Exemplo n.º 1
0
def test_messy():
    assert laplace_transform(Si(x), x, s) == ((-atan(s) + pi/2)/s, 0, True)

    assert laplace_transform(Shi(x), x, s) == (acoth(s)/s, 1, True)

    # where should the logs be simplified?
    assert laplace_transform(Chi(x), x, s) == \
        ((log(s**(-2)) - log((s**2 - 1)/s**2))/(2*s), 1, True)

    # TODO maybe simplify the inequalities?
    assert laplace_transform(besselj(a, x), x, s)[1:] == \
        (0, And(Integer(0) < re(a/2) + Rational(1, 2), Integer(0) < re(a/2) + 1))

    # NOTE s < 0 can be done, but argument reduction is not good enough yet
    assert fourier_transform(besselj(1, x)/x, x, s, noconds=False) == \
        (Piecewise((0, 4*abs(pi**2*s**2) > 1),
                   (2*sqrt(-4*pi**2*s**2 + 1), True)), s > 0)
    # TODO FT(besselj(0,x)) - conditions are messy (but for acceptable reasons)
    #                       - folding could be better

    assert integrate(E1(x)*besselj(0, x), (x, 0, oo), meijerg=True) == \
        log(1 + sqrt(2))
    assert integrate(E1(x)*besselj(1, x), (x, 0, oo), meijerg=True) == \
        log(Rational(1, 2) + sqrt(2)/2)

    assert integrate(1/x/sqrt(1 - x**2), x, meijerg=True) == \
        Piecewise((-acosh(1/x), 1 < abs(x**(-2))), (I*asin(1/x), True))
Exemplo n.º 2
0
def test_rewrite():
    assert besselj(n, z).rewrite(jn) == sqrt(2*z/pi)*jn(n - Rational(1, 2), z)
    assert bessely(n, z).rewrite(yn) == sqrt(2*z/pi)*yn(n - Rational(1, 2), z)
    assert besseli(n, z).rewrite(besselj) == \
        exp(-I*n*pi/2)*besselj(n, polar_lift(I)*z)
    assert besselj(n, z).rewrite(besseli) == \
        exp(I*n*pi/2)*besseli(n, polar_lift(-I)*z)
    assert besselj(2, z).rewrite(bessely) == besselj(2, z)
    assert bessely(2, z).rewrite(besselj) == bessely(2, z)
    assert bessely(2, z).rewrite(besseli) == bessely(2, z)
    assert besselk(2, z).rewrite(besseli) == besselk(2, z)
    assert besselk(2, z).rewrite(besselj) == besselk(2, z)
    assert besselk(2, z).rewrite(bessely) == besselk(2, z)

    nu = randcplx()

    assert tn(besselj(nu, z), besselj(nu, z).rewrite(besseli), z)
    assert tn(besselj(nu, z), besselj(nu, z).rewrite(bessely), z)

    assert tn(besseli(nu, z), besseli(nu, z).rewrite(besselj), z)
    assert tn(besseli(nu, z), besseli(nu, z).rewrite(bessely), z)

    assert tn(bessely(nu, z), bessely(nu, z).rewrite(besselj), z)
    assert tn(bessely(nu, z), bessely(nu, z).rewrite(besseli), z)

    assert tn(besselk(nu, z), besselk(nu, z).rewrite(besselj), z)
    assert tn(besselk(nu, z), besselk(nu, z).rewrite(besseli), z)
    assert tn(besselk(nu, z), besselk(nu, z).rewrite(bessely), z)
Exemplo n.º 3
0
def test_airybi():
    z = Symbol('z', extended_real=False)
    t = Symbol('t', negative=True)
    p = Symbol('p', positive=True)

    assert isinstance(airybi(z), airybi)

    assert airybi(0) == 3**Rational(5, 6) / (3 * gamma(Rational(2, 3)))
    assert airybi(oo) == oo
    assert airybi(-oo) == 0

    assert diff(airybi(z), z) == airybiprime(z)

    assert series(airybi(z), z, 0,
                  3) == (cbrt(3) * gamma(Rational(1, 3)) / (2 * pi) +
                         3**Rational(2, 3) * z * gamma(Rational(2, 3)) /
                         (2 * pi) + O(z**3))
    l = Limit(
        airybi(I / x) /
        (exp(Rational(2, 3) *
             (I / x)**Rational(3, 2)) * sqrt(pi * sqrt(I / x))), x, 0)
    assert l.doit() == l

    assert airybi(z).rewrite(hyper) == (root(3, 6) * z * hyper(
        (), (Rational(4, 3), ), z**3 / 9) / gamma(Rational(1, 3)) +
                                        3**Rational(5, 6) * hyper(
                                            (), (Rational(2, 3), ), z**3 / 9) /
                                        (3 * gamma(Rational(2, 3))))

    assert isinstance(airybi(z).rewrite(besselj), airybi)
    assert (airybi(t).rewrite(besselj) == sqrt(3) * sqrt(-t) *
            (besselj(-1 / 3, 2 * (-t)**Rational(3, 2) / 3) -
             besselj(Rational(1, 3), 2 * (-t)**Rational(3, 2) / 3)) / 3)
    assert airybi(z).rewrite(besseli) == (
        sqrt(3) * (z * besseli(Rational(1, 3), 2 * z**Rational(3, 2) / 3) /
                   cbrt(z**Rational(3, 2)) + cbrt(z**Rational(3, 2)) *
                   besseli(-Rational(1, 3), 2 * z**Rational(3, 2) / 3)) / 3)
    assert airybi(p).rewrite(besseli) == (
        sqrt(3) * sqrt(p) *
        (besseli(-Rational(1, 3), 2 * p**Rational(3, 2) / 3) +
         besseli(Rational(1, 3), 2 * p**Rational(3, 2) / 3)) / 3)
    assert airybi(p).rewrite(besselj) == airybi(p)

    assert expand_func(airybi(
        2 *
        cbrt(3 * z**5))) == (sqrt(3) * (1 - cbrt(z**5) / z**Rational(5, 3)) *
                             airyai(2 * cbrt(3) * z**Rational(5, 3)) / 2 +
                             (1 + cbrt(z**5) / z**Rational(5, 3)) *
                             airybi(2 * cbrt(3) * z**Rational(5, 3)) / 2)
    assert expand_func(airybi(x * y)) == airybi(x * y)
    assert expand_func(airybi(log(x))) == airybi(log(x))
    assert expand_func(airybi(2 * root(3 * z**5, 5))) == airybi(
        2 * root(3 * z**5, 5))

    assert airybi(x).taylor_term(-1, x) == 0
Exemplo n.º 4
0
def test_rewrite():
    assert besselj(n, z).rewrite(jn) == sqrt(2*z/pi)*jn(n - Rational(1, 2), z)
    assert bessely(n, z).rewrite(yn) == sqrt(2*z/pi)*yn(n - Rational(1, 2), z)
    assert besseli(n, z).rewrite(besselj) == \
        exp(-I*n*pi/2)*besselj(n, polar_lift(I)*z)
    assert besselj(n, z).rewrite(besseli) == \
        exp(I*n*pi/2)*besseli(n, polar_lift(-I)*z)
    assert besselj(2, z).rewrite(bessely) == besselj(2, z)
    assert bessely(2, z).rewrite(besselj) == bessely(2, z)
    assert bessely(2, z).rewrite(besseli) == bessely(2, z)
    assert besselk(2, z).rewrite(besseli) == besselk(2, z)
    assert besselk(2, z).rewrite(besselj) == besselk(2, z)
    assert besselk(2, z).rewrite(bessely) == besselk(2, z)

    nu = randcplx()

    assert tn(besselj(nu, z), besselj(nu, z).rewrite(besseli), z)
    assert tn(besselj(nu, z), besselj(nu, z).rewrite(bessely), z)

    assert tn(besseli(nu, z), besseli(nu, z).rewrite(besselj), z)
    assert tn(besseli(nu, z), besseli(nu, z).rewrite(bessely), z)

    assert tn(bessely(nu, z), bessely(nu, z).rewrite(besselj), z)
    assert tn(bessely(nu, z), bessely(nu, z).rewrite(besseli), z)

    assert tn(besselk(nu, z), besselk(nu, z).rewrite(besselj), z)
    assert tn(besselk(nu, z), besselk(nu, z).rewrite(besseli), z)
    assert tn(besselk(nu, z), besselk(nu, z).rewrite(bessely), z)
Exemplo n.º 5
0
def test_airyai():
    z = Symbol('z', extended_real=False)
    r = Symbol('r', extended_real=True)
    t = Symbol('t', negative=True)
    p = Symbol('p', positive=True)

    assert isinstance(airyai(z), airyai)

    assert airyai(0) == cbrt(3)/(3*gamma(Rational(2, 3)))
    assert airyai(oo) == 0
    assert airyai(-oo) == 0

    assert diff(airyai(z), z) == airyaiprime(z)

    assert airyai(z).series(z, 0, 3) == (
        3**Rational(5, 6)*gamma(Rational(1, 3))/(6*pi) - root(3, 6)*z*gamma(Rational(2, 3))/(2*pi) + O(z**3))

    l = Limit(airyai(I/x)/(exp(-Rational(2, 3)*(I/x)**Rational(3, 2))*sqrt(pi*sqrt(I/x))/2), x, 0)
    assert l.doit() == l  # cover _airyais._eval_aseries

    assert airyai(z).rewrite(hyper) == (
        -3**Rational(2, 3)*z*hyper((), (Rational(4, 3),), z**3/9)/(3*gamma(Rational(1, 3))) +
        cbrt(3)*hyper((), (Rational(2, 3),), z**3/9)/(3*gamma(Rational(2, 3))))

    assert isinstance(airyai(z).rewrite(besselj), airyai)
    assert airyai(t).rewrite(besselj) == (
        sqrt(-t)*(besselj(-Rational(1, 3), 2*(-t)**Rational(3, 2)/3) +
                  besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3)
    assert airyai(z).rewrite(besseli) == (
        -z*besseli(Rational(1, 3), 2*z**Rational(3, 2)/3)/(3*cbrt(z**Rational(3, 2))) +
        cbrt(z**Rational(3, 2))*besseli(-Rational(1, 3), 2*z**Rational(3, 2)/3)/3)
    assert airyai(p).rewrite(besseli) == (
        sqrt(p)*(besseli(-Rational(1, 3), 2*p**Rational(3, 2)/3) -
                 besseli(Rational(1, 3), 2*p**Rational(3, 2)/3))/3)

    assert expand_func(airyai(2*cbrt(3*z**5))) == (
        -sqrt(3)*(-1 + cbrt(z**5)/z**Rational(5, 3))*airybi(2*cbrt(3)*z**Rational(5, 3))/6 +
        (1 + cbrt(z**5)/z**Rational(5, 3))*airyai(2*cbrt(3)*z**Rational(5, 3))/2)
    assert expand_func(airyai(x*y)) == airyai(x*y)
    assert expand_func(airyai(log(x))) == airyai(log(x))
    assert expand_func(airyai(2*root(3*z**5, 5))) == airyai(2*root(3*z**5, 5))

    assert (airyai(r).as_real_imag() ==
            airyai(r).as_real_imag(deep=False) == (airyai(r), 0))
    assert airyai(x).as_real_imag() == airyai(x).as_real_imag(deep=False)
    assert (airyai(x).as_real_imag() ==
            (airyai(re(x) - I*re(x)*abs(im(x))/abs(re(x)))/2 +
             airyai(re(x) + I*re(x)*abs(im(x))/abs(re(x)))/2,
             I*(airyai(re(x) - I*re(x)*abs(im(x))/abs(re(x))) -
                airyai(re(x) + I*re(x)*abs(im(x))/abs(re(x)))) *
             re(x)*abs(im(x))/(2*im(x)*abs(re(x)))))

    assert airyai(x).taylor_term(-1, x) == 0
Exemplo n.º 6
0
def test_airyai():
    z = Symbol('z', extended_real=False)
    r = Symbol('r', extended_real=True)
    t = Symbol('t', negative=True)
    p = Symbol('p', positive=True)

    assert isinstance(airyai(z), airyai)

    assert airyai(0) == cbrt(3)/(3*gamma(Rational(2, 3)))
    assert airyai(oo) == 0
    assert airyai(-oo) == 0

    assert diff(airyai(z), z) == airyaiprime(z)

    assert series(airyai(z), z, 0, 3) == (
        3**Rational(5, 6)*gamma(Rational(1, 3))/(6*pi) - root(3, 6)*z*gamma(Rational(2, 3))/(2*pi) + O(z**3))

    l = Limit(airyai(I/x)/(exp(-Rational(2, 3)*(I/x)**Rational(3, 2))*sqrt(pi*sqrt(I/x))/2), x, 0)
    assert l.doit() == l  # cover _airyais._eval_aseries

    assert airyai(z).rewrite(hyper) == (
        -3**Rational(2, 3)*z*hyper((), (Rational(4, 3),), z**3/9)/(3*gamma(Rational(1, 3))) +
        cbrt(3)*hyper((), (Rational(2, 3),), z**3/9)/(3*gamma(Rational(2, 3))))

