(y, 1),
             (x, 1),
             (x + y, 1)])

    assert R.dmp_factor_list_include(f) == \
        [(4*y, 1),
         (x, 1),
         (x + y, 1)]

    R, x, y = ring("x,y", QQ)
    f = QQ(1, 2) * x**2 * y + QQ(1, 2) * x * y**2

    assert R.dmp_factor_list(f) == \
        (QQ(1, 2), [(y, 1),
                    (x, 1),
                    (x + y, 1)])

    R, x, y = ring("x,y", RR)
    f = 2.0 * x**2 - 8.0 * y**2

    assert R.dmp_factor_list(f) == \
        (RR(2.0), [(1.0*x - 2.0*y, 1),
                   (1.0*x + 2.0*y, 1)])

    f = 6.7225336055071 * x**2 * y**2 - 10.6463972754741 * x * y - 0.33469524022264
    coeff, factors = R.dmp_factor_list(f)
    assert coeff == RR(1.0) and len(factors) == 1 and factors[0][0].almosteq(
        f, 1e-10) and factors[0][1] == 1

    # issue diofant/diofant#238
    R, x, y, z = ring("x,y,z", RR)
    f = x * y + x * z + 0.1 * y + 0.1 * z
    assert R.dmp_factor_list(f) == (10.0, [(0.1 * y + 0.1 * z, 1),
                                           (x + 0.1, 1)])

    Rt, t = ring("t", ZZ)
    R, x, y = ring("x,y", Rt)
    f = 4 * t * x**2 + 4 * t**2 * x

    assert R.dmp_factor_list(f) == \
        (4*t, [(x, 1),
             (x + t, 1)])

    Rt, t = ring("t", QQ)
    R, x, y = ring("x,y", Rt)
    f = QQ(1, 2) * t * x**2 + QQ(1, 2) * t**2 * x

    assert R.dmp_factor_list(f) == \
        (QQ(1, 2)*t, [(x, 1),
                    (x + t, 1)])

    R, x, y = ring("x,y", FF(2))
    pytest.raises(NotImplementedError, lambda: R.dmp_factor_list(x**2 + y**2))

    R, x, y = ring("x,y", EX)
    pytest.raises(DomainError, lambda: R.dmp_factor_list(EX(sin(1))))
Exemplo n.º 14
0
def test_dup_factor_list():
    R, x = ring("x", ZZ)
    assert R.dup_factor_list(0) == (0, [])
    assert R.dup_factor_list(7) == (7, [])

    R, x = ring("x", QQ)
    assert R.dup_factor_list(0) == (0, [])
    assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), [])

    R, x = ring("x", ZZ['t'])
    assert R.dup_factor_list(0) == (0, [])
    assert R.dup_factor_list(7) == (7, [])

    R, x = ring("x", QQ['t'])
    assert R.dup_factor_list(0) == (0, [])
    assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), [])

    R, x = ring("x", ZZ)
    assert R.dup_factor_list_include(0) == [(0, 1)]
    assert R.dup_factor_list_include(7) == [(7, 1)]

    assert R.dup_factor_list(x**2 + 2 * x + 1) == (1, [(x + 1, 2)])
    assert R.dup_factor_list_include(x**2 + 2 * x + 1) == [(x + 1, 2)]
    # issue sympy/sympy#8037
    assert R.dup_factor_list(6 * x**2 - 5 * x - 6) == (1, [(2 * x - 3, 1),
                                                           (3 * x + 2, 1)])

    R, x = ring("x", QQ)
    assert R.dup_factor_list(QQ(1, 2) * x**2 + x + QQ(1, 2)) == (QQ(1, 2),
                                                                 [(x + 1, 2)])

    R, x = ring("x", FF(2))
    assert R.dup_factor_list(x**2 + 1) == (1, [(x + 1, 2)])

    R, x = ring("x", RR)
    assert R.dup_factor_list(1.0 * x**2 + 2.0 * x + 1.0) == (1.0, [
        (1.0 * x + 1.0, 2)
    ])
    assert R.dup_factor_list(2.0 * x**2 + 4.0 * x + 2.0) == (2.0, [
        (1.0 * x + 1.0, 2)
    ])

    f = 6.7225336055071 * x**2 - 10.6463972754741 * x - 0.33469524022264
    coeff, factors = R.dup_factor_list(f)
    assert coeff == RR(1.0) and len(factors) == 1 and factors[0][0].almosteq(
        f, 1e-10) and factors[0][1] == 1

