Exemplo n.º 1
0
 def postprocess(cls, options):
     if 'gens' in options and 'domain' in options and options['domain'].is_Composite and \
             (set(options['domain'].symbols) & set(options['gens'])):
         raise GeneratorsError(
             "ground domain and generators interfere together")
     elif ('gens' not in options or not options['gens']) and \
             'domain' in options and options['domain'] == diofant.polys.domains.EX:
         raise GeneratorsError(
             "you have to provide generators because EX domain was requested"
         )
Exemplo n.º 2
0
    def preprocess(cls, gens):
        if isinstance(gens, Basic):
            gens = (gens, )
        elif len(gens) == 1 and hasattr(gens[0], '__iter__'):
            gens = gens[0]

        if gens == (None, ):
            gens = ()
        elif has_dups(gens):
            raise GeneratorsError("duplicated generators: %s" % str(gens))
        elif any(gen.is_commutative is False for gen in gens):
            raise GeneratorsError("non-commutative generators: %s" % str(gens))

        return tuple(gens)
Exemplo n.º 3
0
def test_pickling_polys_errors():
    # TODO: TypeError: __init__() takes at least 3 arguments (1 given)
    # for c in (ExactQuotientFailed, ExactQuotientFailed(x, 3*x, ZZ)):
    #    check(c)

    # TODO: TypeError: can't pickle instancemethod objects
    # for c in (OperationNotSupported, OperationNotSupported(Poly(x), Poly.gcd)):
    #    check(c)

    for c in (HeuristicGCDFailed, HeuristicGCDFailed(), HomomorphismFailed,
              HomomorphismFailed(), IsomorphismFailed, IsomorphismFailed(),
              ExtraneousFactors, ExtraneousFactors(), EvaluationFailed,
              EvaluationFailed(),
              RefinementFailed, RefinementFailed(), CoercionFailed,
              CoercionFailed(), NotInvertible, NotInvertible(), NotReversible,
              NotReversible(), NotAlgebraic, NotAlgebraic(), DomainError,
              DomainError(), PolynomialError, PolynomialError(),
              UnificationFailed, UnificationFailed(), GeneratorsError,
              GeneratorsError(), GeneratorsNeeded, GeneratorsNeeded()):
        check(c)

    # TODO: PicklingError: Can't pickle <function <lambda> at 0x38578c0>: it's not found as __main__.<lambda>
    # for c in (ComputationFailed, ComputationFailed(lambda t: t, 3, None)):
    #    check(c)

    for c in (UnivariatePolynomialError, UnivariatePolynomialError(),
              MultivariatePolynomialError, MultivariatePolynomialError()):
        check(c)

    # TODO: TypeError: __init__() takes at least 3 arguments (1 given)
    # for c in (PolificationFailed, PolificationFailed({}, x, x, False)):
    #    check(c)

    for c in (OptionError, OptionError(), FlagError, FlagError()):
        check(c)
Exemplo n.º 4
0
def _dict_reorder(rep, gens, new_gens):
    """Reorder levels using dict representation. """
    gens = list(gens)

    monoms = rep.keys()
    coeffs = rep.values()

    new_monoms = [[] for _ in range(len(rep))]
    used_indices = set()

    for gen in new_gens:
        try:
            j = gens.index(gen)
            used_indices.add(j)

            for M, new_M in zip(monoms, new_monoms):
                new_M.append(M[j])
        except ValueError:
            for new_M in new_monoms:
                new_M.append(0)

    for i, _ in enumerate(gens):
        if i not in used_indices:
            for monom in monoms:
                if monom[i]:
                    raise GeneratorsError("unable to drop generators")

    return map(tuple, new_monoms), coeffs
Exemplo n.º 5
0
 def inject(self, *symbols):
     """Inject generators into this domain. """
     if not (set(self.symbols) & set(symbols)):
         return self.__class__(self.domain, self.symbols + symbols,
                               self.order)
     else:
         raise GeneratorsError("common generators in %s and %s" %
                               (self.symbols, symbols))
Exemplo n.º 6
0
def minimal_polynomial(ex, x=None, **args):
    """
    Computes the minimal polynomial of an algebraic element.

    Parameters
    ==========

    ex : algebraic element expression
    x : independent variable of the minimal polynomial
    compose : boolean, optional
        If ``True`` (default), the minimal polynomial of the subexpressions
        of ``ex`` are computed, then the arithmetic operations on them are
        performed using the resultant and factorization.  Else a bottom-up
        algorithm is used with ``groebner``.  The default algorithm
        stalls less frequently.
    polys : boolean, optional
        if ``True`` returns a ``Poly`` object (the default is ``False``).
    domain : Domain, optional
        If no ground domain is given, it will be generated automatically
        from the expression.

    Examples
    ========

    >>> from diofant import minimal_polynomial, sqrt, solve, QQ
    >>> from diofant.abc import x, y

    >>> minimal_polynomial(sqrt(2), x)
    x**2 - 2
    >>> minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2)))
    x - sqrt(2)
    >>> minimal_polynomial(sqrt(2) + sqrt(3), x)
    x**4 - 10*x**2 + 1
    >>> minimal_polynomial(solve(x**3 + x + 3)[0], x)
    x**3 + x + 3
    >>> minimal_polynomial(sqrt(y), x)
    x**2 - y

    """
    from diofant.polys.polytools import degree
    from diofant.polys.domains import FractionField
    from diofant.core.basic import preorder_traversal

    compose = args.get('compose', True)
    polys = args.get('polys', False)
    dom = args.get('domain', None)

    ex = sympify(ex)
    if ex.is_number:
        # not sure if it's always needed but try it for numbers (issue 8354)
        ex = _mexpand(ex, recursive=True)
    for expr in preorder_traversal(ex):
        if expr.is_AlgebraicNumber:
            compose = False
            break

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    if not dom:
        dom = FractionField(QQ, list(
            ex.free_symbols)) if ex.free_symbols else QQ
    if hasattr(dom, 'symbols') and x in dom.symbols:
        raise GeneratorsError(
            "the variable %s is an element of the ground domain %s" % (x, dom))

    if compose:
        result = _minpoly_compose(ex, x, dom)
        result = result.primitive()[1]
        c = result.coeff(x**degree(result, x))
        if c.is_negative:
            result = expand_mul(-result)
        return cls(result, x, field=True) if polys else result.collect(x)

    if not dom.is_QQ:
        raise NotImplementedError("groebner method only works for QQ")

    result = _minpoly_groebner(ex, x, cls)
    return cls(result, x, field=True) if polys else result.collect(x)