    assert isinstance(airyai(z).rewrite(besselj), airyai)
    assert airyai(t).rewrite(besselj) == (
        sqrt(-t)*(besselj(-Rational(1, 3), 2*(-t)**Rational(3, 2)/3) +
                  besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3)
    assert airyai(z).rewrite(besseli) == (
        -z*besseli(Rational(1, 3), 2*z**Rational(3, 2)/3)/(3*cbrt(z**Rational(3, 2))) +
        cbrt(z**Rational(3, 2))*besseli(-Rational(1, 3), 2*z**Rational(3, 2)/3)/3)
    assert airyai(p).rewrite(besseli) == (
        sqrt(p)*(besseli(-Rational(1, 3), 2*p**Rational(3, 2)/3) -
                 besseli(Rational(1, 3), 2*p**Rational(3, 2)/3))/3)

    assert expand_func(airyai(2*cbrt(3*z**5))) == (
        -sqrt(3)*(-1 + cbrt(z**5)/z**Rational(5, 3))*airybi(2*cbrt(3)*z**Rational(5, 3))/6 +
        (1 + cbrt(z**5)/z**Rational(5, 3))*airyai(2*cbrt(3)*z**Rational(5, 3))/2)
    assert expand_func(airyai(x*y)) == airyai(x*y)
    assert expand_func(airyai(log(x))) == airyai(log(x))
    assert expand_func(airyai(2*root(3*z**5, 5))) == airyai(2*root(3*z**5, 5))

    assert (airyai(r).as_real_imag() ==
            airyai(r).as_real_imag(deep=False) == (airyai(r), 0))
    assert airyai(x).as_real_imag() == airyai(x).as_real_imag(deep=False)
    assert (airyai(x).as_real_imag() ==
            (airyai(re(x) - I*re(x)*abs(im(x))/abs(re(x)))/2 +
             airyai(re(x) + I*re(x)*abs(im(x))/abs(re(x)))/2,
             I*(airyai(re(x) - I*re(x)*abs(im(x))/abs(re(x))) -
                airyai(re(x) + I*re(x)*abs(im(x))/Abs(re(x)))) *
             re(x)*abs(im(x))/(2*im(x)*abs(re(x)))))

    assert airyai(x).taylor_term(-1, x) == 0
Exemplo n.º 7
0
def test_diff():
    assert besselj(n,
                   z).diff(z) == besselj(n - 1, z) / 2 - besselj(n + 1, z) / 2
    assert bessely(n,
                   z).diff(z) == bessely(n - 1, z) / 2 - bessely(n + 1, z) / 2
    assert besseli(n,
                   z).diff(z) == besseli(n - 1, z) / 2 + besseli(n + 1, z) / 2
    assert besselk(n,
                   z).diff(z) == -besselk(n - 1, z) / 2 - besselk(n + 1, z) / 2
    assert hankel1(n,
                   z).diff(z) == hankel1(n - 1, z) / 2 - hankel1(n + 1, z) / 2
    assert hankel2(n,
                   z).diff(z) == hankel2(n - 1, z) / 2 - hankel2(n + 1, z) / 2
Exemplo n.º 8
0
def test_diff():
    assert besselj(n, z).diff(z) == besselj(n - 1, z)/2 - besselj(n + 1, z)/2
    assert bessely(n, z).diff(z) == bessely(n - 1, z)/2 - bessely(n + 1, z)/2
    assert besseli(n, z).diff(z) == besseli(n - 1, z)/2 + besseli(n + 1, z)/2
    assert besselk(n, z).diff(z) == -besselk(n - 1, z)/2 - besselk(n + 1, z)/2
    assert hankel1(n, z).diff(z) == hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2
    assert hankel2(n, z).diff(z) == hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2

    pytest.raises(ArgumentIndexError, lambda: besselj(n, z).fdiff(3))
    pytest.raises(ArgumentIndexError, lambda: jn(n, z).fdiff(3))
    pytest.raises(ArgumentIndexError, lambda: airyai(z).fdiff(2))
    pytest.raises(ArgumentIndexError, lambda: airybi(z).fdiff(2))
    pytest.raises(ArgumentIndexError, lambda: airyaiprime(z).fdiff(2))
    pytest.raises(ArgumentIndexError, lambda: airybiprime(z).fdiff(2))
Exemplo n.º 9
0
def test_branching():
    assert besselj(polar_lift(k), x) == besselj(k, x)
    assert besseli(polar_lift(k), x) == besseli(k, x)

    n = Symbol('n', integer=True)
    assert besselj(n, exp_polar(2*pi*I)*x) == besselj(n, x)
    assert besselj(n, polar_lift(x)) == besselj(n, x)
    assert besseli(n, exp_polar(2*pi*I)*x) == besseli(n, x)
    assert besseli(n, polar_lift(x)) == besseli(n, x)

    def tn(func, s):
        c = uniform(1, 5)
        expr = func(s, c*exp_polar(I*pi)) - func(s, c*exp_polar(-I*pi))
        eps = 1e-15
        expr2 = func(s + eps, -c + eps*I) - func(s + eps, -c - eps*I)
        return abs(expr - expr2).evalf(strict=False) < 1e-10

    nu = Symbol('nu')
    assert besselj(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besselj(nu, x)
    assert besseli(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besseli(nu, x)
    assert tn(besselj, 2)
    assert tn(besselj, pi)
    assert tn(besselj, I)
    assert tn(besseli, 2)
    assert tn(besseli, pi)
    assert tn(besseli, I)
Exemplo n.º 10
0
def test_diff():
    assert besselj(n, z).diff(z) == besselj(n - 1, z)/2 - besselj(n + 1, z)/2
    assert bessely(n, z).diff(z) == bessely(n - 1, z)/2 - bessely(n + 1, z)/2
    assert besseli(n, z).diff(z) == besseli(n - 1, z)/2 + besseli(n + 1, z)/2
    assert besselk(n, z).diff(z) == -besselk(n - 1, z)/2 - besselk(n + 1, z)/2
    assert hankel1(n, z).diff(z) == hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2
    assert hankel2(n, z).diff(z) == hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2

    pytest.raises(ArgumentIndexError, lambda: besselj(n, z).fdiff(3))
    pytest.raises(ArgumentIndexError, lambda: jn(n, z).fdiff(3))
    pytest.raises(ArgumentIndexError, lambda: airyai(z).fdiff(2))
    pytest.raises(ArgumentIndexError, lambda: airybi(z).fdiff(2))
    pytest.raises(ArgumentIndexError, lambda: airyaiprime(z).fdiff(2))
    pytest.raises(ArgumentIndexError, lambda: airybiprime(z).fdiff(2))
Exemplo n.º 11
0
def test_branching():
    assert besselj(polar_lift(k), x) == besselj(k, x)
    assert besseli(polar_lift(k), x) == besseli(k, x)

    n = Symbol('n', integer=True)
    assert besselj(n, exp_polar(2 * pi * I) * x) == besselj(n, x)
    assert besselj(n, polar_lift(x)) == besselj(n, x)
    assert besseli(n, exp_polar(2 * pi * I) * x) == besseli(n, x)
    assert besseli(n, polar_lift(x)) == besseli(n, x)

    def tn(func, s):
        c = uniform(1, 5)
        expr = func(s, c * exp_polar(I * pi)) - func(s, c * exp_polar(-I * pi))
        eps = 1e-15
        expr2 = func(s + eps, -c + eps * I) - func(s + eps, -c - eps * I)
        return abs(expr - expr2).evalf(strict=False) < 1e-10

    nu = Symbol('nu')
    assert besselj(nu,
                   exp_polar(2 * pi * I) *
                   x) == exp(2 * pi * I * nu) * besselj(nu, x)
    assert besseli(nu,
                   exp_polar(2 * pi * I) *
                   x) == exp(2 * pi * I * nu) * besseli(nu, x)
    assert tn(besselj, 2)
    assert tn(besselj, pi)
    assert tn(besselj, I)
    assert tn(besseli, 2)
    assert tn(besseli, pi)
    assert tn(besseli, I)
Exemplo n.º 12
0
def test_airybiprime():
    z = Symbol('z', extended_real=False)
    t = Symbol('t', negative=True)
    p = Symbol('p', positive=True)

    assert isinstance(airybiprime(z), airybiprime)

    assert airybiprime(0) == root(3, 6) / gamma(Rational(1, 3))
    assert airybiprime(oo) == oo
    assert airybiprime(-oo) == 0

    assert diff(airybiprime(z), z) == z * airybi(z)

    assert series(airybiprime(z), z, 0,
                  3) == (root(3, 6) / gamma(Rational(1, 3)) +
                         3**Rational(5, 6) * z**2 /
                         (6 * gamma(Rational(2, 3))) + O(z**3))

    assert airybiprime(z).rewrite(hyper) == (
        3**Rational(5, 6) * z**2 * hyper((), (Rational(5, 3), ), z**3 / 9) /
        (6 * gamma(Rational(2, 3))) + root(3, 6) * hyper(
            (), (Rational(1, 3), ), z**3 / 9) / gamma(Rational(1, 3)))

    assert isinstance(airybiprime(z).rewrite(besselj), airybiprime)
    assert (airybiprime(t).rewrite(besselj) == -sqrt(3) * t *
            (besselj(-Rational(2, 3), 2 * (-t)**Rational(3, 2) / 3) +
             besselj(Rational(2, 3), 2 * (-t)**Rational(3, 2) / 3)) / 3)
    assert airybiprime(z).rewrite(besseli) == (
        sqrt(3) * (z**2 * besseli(Rational(2, 3), 2 * z**Rational(3, 2) / 3) /
                   (z**Rational(3, 2))**Rational(2, 3) +
                   (z**Rational(3, 2))**Rational(2, 3) *
                   besseli(-Rational(2, 3), 2 * z**Rational(3, 2) / 3)) / 3)
    assert airybiprime(p).rewrite(besseli) == (
        sqrt(3) * p * (besseli(-Rational(2, 3), 2 * p**Rational(3, 2) / 3) +
                       besseli(Rational(2, 3), 2 * p**Rational(3, 2) / 3)) / 3)
    assert airybiprime(p).rewrite(besselj) == airybiprime(p)

    assert expand_func(airybiprime(
        2 *
        cbrt(3 * z**5))) == (sqrt(3) * (z**Rational(5, 3) / cbrt(z**5) - 1) *
                             airyaiprime(2 * cbrt(3) * z**Rational(5, 3)) / 2 +
                             (z**Rational(5, 3) / cbrt(z**5) + 1) *
                             airybiprime(2 * cbrt(3) * z**Rational(5, 3)) / 2)
    assert expand_func(airybiprime(x * y)) == airybiprime(x * y)
    assert expand_func(airybiprime(log(x))) == airybiprime(log(x))
    assert expand_func(airybiprime(2 * root(3 * z**5, 5))) == airybiprime(
        2 * root(3 * z**5, 5))

    assert airybiprime(-2).evalf(50) == Float(
        '0.27879516692116952268509756941098324140300059345163131', dps=50)
Exemplo n.º 13
0
def test_branching():
    from diofant import exp_polar, polar_lift, Symbol, I, exp
    assert besselj(polar_lift(k), x) == besselj(k, x)
    assert besseli(polar_lift(k), x) == besseli(k, x)

    n = Symbol('n', integer=True)
    assert besselj(n, exp_polar(2 * pi * I) * x) == besselj(n, x)
    assert besselj(n, polar_lift(x)) == besselj(n, x)
    assert besseli(n, exp_polar(2 * pi * I) * x) == besseli(n, x)
    assert besseli(n, polar_lift(x)) == besseli(n, x)

    def tn(func, s):
        from random import uniform
        c = uniform(1, 5)
        expr = func(s, c * exp_polar(I * pi)) - func(s, c * exp_polar(-I * pi))
        eps = 1e-15
        expr2 = func(s + eps, -c + eps * I) - func(s + eps, -c - eps * I)
        return abs(expr.n() - expr2.n()).n() < 1e-10

    nu = Symbol('nu')
    assert besselj(nu,
                   exp_polar(2 * pi * I) *
                   x) == exp(2 * pi * I * nu) * besselj(nu, x)
    assert besseli(nu,
                   exp_polar(2 * pi * I) *
                   x) == exp(2 * pi * I * nu) * besseli(nu, x)
    assert tn(besselj, 2)
    assert tn(besselj, pi)
    assert tn(besselj, I)
    assert tn(besseli, 2)
    assert tn(besseli, pi)
    assert tn(besseli, I)
Exemplo n.º 14
0
def test_airyaiprime():
    z = Symbol('z', extended_real=False)
    t = Symbol('t', negative=True)
    p = Symbol('p', positive=True)

    assert isinstance(airyaiprime(z), airyaiprime)

    assert airyaiprime(0) == -3**Rational(2, 3) / (3 * gamma(Rational(1, 3)))
    assert airyaiprime(oo) == 0

    assert diff(airyaiprime(z), z) == z * airyai(z)

    assert series(airyaiprime(z), z, 0,
                  3) == (-3**Rational(2, 3) / (3 * gamma(Rational(1, 3))) +
                         cbrt(3) * z**2 / (6 * gamma(Rational(2, 3))) +
                         O(z**3))

    assert airyaiprime(z).rewrite(hyper) == (
        cbrt(3) * z**2 * hyper((), (Rational(5, 3), ), z**3 / 9) /
        (6 * gamma(Rational(2, 3))) - 3**Rational(2, 3) * hyper(
            (), (Rational(1, 3), ), z**3 / 9) / (3 * gamma(Rational(1, 3))))