    # issue diofant/diofant#238
    f = 0.1 * x**2 + 1.1 * x + 1.0
    assert R.dup_factor_list(f) == (10.0, [(0.1 * x + 0.1, 1),
                                           (0.1 * x + 1.0, 1)])

    Rt, t = ring("t", ZZ)
    R, x = ring("x", Rt)

    f = 4 * t * x**2 + 4 * t**2 * x

    assert R.dup_factor_list(f) == \
        (4*t, [(x, 1),
             (x + t, 1)])

    Rt, t = ring("t", QQ)
    R, x = ring("x", Rt)

    f = QQ(1, 2) * t * x**2 + QQ(1, 2) * t**2 * x

    assert R.dup_factor_list(f) == \
        (QQ(1, 2)*t, [(x, 1),
                    (x + t, 1)])

    R, x = ring("x", QQ.algebraic_field(I))

    def anp(element):
        return ANP(element, [QQ(1), QQ(0), QQ(1)], QQ)

    f = anp([QQ(1, 1)]) * x**4 + anp([QQ(2, 1)]) * x**2

    assert R.dup_factor_list(f) == \
        (anp([QQ(1, 1)]), [(anp([QQ(1, 1)])*x, 2),
                           (anp([QQ(1, 1)])*x**2 + anp([])*x + anp([QQ(2, 1)]), 1)])

    R, x = ring("x", EX)
    pytest.raises(DomainError, lambda: R.dup_factor_list(EX(sin(1))))
Exemplo n.º 15
0
def test_FF_of_type():
    assert FF(3).of_type(FF(3)(1)) is True
    assert FF(5).of_type(FF(5)(3)) is True
    assert FF(5).of_type(FF(7)(3)) is False
Exemplo n.º 16
0
def test_PolyElement_is_():
    R, x, y, z = ring("x,y,z", QQ)

    assert (x - x).is_generator is False
    assert (x - x).is_ground
    assert (x - x).is_monomial
    assert (x - x).is_term

    assert (x - x + 1).is_generator is False
    assert (x - x + 1).is_ground
    assert (x - x + 1).is_monomial
    assert (x - x + 1).is_term

    assert x.is_generator
    assert x.is_ground is False
    assert x.is_monomial
    assert x.is_term

    assert (x * y).is_generator is False
    assert (x * y).is_ground is False
    assert (x * y).is_monomial
    assert (x * y).is_term

    assert (3 * x).is_generator is False
    assert (3 * x).is_ground is False
    assert (3 * x).is_monomial is False
    assert (3 * x).is_term

    assert (3 * x + 1).is_generator is False
    assert (3 * x + 1).is_ground is False
    assert (3 * x + 1).is_monomial is False
    assert (3 * x + 1).is_term is False

    assert R(0).is_zero
    assert R(1).is_zero is False

    assert R(0).is_one is False
    assert R(1).is_one

    assert (x - 1).is_monic
    assert (2 * x - 1).is_monic is False

    assert (3 * x + 2).is_primitive
    assert (4 * x + 2).is_primitive is False

    assert (x + y + z + 1).is_linear
    assert (x * y * z + 1).is_linear is False

    assert (x * y + z + 1).is_quadratic
    assert (x * y * z + 1).is_quadratic is False

    assert (x - 1).is_squarefree
    assert ((x - 1)**2).is_squarefree is False

    assert (x**2 + x + 1).is_irreducible
    assert (x**2 + 2 * x + 1).is_irreducible is False

    _, t = ring("t", FF(11))

    assert (7 * t + 3).is_irreducible
    assert (7 * t**2 + 3 * t + 1).is_irreducible is False