    assert isinstance(airyaiprime(z).rewrite(besselj), airyaiprime)
    assert (airyaiprime(t).rewrite(besselj) == t *
            (besselj(-Rational(2, 3), 2 * (-t)**Rational(3, 2) / 3) -
             besselj(Rational(2, 3), 2 * (-t)**Rational(3, 2) / 3)) / 3)
    assert airyaiprime(z).rewrite(besseli) == (
        z**2 * besseli(Rational(2, 3), 2 * z**Rational(3, 2) / 3) /
        (3 * (z**Rational(3, 2))**Rational(2, 3)) -
        (z**Rational(3, 2))**Rational(2, 3) *
        besseli(-Rational(1, 3), 2 * z**Rational(3, 2) / 3) / 3)
    assert airyaiprime(p).rewrite(besseli) == (
        p * (-besseli(-Rational(2, 3), 2 * p**Rational(3, 2) / 3) +
             besseli(Rational(2, 3), 2 * p**Rational(3, 2) / 3)) / 3)
    assert airyaiprime(p).rewrite(besselj) == airyaiprime(p)

    assert expand_func(airyaiprime(
        2 *
        cbrt(3 * z**5))) == (sqrt(3) * (z**Rational(5, 3) / cbrt(z**5) - 1) *
                             airybiprime(2 * cbrt(3) * z**Rational(5, 3)) / 6 +
                             (z**Rational(5, 3) / cbrt(z**5) + 1) *
                             airyaiprime(2 * cbrt(3) * z**Rational(5, 3)) / 2)
    assert expand_func(airyaiprime(x * y)) == airyaiprime(x * y)
    assert expand_func(airyaiprime(log(x))) == airyaiprime(log(x))
    assert expand_func(airyaiprime(2 * root(3 * z**5, 5))) == airyaiprime(
        2 * root(3 * z**5, 5))

    assert airyaiprime(-2).evalf(50) == Float(
        '0.61825902074169104140626429133247528291577794512414753', dps=50)
Exemplo n.º 15
0
def test_besselsimp():
    assert besselsimp(exp(-I*pi*y/2)*besseli(y, z*exp_polar(I*pi/2))) == \
        besselj(y, z)
    assert besselsimp(exp(-I*pi*a/2)*besseli(a, 2*sqrt(x)*exp_polar(I*pi/2))) == \
        besselj(a, 2*sqrt(x))
    assert besselsimp(sqrt(2)*sqrt(pi)*root(x, 4)*exp(I*pi/4)*exp(-I*pi*a/2) *
                      besseli(-Rational(1, 2), sqrt(x)*exp_polar(I*pi/2)) *
                      besseli(a, sqrt(x)*exp_polar(I*pi/2))/2) == \
        besselj(a, sqrt(x)) * cos(sqrt(x))
    assert besselsimp(besseli(Rational(-1, 2), z)) == \
        sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besseli(a, z*exp_polar(-I*pi/2))) == \
        exp(-I*pi*a/2)*besselj(a, z)
    assert cosine_transform(1/t*sin(a/t), t, y) == \
        sqrt(2)*sqrt(pi)*besselj(0, 2*sqrt(a)*sqrt(y))/2
Exemplo n.º 16
0
def test_inverse_laplace_transform():
    from diofant import sinh, cosh, besselj, besseli, simplify, factor_terms
    ILT = inverse_laplace_transform
    a, b, c, = symbols('a b c', positive=True, finite=True)
    t = symbols('t')

    def simp_hyp(expr):
        return factor_terms(expand_mul(expr)).rewrite(sin)

    # just test inverses of all of the above
    assert ILT(1 / s, s, t) == Heaviside(t)
    assert ILT(1 / s**2, s, t) == t * Heaviside(t)
    assert ILT(1 / s**5, s, t) == t**4 * Heaviside(t) / 24
    assert ILT(exp(-a * s) / s, s, t) == Heaviside(t - a)
    assert ILT(exp(-a * s) / (s + b), s,
               t) == exp(b * (a - t)) * Heaviside(-a + t)
    assert ILT(a / (s**2 + a**2), s, t) == sin(a * t) * Heaviside(t)
    assert ILT(s / (s**2 + a**2), s, t) == cos(a * t) * Heaviside(t)
    # TODO is there a way around simp_hyp?
    assert simp_hyp(ILT(a / (s**2 - a**2), s, t)) == sinh(a * t) * Heaviside(t)
    assert simp_hyp(ILT(s / (s**2 - a**2), s, t)) == cosh(a * t) * Heaviside(t)
    assert ILT(a / ((s + b)**2 + a**2), s,
               t) == exp(-b * t) * sin(a * t) * Heaviside(t)
    assert ILT((s + b) / ((s + b)**2 + a**2), s,
               t) == exp(-b * t) * cos(a * t) * Heaviside(t)
    # TODO sinh/cosh shifted come out a mess. also delayed trig is a mess
    # TODO should this simplify further?
    assert ILT(exp(-a*s)/s**b, s, t) == \
        (t - a)**(b - 1)*Heaviside(t - a)/gamma(b)

    assert ILT(exp(-a*s)/sqrt(1 + s**2), s, t) == \
        Heaviside(t - a)*besselj(0, a - t)  # note: besselj(0, x) is even

    # XXX ILT turns these branch factor into trig functions ...
    assert simplify(ILT(a**b*(s + sqrt(s**2 - a**2))**(-b)/sqrt(s**2 - a**2),
                    s, t).rewrite(exp)) == \
        Heaviside(t)*besseli(b, a*t)
    assert ILT(a**b*(s + sqrt(s**2 + a**2))**(-b)/sqrt(s**2 + a**2),
               s, t).rewrite(exp) == \
        Heaviside(t)*besselj(b, a*t)

    assert ILT(1 / (s * sqrt(s + 1)), s, t) == Heaviside(t) * erf(sqrt(t))
    # TODO can we make erf(t) work?

    assert ILT(1 / (s**2 * (s**2 + 1)), s, t) == (t - sin(t)) * Heaviside(t)

    assert ILT( (s * eye(2) - Matrix([[1, 0], [0, 2]])).inv(), s, t) ==\
        Matrix([[exp(t)*Heaviside(t), 0], [0, exp(2*t)*Heaviside(t)]])
Exemplo n.º 17
0
def test_airyai():
    z = Symbol('z', extended_real=False)
    t = Symbol('t', negative=True)
    p = Symbol('p', positive=True)

    assert isinstance(airyai(z), airyai)

    assert airyai(0) == 3**Rational(1, 3) / (3 * gamma(Rational(2, 3)))
    assert airyai(oo) == 0
    assert airyai(-oo) == 0

    assert diff(airyai(z), z) == airyaiprime(z)

    assert series(airyai(z), z, 0,
                  3) == (3**Rational(5, 6) * gamma(Rational(1, 3)) / (6 * pi) -
                         3**Rational(1, 6) * z * gamma(Rational(2, 3)) /
                         (2 * pi) + O(z**3))

    assert airyai(z).rewrite(hyper) == (-3**Rational(2, 3) * z * hyper(
        (), (Rational(4, 3), ),
        z**Integer(3) / 9) / (3 * gamma(Rational(1, 3))) +
                                        3**Rational(1, 3) * hyper(
                                            (), (Rational(2, 3), ),
                                            z**Integer(3) / 9) /
                                        (3 * gamma(Rational(2, 3))))

    assert isinstance(airyai(z).rewrite(besselj), airyai)
    assert airyai(t).rewrite(besselj) == (
        sqrt(-t) * (besselj(-Rational(1, 3), 2 * (-t)**Rational(3, 2) / 3) +
                    besselj(Rational(1, 3), 2 * (-t)**Rational(3, 2) / 3)) / 3)
    assert airyai(z).rewrite(besseli) == (
        -z * besseli(Rational(1, 3), 2 * z**Rational(3, 2) / 3) /
        (3 * (z**Rational(3, 2))**Rational(1, 3)) +
        (z**Rational(3, 2))**Rational(1, 3) *
        besseli(-Rational(1, 3), 2 * z**Rational(3, 2) / 3) / 3)
    assert airyai(p).rewrite(besseli) == (
        sqrt(p) * (besseli(-Rational(1, 3), 2 * p**Rational(3, 2) / 3) -
                   besseli(Rational(1, 3), 2 * p**Rational(3, 2) / 3)) / 3)

    assert expand_func(airyai(2 * (3 * z**5)**Rational(1, 3))) == (
        -sqrt(3) * (-1 + (z**5)**Rational(1, 3) / z**Rational(5, 3)) *
        airybi(2 * 3**Rational(1, 3) * z**Rational(5, 3)) / 6 +
        (1 + (z**5)**Rational(1, 3) / z**Rational(5, 3)) *
        airyai(2 * 3**Rational(1, 3) * z**Rational(5, 3)) / 2)
Exemplo n.º 18
0
def test_inverse_laplace_transform():
    ILT = inverse_laplace_transform
    a, b, c, = symbols('a b c', positive=True, finite=True)

    def simp_hyp(expr):
        return factor_terms(expand_mul(expr)).rewrite(sin)

    # just test inverses of all of the above
    assert ILT(1/s, s, t) == Heaviside(t)
    assert ILT(1/s**2, s, t) == t*Heaviside(t)
    assert ILT(1/s**5, s, t) == t**4*Heaviside(t)/24
    assert ILT(exp(-a*s)/s, s, t) == Heaviside(t - a)
    assert ILT(exp(-a*s)/(s + b), s, t) == exp(b*(a - t))*Heaviside(-a + t)
    assert ILT(a/(s**2 + a**2), s, t) == sin(a*t)*Heaviside(t)
    assert ILT(s/(s**2 + a**2), s, t) == cos(a*t)*Heaviside(t)
    # TODO is there a way around simp_hyp?
    assert simp_hyp(ILT(a/(s**2 - a**2), s, t)) == sinh(a*t)*Heaviside(t)
    assert simp_hyp(ILT(s/(s**2 - a**2), s, t)) == cosh(a*t)*Heaviside(t)
    assert ILT(a/((s + b)**2 + a**2), s, t) == exp(-b*t)*sin(a*t)*Heaviside(t)
    assert ILT(
        (s + b)/((s + b)**2 + a**2), s, t) == exp(-b*t)*cos(a*t)*Heaviside(t)
    # TODO sinh/cosh shifted come out a mess. also delayed trig is a mess
    # TODO should this simplify further?
    assert ILT(exp(-a*s)/s**b, s, t) == \
        (t - a)**(b - 1)*Heaviside(t - a)/gamma(b)

    assert ILT(exp(-a*s)/sqrt(1 + s**2), s, t) == \
        Heaviside(t - a)*besselj(0, a - t)  # note: besselj(0, x) is even

    # XXX ILT turns these branch factor into trig functions ...
    assert simplify(ILT(a**b*(s + sqrt(s**2 - a**2))**(-b)/sqrt(s**2 - a**2),
                        s, t).rewrite(exp)) == \
        Heaviside(t)*besseli(b, a*t)
    assert ILT(a**b*(s + sqrt(s**2 + a**2))**(-b)/sqrt(s**2 + a**2),
               s, t).rewrite(exp) == \
        Heaviside(t)*besselj(b, a*t)

    assert ILT(1/(s*sqrt(s + 1)), s, t) == Heaviside(t)*erf(sqrt(t))
    # TODO can we make erf(t) work?

    assert ILT(1/(s**2*(s**2 + 1)), s, t) == (t - sin(t))*Heaviside(t)

    assert ILT( (s * eye(2) - Matrix([[1, 0], [0, 2]])).inv(), s, t) ==\
        Matrix([[exp(t)*Heaviside(t), 0], [0, exp(2*t)*Heaviside(t)]])
Exemplo n.º 19
0
def test_bessel_eval():
    n, m, k = Symbol('n', integer=True), Symbol('m'), Symbol('k',
                                                             integer=True,
                                                             zero=False)

    for f in [besselj, besseli]:
        assert f(0, 0) == 1
        assert f(2.1, 0) == 0
        assert f(-3, 0) == 0
        assert f(-10.2, 0) == zoo
        assert f(1 + 3 * I, 0) == 0
        assert f(-3 + I, 0) == zoo
        assert f(-2 * I, 0) == nan
        assert f(n, 0) not in (0, 1)
        assert f(m, 0) not in (0, 1)
        assert f(k, 0) == 0

    assert bessely(0, 0) == -oo
    assert besselk(0, 0) == +oo
    for f in [bessely, besselk]:
        assert f(1 + I, 0) == zoo
        assert f(I, 0) == nan

    for x in (oo, -oo, I * oo, -I * oo):
        assert besselk(m, x) == 0

    for f in [besselj, bessely]:
        assert f(m, +oo) == 0
        assert f(m, -oo) == 0

    for f in [besseli, besselk]:
        assert f(m, +I * oo) == 0
        assert f(m, -I * oo) == 0

    for f in [besseli, besselk]:
        assert f(-4, z) == f(4, z)
        assert f(-3, z) == f(3, z)
        assert f(-n, z) == f(n, z)
        assert f(-m, z) != f(m, z)

    for f in [besselj, bessely]:
        assert f(-4, z) == f(4, z)
        assert f(-3, z) == -f(3, z)
        assert f(-n, z) == (-1)**n * f(n, z)
        assert f(-m, z) != (-1)**m * f(m, z)

    for f in [besselj, besseli]:
        assert f(m, -z) == (-z)**m * z**(-m) * f(m, z)

    assert besseli(2, -z) == besseli(2, z)
    assert besseli(3, -z) == -besseli(3, z)

    assert besselj(0, -z) == besselj(0, z)
    assert besselj(1, -z) == -besselj(1, z)

    assert besseli(0, I * z) == besselj(0, z)
    assert besseli(1, I * z) == I * besselj(1, z)
    assert besselj(3, I * z) == -I * besseli(3, z)
Exemplo n.º 20
0
def test_airybi():
    z = Symbol('z', extended_real=False)
    t = Symbol('t', negative=True)
    p = Symbol('p', positive=True)

    assert isinstance(airybi(z), airybi)

    assert airybi(0) == 3**Rational(5, 6)/(3*gamma(Rational(2, 3)))
    assert airybi(oo) == oo
    assert airybi(-oo) == 0

    assert diff(airybi(z), z) == airybiprime(z)

    assert series(airybi(z), z, 0, 3) == (
        cbrt(3)*gamma(Rational(1, 3))/(2*pi) + 3**Rational(2, 3)*z*gamma(Rational(2, 3))/(2*pi) + O(z**3))
    l = Limit(airybi(I/x)/(exp(Rational(2, 3)*(I/x)**Rational(3, 2))*sqrt(pi*sqrt(I/x))), x, 0)
    assert l.doit() == l

    assert airybi(z).rewrite(hyper) == (
        root(3, 6)*z*hyper((), (Rational(4, 3),), z**3/9)/gamma(Rational(1, 3)) +
        3**Rational(5, 6)*hyper((), (Rational(2, 3),), z**3/9)/(3*gamma(Rational(2, 3))))

    assert isinstance(airybi(z).rewrite(besselj), airybi)
    assert (airybi(t).rewrite(besselj) ==
            sqrt(3)*sqrt(-t)*(besselj(-1/3, 2*(-t)**Rational(3, 2)/3) -
                              besselj(Rational(1, 3),
                                      2*(-t)**Rational(3, 2)/3))/3)
    assert airybi(z).rewrite(besseli) == (
        sqrt(3)*(z*besseli(Rational(1, 3), 2*z**Rational(3, 2)/3)/cbrt(z**Rational(3, 2)) +
                 cbrt(z**Rational(3, 2))*besseli(-Rational(1, 3), 2*z**Rational(3, 2)/3))/3)
    assert airybi(p).rewrite(besseli) == (
        sqrt(3)*sqrt(p)*(besseli(-Rational(1, 3), 2*p**Rational(3, 2)/3) +
                         besseli(Rational(1, 3), 2*p**Rational(3, 2)/3))/3)
    assert airybi(p).rewrite(besselj) == airybi(p)

    assert expand_func(airybi(2*cbrt(3*z**5))) == (
        sqrt(3)*(1 - cbrt(z**5)/z**Rational(5, 3))*airyai(2*cbrt(3)*z**Rational(5, 3))/2 +
        (1 + cbrt(z**5)/z**Rational(5, 3))*airybi(2*cbrt(3)*z**Rational(5, 3))/2)
    assert expand_func(airybi(x*y)) == airybi(x*y)
    assert expand_func(airybi(log(x))) == airybi(log(x))
    assert expand_func(airybi(2*root(3*z**5, 5))) == airybi(2*root(3*z**5, 5))

    assert airybi(x).taylor_term(-1, x) == 0
Exemplo n.º 21
0
def test_bessel_eval():
    from diofant import I, Symbol
    n, m, k = Symbol('n', integer=True), Symbol('m'), Symbol('k',
                                                             integer=True,
                                                             zero=False)

    for f in [besselj, besseli]:
        assert f(0, 0) == S.One
        assert f(2.1, 0) == S.Zero
        assert f(-3, 0) == S.Zero
        assert f(-10.2, 0) == S.ComplexInfinity
        assert f(1 + 3 * I, 0) == S.Zero
        assert f(-3 + I, 0) == S.ComplexInfinity
        assert f(-2 * I, 0) == S.NaN
        assert f(n, 0) != S.One and f(n, 0) != S.Zero
        assert f(m, 0) != S.One and f(m, 0) != S.Zero
        assert f(k, 0) == S.Zero

    assert bessely(0, 0) == S.NegativeInfinity
    assert besselk(0, 0) == S.Infinity
    for f in [bessely, besselk]:
        assert f(1 + I, 0) == S.ComplexInfinity
        assert f(I, 0) == S.NaN

    for f in [besselj, bessely]:
        assert f(m, S.Infinity) == S.Zero
        assert f(m, S.NegativeInfinity) == S.Zero

    for f in [besseli, besselk]:
        assert f(m, I * S.Infinity) == S.Zero
        assert f(m, I * S.NegativeInfinity) == S.Zero

    for f in [besseli, besselk]:
        assert f(-4, z) == f(4, z)
        assert f(-3, z) == f(3, z)
        assert f(-n, z) == f(n, z)
        assert f(-m, z) != f(m, z)

    for f in [besselj, bessely]:
        assert f(-4, z) == f(4, z)
        assert f(-3, z) == -f(3, z)
        assert f(-n, z) == (-1)**n * f(n, z)
        assert f(-m, z) != (-1)**m * f(m, z)

    for f in [besselj, besseli]:
        assert f(m, -z) == (-z)**m * z**(-m) * f(m, z)

    assert besseli(2, -z) == besseli(2, z)
    assert besseli(3, -z) == -besseli(3, z)

    assert besselj(0, -z) == besselj(0, z)
    assert besselj(1, -z) == -besselj(1, z)

    assert besseli(0, I * z) == besselj(0, z)
    assert besseli(1, I * z) == I * besselj(1, z)
    assert besselj(3, I * z) == -I * besseli(3, z)
Exemplo n.º 22
0
def test_inversion():
    def inv(f):
        return piecewise_fold(meijerint_inversion(f, s, t))
    assert inv(1/(s**2 + 1)) == sin(t)*Heaviside(t)
    assert inv(s/(s**2 + 1)) == cos(t)*Heaviside(t)
    assert inv(exp(-s)/s) == Heaviside(t - 1)
    assert inv(1/sqrt(1 + s**2)) == besselj(0, t)*Heaviside(t)

    # Test some antcedents checking.
    assert meijerint_inversion(sqrt(s)/sqrt(1 + s**2), s, t) is None
    assert inv(exp(s**2)) is None
    assert meijerint_inversion(exp(-s**2), s, t) is None
Exemplo n.º 23
0
def test_inversion():
    def inv(f):
        return piecewise_fold(meijerint_inversion(f, s, t))
    assert inv(1/(s**2 + 1)) == sin(t)*Heaviside(t)
    assert inv(s/(s**2 + 1)) == cos(t)*Heaviside(t)
    assert inv(exp(-s)/s) == Heaviside(t - 1)
    assert inv(1/sqrt(1 + s**2)) == besselj(0, t)*Heaviside(t)

    # Test some antcedents checking.
    assert meijerint_inversion(sqrt(s)/sqrt(1 + s**2), s, t) is None
    assert inv(exp(s**2)) is None
    assert meijerint_inversion(exp(-s**2), s, t) is None
Exemplo n.º 24
0
def test_airybiprime():
    z = Symbol('z', extended_real=False)
    t = Symbol('t', negative=True)
    p = Symbol('p', positive=True)

    assert isinstance(airybiprime(z), airybiprime)

    assert airybiprime(0) == root(3, 6)/gamma(Rational(1, 3))
    assert airybiprime(oo) == oo
    assert airybiprime(-oo) == 0

    assert diff(airybiprime(z), z) == z*airybi(z)

    assert series(airybiprime(z), z, 0, 3) == (
        root(3, 6)/gamma(Rational(1, 3)) + 3**Rational(5, 6)*z**2/(6*gamma(Rational(2, 3))) + O(z**3))

    assert airybiprime(z).rewrite(hyper) == (
        3**Rational(5, 6)*z**2*hyper((), (Rational(5, 3),), z**3/9)/(6*gamma(Rational(2, 3))) +
        root(3, 6)*hyper((), (Rational(1, 3),), z**3/9)/gamma(Rational(1, 3)))

    assert isinstance(airybiprime(z).rewrite(besselj), airybiprime)
    assert (airybiprime(t).rewrite(besselj) ==
            -sqrt(3)*t*(besselj(-Rational(2, 3), 2*(-t)**Rational(3, 2)/3) +
                        besselj(Rational(2, 3), 2*(-t)**Rational(3, 2)/3))/3)
    assert airybiprime(z).rewrite(besseli) == (
        sqrt(3)*(z**2*besseli(Rational(2, 3), 2*z**Rational(3, 2)/3)/(z**Rational(3, 2))**Rational(2, 3) +
                 (z**Rational(3, 2))**Rational(2, 3)*besseli(-Rational(2, 3), 2*z**Rational(3, 2)/3))/3)
    assert airybiprime(p).rewrite(besseli) == (
        sqrt(3)*p*(besseli(-Rational(2, 3), 2*p**Rational(3, 2)/3) + besseli(Rational(2, 3), 2*p**Rational(3, 2)/3))/3)
    assert airybiprime(p).rewrite(besselj) == airybiprime(p)

    assert expand_func(airybiprime(2*cbrt(3*z**5))) == (
        sqrt(3)*(z**Rational(5, 3)/cbrt(z**5) - 1)*airyaiprime(2*cbrt(3)*z**Rational(5, 3))/2 +
        (z**Rational(5, 3)/cbrt(z**5) + 1)*airybiprime(2*cbrt(3)*z**Rational(5, 3))/2)
    assert expand_func(airybiprime(x*y)) == airybiprime(x*y)
    assert expand_func(airybiprime(log(x))) == airybiprime(log(x))
    assert expand_func(airybiprime(2*root(3*z**5, 5))) == airybiprime(2*root(3*z**5, 5))

    assert airybiprime(-2).evalf(50) == Float('0.27879516692116952268509756941098324140300059345163131', dps=50)
Exemplo n.º 25
0
def test_bessel_eval():
    n, m, k = Symbol('n', integer=True), Symbol('m'), Symbol('k', integer=True, zero=False)

    for f in [besselj, besseli]:
        assert f(0, 0) == 1
        assert f(2.1, 0) == 0
        assert f(-3, 0) == 0
        assert f(-10.2, 0) == zoo
        assert f(1 + 3*I, 0) == 0
        assert f(-3 + I, 0) == zoo
        assert f(-2*I, 0) == nan
        assert f(n, 0) not in (0, 1)
        assert f(m, 0) not in (0, 1)
        assert f(k, 0) == 0

    assert bessely(0, 0) == -oo
    assert besselk(0, 0) == +oo
    for f in [bessely, besselk]:
        assert f(1 + I, 0) == zoo
        assert f(I, 0) == nan

    for f in [besselj, bessely]:
        assert f(m, +oo) == 0
        assert f(m, -oo) == 0

    for f in [besseli, besselk]:
        assert f(m, +I*oo) == 0
        assert f(m, -I*oo) == 0

    for f in [besseli, besselk]:
        assert f(-4, z) == f(4, z)
        assert f(-3, z) == f(3, z)
        assert f(-n, z) == f(n, z)
        assert f(-m, z) != f(m, z)

    for f in [besselj, bessely]:
        assert f(-4, z) == f(4, z)
        assert f(-3, z) == -f(3, z)
        assert f(-n, z) == (-1)**n*f(n, z)
        assert f(-m, z) != (-1)**m*f(m, z)

    for f in [besselj, besseli]:
        assert f(m, -z) == (-z)**m*z**(-m)*f(m, z)

    assert besseli(2, -z) == besseli(2, z)
    assert besseli(3, -z) == -besseli(3, z)

    assert besselj(0, -z) == besselj(0, z)
    assert besselj(1, -z) == -besselj(1, z)

    assert besseli(0, I*z) == besselj(0, z)
    assert besseli(1, I*z) == I*besselj(1, z)
    assert besselj(3, I*z) == -I*besseli(3, z)
Exemplo n.º 26
0
def test_airyaiprime():
    z = Symbol('z', extended_real=False)
    t = Symbol('t', negative=True)
    p = Symbol('p', positive=True)

    assert isinstance(airyaiprime(z), airyaiprime)

    assert airyaiprime(0) == -3**Rational(2, 3)/(3*gamma(Rational(1, 3)))
    assert airyaiprime(oo) == 0

    assert diff(airyaiprime(z), z) == z*airyai(z)

    assert series(airyaiprime(z), z, 0, 3) == (
        -3**Rational(2, 3)/(3*gamma(Rational(1, 3))) + cbrt(3)*z**2/(6*gamma(Rational(2, 3))) + O(z**3))

    assert airyaiprime(z).rewrite(hyper) == (
        cbrt(3)*z**2*hyper((), (Rational(5, 3),), z**3/9)/(6*gamma(Rational(2, 3))) -
        3**Rational(2, 3)*hyper((), (Rational(1, 3),), z**3/9)/(3*gamma(Rational(1, 3))))

    assert isinstance(airyaiprime(z).rewrite(besselj), airyaiprime)
    assert (airyaiprime(t).rewrite(besselj) ==
            t*(besselj(-Rational(2, 3), 2*(-t)**Rational(3, 2)/3) -
               besselj(Rational(2, 3), 2*(-t)**Rational(3, 2)/3))/3)
    assert airyaiprime(z).rewrite(besseli) == (
        z**2*besseli(Rational(2, 3), 2*z**Rational(3, 2)/3)/(3*(z**Rational(3, 2))**Rational(2, 3)) -
        (z**Rational(3, 2))**Rational(2, 3)*besseli(-Rational(1, 3), 2*z**Rational(3, 2)/3)/3)
    assert airyaiprime(p).rewrite(besseli) == (
        p*(-besseli(-Rational(2, 3), 2*p**Rational(3, 2)/3) + besseli(Rational(2, 3), 2*p**Rational(3, 2)/3))/3)
    assert airyaiprime(p).rewrite(besselj) == airyaiprime(p)

    assert expand_func(airyaiprime(2*cbrt(3*z**5))) == (
        sqrt(3)*(z**Rational(5, 3)/cbrt(z**5) - 1)*airybiprime(2*cbrt(3)*z**Rational(5, 3))/6 +
        (z**Rational(5, 3)/cbrt(z**5) + 1)*airyaiprime(2*cbrt(3)*z**Rational(5, 3))/2)
    assert expand_func(airyaiprime(x*y)) == airyaiprime(x*y)
    assert expand_func(airyaiprime(log(x))) == airyaiprime(log(x))
    assert expand_func(airyaiprime(2*root(3*z**5, 5))) == airyaiprime(2*root(3*z**5, 5))

    assert airyaiprime(-2).evalf(50) == Float('0.61825902074169104140626429133247528291577794512414753', dps=50)
Exemplo n.º 27
0
def test_pmint_besselj():
    # TODO: in both cases heurisch() gives None. Wrong besselj() derivative?