    _, u = ring("u", ZZ)
    f = u**16 + u**14 - u**10 - u**8 - u**6 + u**2

    assert f.is_cyclotomic is False
    assert (f + 1).is_cyclotomic

    pytest.raises(MultivariatePolynomialError, lambda: x.is_cyclotomic)
Exemplo n.º 17
0
def test_ModularInteger():
    F3 = FF(3)

    a = F3(0)
    assert isinstance(a, F3.dtype) and a == 0
    a = F3(1)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2)
    assert isinstance(a, F3.dtype) and a == 2
    a = F3(3)
    assert isinstance(a, F3.dtype) and a == 0
    a = F3(4)
    assert isinstance(a, F3.dtype) and a == 1

    a = F3(F3(0))
    assert isinstance(a, F3.dtype) and a == 0
    a = F3(F3(1))
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(F3(2))
    assert isinstance(a, F3.dtype) and a == 2
    a = F3(F3(3))
    assert isinstance(a, F3.dtype) and a == 0
    a = F3(F3(4))
    assert isinstance(a, F3.dtype) and a == 1

    a = -F3(1)
    assert isinstance(a, F3.dtype) and a == 2
    a = -F3(2)
    assert isinstance(a, F3.dtype) and a == 1

    a = 2 + F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2) + 2
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2) + F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2) + F3(2)
    assert isinstance(a, F3.dtype) and a == 1

    a = 3 - F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(3) - 2
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(3) - F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(3) - F3(2)
    assert isinstance(a, F3.dtype) and a == 1

    a = 2 * F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2) * 2
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2) * F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2) * F3(2)
    assert isinstance(a, F3.dtype) and a == 1

    a = 2 / F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2) / 2
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2) / F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2) / F3(2)
    assert isinstance(a, F3.dtype) and a == 1

    a = 1 % F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(1) % 2
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(1) % F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(1) % F3(2)
    assert isinstance(a, F3.dtype) and a == 1

    a = F3(2)**0
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2)**1
    assert isinstance(a, F3.dtype) and a == 2
    a = F3(2)**2
    assert isinstance(a, F3.dtype) and a == 1

    assert bool(F3(3)) is False
    assert bool(F3(4)) is True

    F5 = FF(5)

    a = F5(1)**(-1)
    assert isinstance(a, F5.dtype) and a == 1
    a = F5(2)**(-1)
    assert isinstance(a, F5.dtype) and a == 3
    a = F5(3)**(-1)
    assert isinstance(a, F5.dtype) and a == 2
    a = F5(4)**(-1)
    assert isinstance(a, F5.dtype) and a == 4

    assert (F5(1) < F5(2)) is True
    assert (F5(1) <= F5(2)) is True
    assert (F5(1) > F5(2)) is False
    assert (F5(1) >= F5(2)) is False

    assert (F5(3) < F5(2)) is False
    assert (F5(3) <= F5(2)) is False
    assert (F5(3) > F5(2)) is True
    assert (F5(3) >= F5(2)) is True

    assert (F5(1) < F5(7)) is True
    assert (F5(1) <= F5(7)) is True
    assert (F5(1) > F5(7)) is False
    assert (F5(1) >= F5(7)) is False

    assert (F5(3) < F5(7)) is False
    assert (F5(3) <= F5(7)) is False
    assert (F5(3) > F5(7)) is True
    assert (F5(3) >= F5(7)) is True

    assert (F5(1) < 2) is True
    assert (F5(1) <= 2) is True
    assert (F5(1) > 2) is False
    assert (F5(1) >= 2) is False

    assert (F5(3) < 2) is False
    assert (F5(3) <= 2) is False
    assert (F5(3) > 2) is True
    assert (F5(3) >= 2) is True

    assert (F5(1) < 7) is True
    assert (F5(1) <= 7) is True
    assert (F5(1) > 7) is False
    assert (F5(1) >= 7) is False

    assert (F5(3) < 7) is False
    assert (F5(3) <= 7) is False
    assert (F5(3) > 7) is True
    assert (F5(3) >= 7) is True

    pytest.raises(NotInvertible, lambda: F5(0)**(-1))
    pytest.raises(NotInvertible, lambda: F5(5)**(-1))

    pytest.raises(ValueError, lambda: FF(0))
    pytest.raises(ValueError, lambda: FF(2.1))
Exemplo n.º 18
0
def test_convert():
    F3 = FF(3)

    assert F3.convert(gmpy.mpz(2)) == F3.dtype(2)
    assert F3.convert(gmpy.mpq(2, 1)) == F3.dtype(2)
    pytest.raises(CoercionFailed, lambda: F3.convert(gmpy.mpq(1, 2)))