    f = besselj(nu + 1, x) / besselj(nu, x)
    g = nu * log(x) - log(besselj(nu, x))

    assert heurisch(f, x) == g

    f = (nu * besselj(nu, x) - x * besselj(nu + 1, x)) / x
    g = besselj(nu, x)

    assert heurisch(f, x) == g
Exemplo n.º 28
0
def test_pmint_besselj():
    # TODO: in both cases heurisch() gives None. Wrong besselj() derivative?

    f = besselj(nu + 1, x)/besselj(nu, x)
    g = nu*log(x) - log(besselj(nu, x))

    assert simplify(heurisch(f, x) - g) == 0

    f = (nu*besselj(nu, x) - x*besselj(nu + 1, x))/x
    g = besselj(nu, x)

    assert simplify(heurisch(f, x) - g) == 0
Exemplo n.º 29
0
def test_mellin_transform_bessel():
    MT = mellin_transform

    # 8.4.19
    assert MT(besselj(a, 2*sqrt(x)), x, s) == \
        (gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, Rational(3, 4)), True)
    assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
        (2**a*gamma(-2*s + Rational(1, 2))*gamma(a/2 + s + Rational(1, 2))/(
            gamma(-a/2 - s + 1)*gamma(a - 2*s + 1)), (
            -re(a)/2 - Rational(1, 2), Rational(1, 4)), True)
    assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
        (2**a*gamma(a/2 + s)*gamma(-2*s + Rational(1, 2))/(
            gamma(-a/2 - s + Rational(1, 2))*gamma(a - 2*s + 1)), (
            -re(a)/2, Rational(1, 4)), True)
    assert MT(besselj(a, sqrt(x))**2, x, s) == \
        (gamma(a + s)*gamma(Rational(1, 2) - s)
         / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)),
            (-re(a), Rational(1, 2)), True)
    assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \
        (gamma(s)*gamma(Rational(1, 2) - s)
         / (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)),
            (0, Rational(1, 2)), True)
    # NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as
    #       I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large)
    assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \
        (gamma(1 - s)*gamma(a + s - Rational(1, 2))
         / (sqrt(pi)*gamma(Rational(3, 2) - s)*gamma(a - s + Rational(1, 2))),
            (Rational(1, 2) - re(a), Rational(1, 2)), True)
    assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \
        (4**s*gamma(1 - 2*s)*gamma((a + b)/2 + s)
         / (gamma(1 - s + (b - a)/2)*gamma(1 - s + (a - b)/2)
            * gamma( 1 - s + (a + b)/2)),
            (-(re(a) + re(b))/2, Rational(1, 2)), True)
    assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \
        ((Max(re(a), -re(a)), Rational(1, 2)), True)

    # Section 8.4.20
    assert MT(bessely(a, 2*sqrt(x)), x, s) == \
        (-cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)/pi,
            (Max(-re(a)/2, re(a)/2), Rational(3, 4)), True)
    assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
        (-4**s*sin(pi*(a/2 - s))*gamma(Rational(1, 2) - 2*s)
         * gamma((1 - a)/2 + s)*gamma((1 + a)/2 + s)
         / (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)),
            (Max(-(re(a) + 1)/2, (re(a) - 1)/2), Rational(1, 4)), True)
    assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
        (-4**s*cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)*gamma(Rational(1, 2) - 2*s)
         / (sqrt(pi)*gamma(Rational(1, 2) - s - a/2)*gamma(Rational(1, 2) - s + a/2)),
            (Max(-re(a)/2, re(a)/2), Rational(1, 4)), True)
    assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \
        (-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(Rational(1, 2) - s)
         / (pi**Rational(3, 2)*gamma(1 + a - s)),
            (Max(-re(a), 0), Rational(1, 2)), True)
    assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \
        (-4**s*cos(pi*(a/2 - b/2 + s))*gamma(1 - 2*s)
         * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s)
         / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)),
            (Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), Rational(1, 2)), True)
    # NOTE bessely(a, sqrt(x))**2 and bessely(a, sqrt(x))*bessely(b, sqrt(x))
    # are a mess (no matter what way you look at it ...)
    assert MT(bessely(a, sqrt(x))**2, x, s)[1:] == \
             ((Max(-re(a), 0, re(a)), Rational(1, 2)), True)

    # Section 8.4.22
    # TODO we can't do any of these (delicate cancellation)

    # Section 8.4.23
    assert MT(besselk(a, 2*sqrt(x)), x, s) == \
        (gamma(
         s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True)
    assert MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk(
        a, 2*sqrt(2*sqrt(x))), x, s) == (4**(-s)*gamma(2*s) *
                                         gamma(a/2 + s)/(2*gamma(a/2 - s + 1)), (Max(0, -re(a)/2), oo), True)
    # TODO bessely(a, x)*besselk(a, x) is a mess
    assert MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
        (gamma(s)*gamma(
            a + s)*gamma(-s + Rational(1, 2))/(2*sqrt(pi)*gamma(a - s + 1)),
         (Max(-re(a), 0), Rational(1, 2)), True)
    assert MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
        (2**(2*s - 1)*gamma(-2*s + 1)*gamma(-a/2 + b/2 + s) *
         gamma(a/2 + b/2 + s)/(gamma(-a/2 + b/2 - s + 1) *
                               gamma(a/2 + b/2 - s + 1)), (Max(-re(a)/2 - re(b)/2,
                                                               re(a)/2 - re(b)/2), Rational(1, 2)), True)

    # TODO products of besselk are a mess

    mt = MT(exp(-x/2)*besselk(a, x/2), x, s)
    mt0 = combsimp((trigsimp(combsimp(mt[0].expand(func=True)))))
    assert mt0 == 2*pi**Rational(3, 2)*cos(pi*s)*gamma(-s + Rational(1, 2))/(
        (cos(2*pi*a) - cos(2*pi*s))*gamma(-a - s + 1)*gamma(a - s + 1))
    assert mt[1:] == ((Max(-re(a), re(a)), oo), True)
Exemplo n.º 30
0
def test_laplace_transform():
    LT = laplace_transform
    a, b, c, = symbols('a b c', positive=True)
    f = Function("f")

    # Test unevaluated form
    assert laplace_transform(f(t), t, w) == LaplaceTransform(f(t), t, w)
    assert inverse_laplace_transform(
        f(w), w, t, plane=0) == InverseLaplaceTransform(f(w), w, t, 0)

    # test a bug
    spos = symbols('s', positive=True)
    assert LT(exp(t), t, spos)[:2] == (1/(spos - 1), True)

    # basic tests from wikipedia

    assert LT((t - a)**b*exp(-c*(t - a))*Heaviside(t - a), t, s) == \
        ((s + c)**(-b - 1)*exp(-a*s)*gamma(b + 1), -c, True)
    assert LT(t**a, t, s) == (s**(-a - 1)*gamma(a + 1), 0, True)
    assert LT(Heaviside(t), t, s) == (1/s, 0, True)
    assert LT(Heaviside(t - a), t, s) == (exp(-a*s)/s, 0, True)
    assert LT(1 - exp(-a*t), t, s) == (a/(s*(a + s)), 0, True)

    assert LT((exp(2*t) - 1)*exp(-b - t)*Heaviside(t)/2, t, s, noconds=True) \
        == exp(-b)/(s**2 - 1)

    assert LT(exp(t), t, s)[:2] == (1/(s - 1), 1)
    assert LT(exp(2*t), t, s)[:2] == (1/(s - 2), 2)
    assert LT(exp(a*t), t, s)[:2] == (1/(s - a), a)

    assert LT(log(t/a), t, s) == ((log(a*s) + EulerGamma)/s/-1, 0, True)

    assert LT(erf(t), t, s) == ((-erf(s/2) + 1)*exp(s**2/4)/s, 0, True)

    assert LT(sin(a*t), t, s) == (a/(a**2 + s**2), 0, True)
    assert LT(cos(a*t), t, s) == (s/(a**2 + s**2), 0, True)
    # TODO would be nice to have these come out better
    assert LT(
        exp(-a*t)*sin(b*t), t, s) == (b/(b**2 + (a + s)**2), -a, True)
    assert LT(exp(-a*t)*cos(b*t), t, s) == \
        ((a + s)/(b**2 + (a + s)**2), -a, True)

    assert LT(besselj(0, t), t, s) == (1/sqrt(1 + s**2), 0, True)
    assert LT(besselj(1, t), t, s) == (1 - 1/sqrt(1 + 1/s**2), 0, True)
    # TODO general order works, but is a *mess*
    # TODO besseli also works, but is an even greater mess

    # test a bug in conditions processing
    # TODO the auxiliary condition should be recognised/simplified
    assert LT(exp(t)*cos(t), t, s)[:-1] in [
        ((s - 1)/(s**2 - 2*s + 2), -oo),
        ((s - 1)/((s - 1)**2 + 1), -oo),
    ]

    # Fresnel functions
    assert laplace_transform(fresnels(t), t, s) == \
        ((-sin(s**2/(2*pi))*fresnels(s/pi) + sin(s**2/(2*pi))/2 -
            cos(s**2/(2*pi))*fresnelc(s/pi) + cos(s**2/(2*pi))/2)/s, 0, True)
    assert laplace_transform(fresnelc(t), t, s) == (
        (sin(s**2/(2*pi))*fresnelc(s/pi)/s - cos(s**2/(2*pi))*fresnels(s/pi)/s
         + sqrt(2)*cos(s**2/(2*pi) + pi/4)/(2*s), 0, True))

    assert LT(Matrix([[exp(t), t*exp(-t)], [t*exp(-t), exp(t)]]), t, s) ==\
        Matrix([
            [(1/(s - 1), 1, True), ((s + 1)**(-2), 0, True)],
            [((s + 1)**(-2), 0, True), (1/(s - 1), 1, True)]
        ])
Exemplo n.º 31
0
def test_laplace_transform():
    from diofant import fresnels, fresnelc
    LT = laplace_transform
    a, b, c, = symbols('a b c', positive=True)
    t = symbols('t')
    w = Symbol("w")
    f = Function("f")

    # Test unevaluated form
    assert laplace_transform(f(t), t, w) == LaplaceTransform(f(t), t, w)
    assert inverse_laplace_transform(f(w), w, t,
                                     plane=0) == InverseLaplaceTransform(
                                         f(w), w, t, 0)

    # test a bug
    spos = symbols('s', positive=True)
    assert LT(exp(t), t, spos)[:2] == (1 / (spos - 1), True)

    # basic tests from wikipedia

    assert LT((t - a)**b*exp(-c*(t - a))*Heaviside(t - a), t, s) == \
        ((s + c)**(-b - 1)*exp(-a*s)*gamma(b + 1), -c, True)
    assert LT(t**a, t, s) == (s**(-a - 1) * gamma(a + 1), 0, True)
    assert LT(Heaviside(t), t, s) == (1 / s, 0, True)
    assert LT(Heaviside(t - a), t, s) == (exp(-a * s) / s, 0, True)
    assert LT(1 - exp(-a * t), t, s) == (a / (s * (a + s)), 0, True)

    assert LT((exp(2*t) - 1)*exp(-b - t)*Heaviside(t)/2, t, s, noconds=True) \
        == exp(-b)/(s**2 - 1)

    assert LT(exp(t), t, s)[:2] == (1 / (s - 1), 1)
    assert LT(exp(2 * t), t, s)[:2] == (1 / (s - 2), 2)
    assert LT(exp(a * t), t, s)[:2] == (1 / (s - a), a)

    assert LT(log(t / a), t,
              s) == ((log(a * s) + EulerGamma) / s / -1, 0, True)

    assert LT(erf(t), t, s) == ((-erf(s / 2) + 1) * exp(s**2 / 4) / s, 0, True)

    assert LT(sin(a * t), t, s) == (a / (a**2 + s**2), 0, True)
    assert LT(cos(a * t), t, s) == (s / (a**2 + s**2), 0, True)
    # TODO would be nice to have these come out better
    assert LT(exp(-a * t) * sin(b * t), t,
              s) == (b / (b**2 + (a + s)**2), -a, True)
    assert LT(exp(-a*t)*cos(b*t), t, s) == \
        ((a + s)/(b**2 + (a + s)**2), -a, True)

    assert LT(besselj(0, t), t, s) == (1 / sqrt(1 + s**2), 0, True)
    assert LT(besselj(1, t), t, s) == (1 - 1 / sqrt(1 + 1 / s**2), 0, True)
    # TODO general order works, but is a *mess*
    # TODO besseli also works, but is an even greater mess

    # test a bug in conditions processing
    # TODO the auxiliary condition should be recognised/simplified
    assert LT(exp(t) * cos(t), t, s)[:-1] in [
        ((s - 1) / (s**2 - 2 * s + 2), -oo),
        ((s - 1) / ((s - 1)**2 + 1), -oo),
    ]

    # Fresnel functions
    assert laplace_transform(fresnels(t), t, s) == \
        ((-sin(s**2/(2*pi))*fresnels(s/pi) + sin(s**2/(2*pi))/2 -
            cos(s**2/(2*pi))*fresnelc(s/pi) + cos(s**2/(2*pi))/2)/s, 0, True)
    assert laplace_transform(
        fresnelc(t), t,
        s) == ((sin(s**2 / (2 * pi)) * fresnelc(s / pi) / s -
                cos(s**2 / (2 * pi)) * fresnels(s / pi) / s +
                sqrt(2) * cos(s**2 / (2 * pi) + pi / 4) / (2 * s), 0, True))

    assert LT(Matrix([[exp(t), t*exp(-t)], [t*exp(-t), exp(t)]]), t, s) ==\
        Matrix([
            [(1/(s - 1), 1, True), ((s + 1)**(-2), 0, True)],
            [((s + 1)**(-2), 0, True), (1/(s - 1), 1, True)]
        ])
Exemplo n.º 32
0
def test_inverse_mellin_transform():
    from diofant import (sin, simplify, Max, Min, expand, powsimp, exp_polar,
                         cos, cot)
    IMT = inverse_mellin_transform

    assert IMT(gamma(s), s, x, (0, oo)) == exp(-x)
    assert IMT(gamma(-s), s, x, (-oo, 0)) == exp(-1 / x)
    assert simplify(IMT(s/(2*s**2 - 2), s, x, (2, oo))) == \
        (x**2 + 1)*Heaviside(1 - x)/(4*x)

    # test passing "None"
    assert IMT(1/(s**2 - 1), s, x, (-1, None)) == \
        -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x)
    assert IMT(1/(s**2 - 1), s, x, (None, 1)) == \
        (-x/2 + 1/(2*x))*Heaviside(-x + 1)

    # test expansion of sums
    assert IMT(gamma(s) + gamma(s - 1), s, x, (1, oo)) == (x + 1) * exp(-x) / x

    # test factorisation of polys
    r = symbols('r', extended_real=True)
    assert IMT(1/(s**2 + 1), s, exp(-x), (None, oo)
              ).subs(x, r).rewrite(sin).simplify() \
        == sin(r)*Heaviside(1 - exp(-r))

    # test multiplicative substitution
    _a, _b = symbols('a b', positive=True)
    assert IMT(_b**(-s / _a) * factorial(s / _a) / s, s, x,
               (0, oo)) == exp(-_b * x**_a)
    assert IMT(factorial(_a / _b + s / _b) / (_a + s), s, x,
               (-_a, oo)) == x**_a * exp(-x**_b)

    def simp_pows(expr):
        return simplify(powsimp(expand_mul(expr, deep=False),
                                force=True)).replace(exp_polar, exp)

    # Now test the inverses of all direct transforms tested above

    # Section 8.4.2
    nu = symbols('nu', extended_real=True, finite=True)
    assert IMT(-1 / (nu + s), s, x, (-oo, None)) == x**nu * Heaviside(x - 1)
    assert IMT(1 / (nu + s), s, x, (None, oo)) == x**nu * Heaviside(1 - x)
    assert simp_pows(IMT(gamma(beta)*gamma(s)/gamma(s + beta), s, x, (0, oo))) \
        == (1 - x)**(beta - 1)*Heaviside(1 - x)
    assert simp_pows(IMT(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s),
                         s, x, (-oo, None))) \
        == (x - 1)**(beta - 1)*Heaviside(x - 1)
    assert simp_pows(IMT(gamma(s)*gamma(rho - s)/gamma(rho), s, x, (0, None))) \
        == (1/(x + 1))**rho
    assert simp_pows(IMT(d**c*d**(s - 1)*sin(pi*c)
                         * gamma(s)*gamma(s + c)*gamma(1 - s)*gamma(1 - s - c)/pi,
                         s, x, (Max(-re(c), 0), Min(1 - re(c), 1)))) \
        == (x**c - d**c)/(x - d)

    assert simplify(IMT(1/sqrt(pi)*(-c/2)*gamma(s)*gamma((1 - c)/2 - s)
                        * gamma(-c/2 - s)/gamma(1 - c - s),
                        s, x, (0, -re(c)/2))) == \
        (1 + sqrt(x + 1))**c
    assert simplify(IMT(2**(a + 2*s)*b**(a + 2*s - 1)*gamma(s)*gamma(1 - a - 2*s)
                        / gamma(1 - a - s), s, x, (0, (-re(a) + 1)/2))) == \
        b**(a - 1)*(sqrt(1 + x/b**2) + 1)**(a - 1)*(b**2*sqrt(1 + x/b**2) +
        b**2 + x)/(b**2 + x)
    assert simplify(IMT(-2**(c + 2*s)*c*b**(c + 2*s)*gamma(s)*gamma(-c - 2*s)
                        / gamma(-c - s + 1), s, x, (0, -re(c)/2))) == \
        b**c*(sqrt(1 + x/b**2) + 1)**c

    # Section 8.4.5
    assert IMT(24 / s**5, s, x, (0, oo)) == log(x)**4 * Heaviside(1 - x)
    assert expand(IMT(6/s**4, s, x, (-oo, 0)), force=True) == \
        log(x)**3*Heaviside(x - 1)
    assert IMT(pi / (s * sin(pi * s)), s, x, (-1, 0)) == log(x + 1)
    assert IMT(pi / (s * sin(pi * s / 2)), s, x, (-2, 0)) == log(x**2 + 1)
    assert IMT(pi / (s * sin(2 * pi * s)), s, x,
               (-Rational(1, 2), 0)) == log(sqrt(x) + 1)
    assert IMT(pi / (s * sin(pi * s)), s, x, (0, 1)) == log(1 + 1 / x)

    # TODO
    def mysimp(expr):
        from diofant import expand, logcombine, powsimp
        return expand(powsimp(logcombine(expr, force=True),
                              force=True,
                              deep=True),
                      force=True).replace(exp_polar, exp)

    assert mysimp(mysimp(IMT(pi / (s * tan(pi * s)), s, x, (-1, 0)))) in [
        log(1 - x) * Heaviside(1 - x) + log(x - 1) * Heaviside(x - 1),
        log(x) * Heaviside(x - 1) + log(1 - 1 / x) * Heaviside(x - 1) +
        log(-x + 1) * Heaviside(-x + 1)
    ]
    # test passing cot
    assert mysimp(IMT(pi * cot(pi * s) / s, s, x, (0, 1))) in [
        log(1 / x - 1) * Heaviside(1 - x) + log(1 - 1 / x) * Heaviside(x - 1),
        -log(x) * Heaviside(-x + 1) + log(1 - 1 / x) * Heaviside(x - 1) +
        log(-x + 1) * Heaviside(-x + 1),
    ]

    # 8.4.14
    assert IMT(-gamma(s + Rational(1, 2))/(sqrt(pi)*s), s, x, (-Rational(1, 2), 0)) == \
        erf(sqrt(x))

    # 8.4.19
    assert simplify(IMT(gamma(a/2 + s)/gamma(a/2 - s + 1), s, x, (-re(a)/2, Rational(3, 4)))) \
        == besselj(a, 2*sqrt(x))
    assert simplify(IMT(2**a*gamma(Rational(1, 2) - 2*s)*gamma(s + (a + 1)/2)
                      / (gamma(1 - s - a/2)*gamma(1 - 2*s + a)),
                      s, x, (-(re(a) + 1)/2, Rational(1, 4)))) == \
        sin(sqrt(x))*besselj(a, sqrt(x))
    assert simplify(IMT(2**a*gamma(a/2 + s)*gamma(Rational(1, 2) - 2*s)
                      / (gamma(Rational(1, 2) - s - a/2)*gamma(1 - 2*s + a)),
                      s, x, (-re(a)/2, Rational(1, 4)))) == \
        cos(sqrt(x))*besselj(a, sqrt(x))
    # TODO this comes out as an amazing mess, but simplifies nicely
    assert simplify(IMT(gamma(a + s)*gamma(Rational(1, 2) - s)
                      / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)),
                      s, x, (-re(a), Rational(1, 2)))) == \
        besselj(a, sqrt(x))**2
    assert simplify(IMT(gamma(s)*gamma(Rational(1, 2) - s)
                      / (sqrt(pi)*gamma(1 - s - a)*gamma(1 + a - s)),
                      s, x, (0, Rational(1, 2)))) == \
        besselj(-a, sqrt(x))*besselj(a, sqrt(x))
    assert simplify(IMT(4**s*gamma(-2*s + 1)*gamma(a/2 + b/2 + s)
                      / (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1)
                         * gamma(a/2 + b/2 - s + 1)),
                      s, x, (-(re(a) + re(b))/2, Rational(1, 2)))) == \
        besselj(a, sqrt(x))*besselj(b, sqrt(x))

    # Section 8.4.20
    # TODO this can be further simplified!
    assert simplify(IMT(-2**(2*s)*cos(pi*a/2 - pi*b/2 + pi*s)*gamma(-2*s + 1) *
                    gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) /
                    (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)),
                    s, x,
                    (Max(-re(a)/2 - re(b)/2, -re(a)/2 + re(b)/2), Rational(1, 2)))) == \
                    besselj(a, sqrt(x))*-(besselj(-b, sqrt(x)) -
                    besselj(b, sqrt(x))*cos(pi*b))/sin(pi*b)
    # TODO more

    # for coverage

    assert IMT(pi / cos(pi * s), s, x,
               (0, Rational(1, 2))) == sqrt(x) / (x + 1)
Exemplo n.º 33
0
def test_mellin_transform_bessel():
    from diofant import Max
    MT = mellin_transform

    # 8.4.19
    assert MT(besselj(a, 2*sqrt(x)), x, s) == \
        (gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, Rational(3, 4)), True)
    assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
        (2**a*gamma(-2*s + Rational(1, 2))*gamma(a/2 + s + Rational(1, 2))/(
        gamma(-a/2 - s + 1)*gamma(a - 2*s + 1)), (
        -re(a)/2 - Rational(1, 2), Rational(1, 4)), True)
    assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
        (2**a*gamma(a/2 + s)*gamma(-2*s + Rational(1, 2))/(
        gamma(-a/2 - s + Rational(1, 2))*gamma(a - 2*s + 1)), (
        -re(a)/2, Rational(1, 4)), True)
    assert MT(besselj(a, sqrt(x))**2, x, s) == \
        (gamma(a + s)*gamma(Rational(1, 2) - s)
         / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)),
            (-re(a), Rational(1, 2)), True)
    assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \
        (gamma(s)*gamma(Rational(1, 2) - s)
         / (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)),
            (0, Rational(1, 2)), True)
    # NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as
    #       I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large)
    assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \
        (gamma(1 - s)*gamma(a + s - Rational(1, 2))
         / (sqrt(pi)*gamma(Rational(3, 2) - s)*gamma(a - s + Rational(1, 2))),
            (Rational(1, 2) - re(a), Rational(1, 2)), True)
    assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \
        (4**s*gamma(1 - 2*s)*gamma((a + b)/2 + s)
         / (gamma(1 - s + (b - a)/2)*gamma(1 - s + (a - b)/2)
            * gamma( 1 - s + (a + b)/2)),
            (-(re(a) + re(b))/2, Rational(1, 2)), True)
    assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \
        ((Max(re(a), -re(a)), Rational(1, 2)), True)

    # Section 8.4.20
    assert MT(bessely(a, 2*sqrt(x)), x, s) == \
        (-cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)/pi,
            (Max(-re(a)/2, re(a)/2), Rational(3, 4)), True)
    assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
        (-4**s*sin(pi*(a/2 - s))*gamma(Rational(1, 2) - 2*s)
         * gamma((1 - a)/2 + s)*gamma((1 + a)/2 + s)
         / (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)),
            (Max(-(re(a) + 1)/2, (re(a) - 1)/2), Rational(1, 4)), True)
    assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
        (-4**s*cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)*gamma(Rational(1, 2) - 2*s)
         / (sqrt(pi)*gamma(Rational(1, 2) - s - a/2)*gamma(Rational(1, 2) - s + a/2)),
            (Max(-re(a)/2, re(a)/2), Rational(1, 4)), True)
    assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \
        (-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(Rational(1, 2) - s)
         / (pi**Rational(3, 2)*gamma(1 + a - s)),
            (Max(-re(a), 0), Rational(1, 2)), True)
    assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \
        (-4**s*cos(pi*(a/2 - b/2 + s))*gamma(1 - 2*s)
         * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s)
         / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)),
            (Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), Rational(1, 2)), True)
    # NOTE bessely(a, sqrt(x))**2 and bessely(a, sqrt(x))*bessely(b, sqrt(x))
    # are a mess (no matter what way you look at it ...)
    assert MT(bessely(a, sqrt(x))**2, x, s)[1:] == \
             ((Max(-re(a), 0, re(a)), Rational(1, 2)), True)

    # Section 8.4.22
    # TODO we can't do any of these (delicate cancellation)

    # Section 8.4.23
    assert MT(besselk(a, 2*sqrt(x)), x, s) == \
        (gamma(
         s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True)
    assert MT(
        besselj(a, 2 * sqrt(2 * sqrt(x))) * besselk(a, 2 * sqrt(2 * sqrt(x))),
        x, s) == (4**(-s) * gamma(2 * s) * gamma(a / 2 + s) /
                  (2 * gamma(a / 2 - s + 1)), (Max(0, -re(a) / 2), oo), True)
    # TODO bessely(a, x)*besselk(a, x) is a mess
    assert MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
        (gamma(s)*gamma(
        a + s)*gamma(-s + Rational(1, 2))/(2*sqrt(pi)*gamma(a - s + 1)),
        (Max(-re(a), 0), Rational(1, 2)), True)
    assert MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
        (2**(2*s - 1)*gamma(-2*s + 1)*gamma(-a/2 + b/2 + s) *
        gamma(a/2 + b/2 + s)/(gamma(-a/2 + b/2 - s + 1) *
        gamma(a/2 + b/2 - s + 1)), (Max(-re(a)/2 - re(b)/2,
        re(a)/2 - re(b)/2), Rational(1, 2)), True)

    # TODO products of besselk are a mess

    mt = MT(exp(-x / 2) * besselk(a, x / 2), x, s)
    mt0 = combsimp((trigsimp(combsimp(mt[0].expand(func=True)))))
    assert mt0 == 2 * pi**Rational(3, 2) * cos(
        pi * s) * gamma(-s + Rational(1, 2)) / (
            (cos(2 * pi * a) - cos(2 * pi * s)) * gamma(-a - s + 1) *
            gamma(a - s + 1))
    assert mt[1:] == ((Max(-re(a), re(a)), oo), True)
Exemplo n.º 34
0
def test_linear_subs():
    assert integrate(sin(x - 1), x, meijerg=True) == -cos(1 - x)
    assert integrate(besselj(1, x - 1), x, meijerg=True) == -besselj(0, 1 - x)
Exemplo n.º 35
0
def test_bessel():
    assert simplify(integrate(besselj(a, z)*besselj(b, z)/z, (z, 0, oo),
                              meijerg=True, conds='none')) == \
        2*sin(pi*(a/2 - b/2))/(pi*(a - b)*(a + b))
    assert simplify(
        integrate(besselj(a, z) * besselj(a, z) / z, (z, 0, oo),
                  meijerg=True,
                  conds='none')) == 1 / (2 * a)

    # TODO more orthogonality integrals

    assert simplify(integrate(sin(z*x)*(x**2 - 1)**(-(y + Rational(1, 2))),
                              (x, 1, oo), meijerg=True, conds='none')
                    * 2/((z/2)**y*sqrt(pi)*gamma(Rational(1, 2) - y))) == \
        besselj(y, z)

    # Werner Rosenheinrich
    # SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS

    assert integrate(x * besselj(0, x), x, meijerg=True) == x * besselj(1, x)
    assert integrate(x * besseli(0, x), x, meijerg=True) == x * besseli(1, x)
    # TODO can do higher powers, but come out as high order ... should they be
    #      reduced to order 0, 1?
    assert integrate(besselj(1, x), x, meijerg=True) == -besselj(0, x)
    assert integrate(besselj(1, x)**2/x, x, meijerg=True) == \
        -(besselj(0, x)**2 + besselj(1, x)**2)/2
    # TODO more besseli when tables are extended or recursive mellin works
    assert integrate(besselj(0, x)**2/x**2, x, meijerg=True) == \
        -2*x*besselj(0, x)**2 - 2*x*besselj(1, x)**2 \
        + 2*besselj(0, x)*besselj(1, x) - besselj(0, x)**2/x
    assert integrate(besselj(0, x)*besselj(1, x), x, meijerg=True) == \
        -besselj(0, x)**2/2
    assert integrate(x**2*besselj(0, x)*besselj(1, x), x, meijerg=True) == \
        x**2*besselj(1, x)**2/2
    assert integrate(besselj(0, x)*besselj(1, x)/x, x, meijerg=True) == \
        (x*besselj(0, x)**2 + x*besselj(1, x)**2 -
            besselj(0, x)*besselj(1, x))
    # TODO how does besselj(0, a*x)*besselj(0, b*x) work?
    # TODO how does besselj(0, x)**2*besselj(1, x)**2 work?
    # TODO sin(x)*besselj(0, x) etc come out a mess
    # TODO can x*log(x)*besselj(0, x) be done?
    # TODO how does besselj(1, x)*besselj(0, x+a) work?
    # TODO more indefinite integrals when struve functions etc are implemented

    # test a substitution
    assert integrate(besselj(1, x**2)*x, x, meijerg=True) == \
        -besselj(0, x**2)/2
Exemplo n.º 36
0
def test_expand():
    assert expand_func(besselj(Rational(1, 2), z).rewrite(jn)) == \
        sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
    assert expand_func(bessely(Rational(1, 2), z).rewrite(yn)) == \
        -sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))
    assert expand_func(besselj(I, z)) == besselj(I, z)

    # Test simplify helper
    assert simplify(besselj(Rational(1, 2), z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))

    # XXX: teach sin/cos to work around arguments like
    # x*exp_polar(I*pi*n/2).  Then change besselsimp -> expand_func
    assert besselsimp(besselj(Rational(1, 2), z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besselj(Rational(-1, 2), z)) == sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besselj(Rational(5, 2), z)) == \
        -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(besselj(-Rational(5, 2), z)) == \
        -sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(bessely(Rational(1, 2), z)) == \
        -(sqrt(2)*cos(z))/(sqrt(pi)*sqrt(z))
    assert besselsimp(bessely(Rational(-1, 2), z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(bessely(Rational(5, 2), z)) == \
        sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(bessely(Rational(-5, 2), z)) == \
        -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(besseli(Rational(1, 2), z)) == sqrt(2)*sinh(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besseli(Rational(-1, 2), z)) == \
        sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besseli(Rational(5, 2), z)) == \
        sqrt(2)*(z**2*sinh(z) - 3*z*cosh(z) + 3*sinh(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(besseli(Rational(-5, 2), z)) == \
        sqrt(2)*(z**2*cosh(z) - 3*z*sinh(z) + 3*cosh(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(besselk(Rational(1, 2), z)) == \
        besselsimp(besselk(Rational(-1, 2), z)) == sqrt(pi)*exp(-z)/(sqrt(2)*sqrt(z))
    assert besselsimp(besselk(Rational(5, 2), z)) == \
        besselsimp(besselk(Rational(-5, 2), z)) == \
        sqrt(2)*sqrt(pi)*(z**2 + 3*z + 3)*exp(-z)/(2*z**Rational(5, 2))

    def check(eq, ans):
        return tn(eq, ans) and eq == ans

    rn = randcplx(a=1, b=0, d=0, c=2)

    for besselx in [besselj, bessely, besseli, besselk]:
        ri = Rational(2*randint(-11, 10) + 1, 2)  # half integer in [-21/2, 21/2]
        assert tn(besselsimp(besselx(ri, z)), besselx(ri, z))

    assert check(expand_func(besseli(rn, x)),
                 besseli(rn - 2, x) - 2*(rn - 1)*besseli(rn - 1, x)/x)
    assert check(expand_func(besseli(-rn, x)),
                 besseli(-rn + 2, x) + 2*(-rn + 1)*besseli(-rn + 1, x)/x)

    assert check(expand_func(besselj(rn, x)),
                 -besselj(rn - 2, x) + 2*(rn - 1)*besselj(rn - 1, x)/x)
    assert check(expand_func(besselj(-rn, x)),
                 -besselj(-rn + 2, x) + 2*(-rn + 1)*besselj(-rn + 1, x)/x)

    assert check(expand_func(besselk(rn, x)),
                 besselk(rn - 2, x) + 2*(rn - 1)*besselk(rn - 1, x)/x)
    assert check(expand_func(besselk(-rn, x)),
                 besselk(-rn + 2, x) - 2*(-rn + 1)*besselk(-rn + 1, x)/x)

    assert check(expand_func(bessely(rn, x)),
                 -bessely(rn - 2, x) + 2*(rn - 1)*bessely(rn - 1, x)/x)
    assert check(expand_func(bessely(-rn, x)),
                 -bessely(-rn + 2, x) + 2*(-rn + 1)*bessely(-rn + 1, x)/x)

    n = Symbol('n', integer=True, positive=True)

    assert expand_func(besseli(n + 2, z)) == \
        besseli(n, z) + (-2*n - 2)*(-2*n*besseli(n, z)/z + besseli(n - 1, z))/z
    assert expand_func(besselj(n + 2, z)) == \
        -besselj(n, z) + (2*n + 2)*(2*n*besselj(n, z)/z - besselj(n - 1, z))/z
    assert expand_func(besselk(n + 2, z)) == \
        besselk(n, z) + (2*n + 2)*(2*n*besselk(n, z)/z + besselk(n - 1, z))/z
    assert expand_func(bessely(n + 2, z)) == \
        -bessely(n, z) + (2*n + 2)*(2*n*bessely(n, z)/z - bessely(n - 1, z))/z

    assert expand_func(besseli(n + Rational(1, 2), z).rewrite(jn)) == \
        (sqrt(2)*sqrt(z)*exp(-I*pi*(n + Rational(1, 2))/2) *
         exp_polar(I*pi/4)*jn(n, z*exp_polar(I*pi/2))/sqrt(pi))
    assert expand_func(besselj(n + Rational(1, 2), z).rewrite(jn)) == \
        sqrt(2)*sqrt(z)*jn(n, z)/sqrt(pi)

    r = Symbol('r', extended_real=True)
    p = Symbol('p', positive=True)
    i = Symbol('i', integer=True)

    for besselx in [besselj, bessely, besseli, besselk]:
        assert besselx(i, p).is_extended_real
        assert besselx(i, x).is_extended_real is None
        assert besselx(x, z).is_extended_real is None

    for besselx in [besselj, besseli]:
        assert besselx(i, r).is_extended_real
    for besselx in [bessely, besselk]:
        assert besselx(i, r).is_extended_real is None
Exemplo n.º 37
0
def test_inverse_mellin_transform():
    IMT = inverse_mellin_transform

    assert IMT(gamma(s), s, x, (0, oo)) == exp(-x)
    assert IMT(gamma(-s), s, x, (-oo, 0)) == exp(-1/x)
    assert simplify(IMT(s/(2*s**2 - 2), s, x, (2, oo))) == \
        (x**2 + 1)*Heaviside(1 - x)/(4*x)

    # test passing "None"
    assert IMT(1/(s**2 - 1), s, x, (-1, None)) == \
        -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x)
    assert IMT(1/(s**2 - 1), s, x, (None, 1)) == \
        (-x/2 + 1/(2*x))*Heaviside(-x + 1)

    # test expansion of sums
    assert IMT(gamma(s) + gamma(s - 1), s, x, (1, oo)) == (x + 1)*exp(-x)/x

    # test factorisation of polys
    r = symbols('r', extended_real=True)
    assert (IMT(1/(s**2 + 1), s, exp(-x),
            (None, oo)).subs({x: r}).rewrite(sin).simplify() ==
            sin(r)*Heaviside(1 - exp(-r)))

    # test multiplicative substitution
    _a, _b = symbols('a b', positive=True)
    assert IMT(_b**(-s/_a)*factorial(s/_a)/s, s, x, (0, oo)) == exp(-_b*x**_a)
    assert IMT(factorial(_a/_b + s/_b)/(_a + s), s, x, (-_a, oo)) == x**_a*exp(-x**_b)

    def simp_pows(expr):
        return simplify(powsimp(expand_mul(expr, deep=False), force=True)).replace(exp_polar, exp)

    # Now test the inverses of all direct transforms tested above

    # Section 8.4.2
    nu = symbols('nu', real=True)
    assert IMT(-1/(nu + s), s, x, (-oo, None)) == x**nu*Heaviside(x - 1)
    assert IMT(1/(nu + s), s, x, (None, oo)) == x**nu*Heaviside(1 - x)
    assert simp_pows(IMT(gamma(beta)*gamma(s)/gamma(s + beta), s, x, (0, oo))) \
        == (1 - x)**(beta - 1)*Heaviside(1 - x)
    assert simp_pows(IMT(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s),
                         s, x, (-oo, None))) \
        == (x - 1)**(beta - 1)*Heaviside(x - 1)
    assert simp_pows(IMT(gamma(s)*gamma(rho - s)/gamma(rho), s, x, (0, None))) \
        == (1/(x + 1))**rho
    assert simp_pows(IMT(d**c*d**(s - 1)*sin(pi*c)
                         * gamma(s)*gamma(s + c)*gamma(1 - s)*gamma(1 - s - c)/pi,
                         s, x, (Max(-re(c), 0), Min(1 - re(c), 1)))) \
        == (x**c - d**c)/(x - d)

    assert simplify(IMT(1/sqrt(pi)*(-c/2)*gamma(s)*gamma((1 - c)/2 - s)
                        * gamma(-c/2 - s)/gamma(1 - c - s),
                        s, x, (0, -re(c)/2))) == \
        (1 + sqrt(x + 1))**c
    assert simplify(IMT(2**(a + 2*s)*b**(a + 2*s - 1)*gamma(s)*gamma(1 - a - 2*s)
                        / gamma(1 - a - s), s, x, (0, (-re(a) + 1)/2))) == \
        b**(a - 1)*(sqrt(1 + x/b**2) + 1)**(a - 1)*(b**2*sqrt(1 + x/b**2) +
                                                    b**2 + x)/(b**2 + x)
    assert simplify(IMT(-2**(c + 2*s)*c*b**(c + 2*s)*gamma(s)*gamma(-c - 2*s)
                        / gamma(-c - s + 1), s, x, (0, -re(c)/2))) == \
        b**c*(sqrt(1 + x/b**2) + 1)**c

    # Section 8.4.5
    assert IMT(24/s**5, s, x, (0, oo)) == log(x)**4*Heaviside(1 - x)
    assert expand(IMT(6/s**4, s, x, (-oo, 0)), force=True) == \
        log(x)**3*Heaviside(x - 1)
    assert IMT(pi/(s*sin(pi*s)), s, x, (-1, 0)) == log(x + 1)
    assert IMT(pi/(s*sin(pi*s/2)), s, x, (-2, 0)) == log(x**2 + 1)
    assert IMT(pi/(s*sin(2*pi*s)), s, x, (-Rational(1, 2), 0)) == log(sqrt(x) + 1)
    assert IMT(pi/(s*sin(pi*s)), s, x, (0, 1)) == log(1 + 1/x)

    # TODO
    def mysimp(expr):
        return expand(
            powsimp(logcombine(expr, force=True), force=True, deep=True),
            force=True).replace(exp_polar, exp)

    assert mysimp(mysimp(IMT(pi/(s*tan(pi*s)), s, x, (-1, 0)))) in [
        log(1 - x)*Heaviside(1 - x) + log(x - 1)*Heaviside(x - 1),
        log(x)*Heaviside(x - 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x +
                                                                      1)*Heaviside(-x + 1)]
    # test passing cot
    assert mysimp(IMT(pi*cot(pi*s)/s, s, x, (0, 1))) in [
        log(1/x - 1)*Heaviside(1 - x) + log(1 - 1/x)*Heaviside(x - 1),
        -log(x)*Heaviside(-x + 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x +
                                                                        1)*Heaviside(-x + 1), ]

    # 8.4.14
    assert IMT(-gamma(s + Rational(1, 2))/(sqrt(pi)*s), s, x, (-Rational(1, 2), 0)) == \
        erf(sqrt(x))

    # 8.4.19
    assert simplify(IMT(gamma(a/2 + s)/gamma(a/2 - s + 1), s, x, (-re(a)/2, Rational(3, 4)))) \
        == besselj(a, 2*sqrt(x))
    assert simplify(IMT(2**a*gamma(Rational(1, 2) - 2*s)*gamma(s + (a + 1)/2)
                        / (gamma(1 - s - a/2)*gamma(1 - 2*s + a)),
                        s, x, (-(re(a) + 1)/2, Rational(1, 4)))) == \
        sin(sqrt(x))*besselj(a, sqrt(x))
    assert simplify(IMT(2**a*gamma(a/2 + s)*gamma(Rational(1, 2) - 2*s)
                        / (gamma(Rational(1, 2) - s - a/2)*gamma(1 - 2*s + a)),
                        s, x, (-re(a)/2, Rational(1, 4)))) == \
        cos(sqrt(x))*besselj(a, sqrt(x))
    # TODO this comes out as an amazing mess, but simplifies nicely
    assert simplify(IMT(gamma(a + s)*gamma(Rational(1, 2) - s)
                        / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)),
                        s, x, (-re(a), Rational(1, 2)))) == \
        besselj(a, sqrt(x))**2
    assert simplify(IMT(gamma(s)*gamma(Rational(1, 2) - s)
                        / (sqrt(pi)*gamma(1 - s - a)*gamma(1 + a - s)),
                        s, x, (0, Rational(1, 2)))) == \
        besselj(-a, sqrt(x))*besselj(a, sqrt(x))
    assert simplify(IMT(4**s*gamma(-2*s + 1)*gamma(a/2 + b/2 + s)
                        / (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1)
                           * gamma(a/2 + b/2 - s + 1)),
                        s, x, (-(re(a) + re(b))/2, Rational(1, 2)))) == \
        besselj(a, sqrt(x))*besselj(b, sqrt(x))

    # Section 8.4.20
    # TODO this can be further simplified!
    assert simplify(IMT(-2**(2*s)*cos(pi*a/2 - pi*b/2 + pi*s)*gamma(-2*s + 1) *
                        gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) /
                        (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)),
                        s, x,
                        (Max(-re(a)/2 - re(b)/2, -re(a)/2 + re(b)/2), Rational(1, 2)))) == \
        besselj(a, sqrt(x))*-(besselj(-b, sqrt(x)) -
                              besselj(b, sqrt(x))*cos(pi*b))/sin(pi*b)
    # TODO more

    # for coverage

    assert IMT(pi/cos(pi*s), s, x, (0, Rational(1, 2))) == sqrt(x)/(x + 1)
Exemplo n.º 38
0
def test_expand():
    assert expand_func(besselj(Rational(1, 2), z).rewrite(jn)) == \
        sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
    assert expand_func(bessely(Rational(1, 2), z).rewrite(yn)) == \
        -sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))
    assert expand_func(besselj(I, z)) == besselj(I, z)

    # Test simplify helper
    assert simplify(besselj(Rational(1, 2),
                            z)) == sqrt(2) * sin(z) / (sqrt(pi) * sqrt(z))

    # XXX: teach sin/cos to work around arguments like
    # x*exp_polar(I*pi*n/2).  Then change besselsimp -> expand_func
    assert besselsimp(besselj(Rational(1, 2),
                              z)) == sqrt(2) * sin(z) / (sqrt(pi) * sqrt(z))
    assert besselsimp(besselj(Rational(-1, 2),
                              z)) == sqrt(2) * cos(z) / (sqrt(pi) * sqrt(z))
    assert besselsimp(besselj(Rational(5, 2), z)) == \
        -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(besselj(-Rational(5, 2), z)) == \
        -sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(bessely(Rational(1, 2), z)) == \
        -(sqrt(2)*cos(z))/(sqrt(pi)*sqrt(z))
    assert besselsimp(bessely(Rational(-1, 2),
                              z)) == sqrt(2) * sin(z) / (sqrt(pi) * sqrt(z))
    assert besselsimp(bessely(Rational(5, 2), z)) == \
        sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(bessely(Rational(-5, 2), z)) == \
        -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(besseli(Rational(1, 2),
                              z)) == sqrt(2) * sinh(z) / (sqrt(pi) * sqrt(z))
    assert besselsimp(besseli(Rational(-1, 2), z)) == \
        sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besseli(Rational(5, 2), z)) == \
        sqrt(2)*(z**2*sinh(z) - 3*z*cosh(z) + 3*sinh(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(besseli(Rational(-5, 2), z)) == \
        sqrt(2)*(z**2*cosh(z) - 3*z*sinh(z) + 3*cosh(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(besselk(Rational(1, 2), z)) == \
        besselsimp(besselk(Rational(-1, 2), z)) == sqrt(pi)*exp(-z)/(sqrt(2)*sqrt(z))
    assert besselsimp(besselk(Rational(5, 2), z)) == \
        besselsimp(besselk(Rational(-5, 2), z)) == \
        sqrt(2)*sqrt(pi)*(z**2 + 3*z + 3)*exp(-z)/(2*z**Rational(5, 2))

    def check(eq, ans):
        return tn(eq, ans) and eq == ans

    rn = randcplx(a=1, b=0, d=0, c=2)

    for besselx in [besselj, bessely, besseli, besselk]:
        ri = Rational(2 * randint(-11, 10) + 1,
                      2)  # half integer in [-21/2, 21/2]
        assert tn(besselsimp(besselx(ri, z)), besselx(ri, z))

    assert check(expand_func(besseli(rn, x)),
                 besseli(rn - 2, x) - 2 * (rn - 1) * besseli(rn - 1, x) / x)
    assert check(expand_func(besseli(-rn, x)),
                 besseli(-rn + 2, x) + 2 * (-rn + 1) * besseli(-rn + 1, x) / x)

    assert check(expand_func(besselj(rn, x)),
                 -besselj(rn - 2, x) + 2 * (rn - 1) * besselj(rn - 1, x) / x)
    assert check(
        expand_func(besselj(-rn, x)),
        -besselj(-rn + 2, x) + 2 * (-rn + 1) * besselj(-rn + 1, x) / x)

    assert check(expand_func(besselk(rn, x)),
                 besselk(rn - 2, x) + 2 * (rn - 1) * besselk(rn - 1, x) / x)
    assert check(expand_func(besselk(-rn, x)),
                 besselk(-rn + 2, x) - 2 * (-rn + 1) * besselk(-rn + 1, x) / x)

    assert check(expand_func(bessely(rn, x)),
                 -bessely(rn - 2, x) + 2 * (rn - 1) * bessely(rn - 1, x) / x)
    assert check(
        expand_func(bessely(-rn, x)),
        -bessely(-rn + 2, x) + 2 * (-rn + 1) * bessely(-rn + 1, x) / x)

    n = Symbol('n', integer=True, positive=True)

    assert expand_func(besseli(n + 2, z)) == \
        besseli(n, z) + (-2*n - 2)*(-2*n*besseli(n, z)/z + besseli(n - 1, z))/z
    assert expand_func(besselj(n + 2, z)) == \
        -besselj(n, z) + (2*n + 2)*(2*n*besselj(n, z)/z - besselj(n - 1, z))/z
    assert expand_func(besselk(n + 2, z)) == \
        besselk(n, z) + (2*n + 2)*(2*n*besselk(n, z)/z + besselk(n - 1, z))/z
    assert expand_func(bessely(n + 2, z)) == \
        -bessely(n, z) + (2*n + 2)*(2*n*bessely(n, z)/z - bessely(n - 1, z))/z

    assert expand_func(besseli(n + Rational(1, 2), z).rewrite(jn)) == \
        (sqrt(2)*sqrt(z)*exp(-I*pi*(n + Rational(1, 2))/2) *
         exp_polar(I*pi/4)*jn(n, z*exp_polar(I*pi/2))/sqrt(pi))
    assert expand_func(besselj(n + Rational(1, 2), z).rewrite(jn)) == \
        sqrt(2)*sqrt(z)*jn(n, z)/sqrt(pi)

    r = Symbol('r', extended_real=True)
    p = Symbol('p', positive=True)
    i = Symbol('i', integer=True)

    for besselx in [besselj, bessely, besseli, besselk]:
        assert besselx(i, p).is_extended_real
        assert besselx(i, x).is_extended_real is None
        assert besselx(x, z).is_extended_real is None

    for besselx in [besselj, besseli]:
        assert besselx(i, r).is_extended_real
    for besselx in [bessely, besselk]:
        assert besselx(i, r).is_extended_real is None
Exemplo n.º 39
0
def test_linear_subs():
    from diofant import besselj
    assert integrate(sin(x - 1), x, meijerg=True) == -cos(1 - x)
    assert integrate(besselj(1, x - 1), x, meijerg=True) == -besselj(0, 1 - x)
Exemplo n.º 40
0
def test_bessel():
    assert simplify(integrate(besselj(a, z)*besselj(b, z)/z, (z, 0, oo),
                              meijerg=True, conds='none')) == \
        2*sin(pi*(a/2 - b/2))/(pi*(a - b)*(a + b))
    assert simplify(integrate(besselj(a, z)*besselj(a, z)/z, (z, 0, oo),
                              meijerg=True, conds='none')) == 1/(2*a)

    # TODO more orthogonality integrals

    assert simplify(integrate(sin(z*x)*(x**2 - 1)**(-(y + Rational(1, 2))),
                              (x, 1, oo), meijerg=True, conds='none')
                    * 2/((z/2)**y*sqrt(pi)*gamma(Rational(1, 2) - y))) == \
        besselj(y, z)

    # Werner Rosenheinrich
    # SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS

    assert integrate(x*besselj(0, x), x, meijerg=True) == x*besselj(1, x)
    assert integrate(x*besseli(0, x), x, meijerg=True) == x*besseli(1, x)
    # TODO can do higher powers, but come out as high order ... should they be
    #      reduced to order 0, 1?
    assert integrate(besselj(1, x), x, meijerg=True) == -besselj(0, x)
    assert integrate(besselj(1, x)**2/x, x, meijerg=True) == \
        -(besselj(0, x)**2 + besselj(1, x)**2)/2
    # TODO more besseli when tables are extended or recursive mellin works
    assert integrate(besselj(0, x)**2/x**2, x, meijerg=True) == \
        -2*x*besselj(0, x)**2 - 2*x*besselj(1, x)**2 \
        + 2*besselj(0, x)*besselj(1, x) - besselj(0, x)**2/x
    assert integrate(besselj(0, x)*besselj(1, x), x, meijerg=True) == \
        -besselj(0, x)**2/2
    assert integrate(x**2*besselj(0, x)*besselj(1, x), x, meijerg=True) == \
        x**2*besselj(1, x)**2/2
    assert integrate(besselj(0, x)*besselj(1, x)/x, x, meijerg=True) == \
        (x*besselj(0, x)**2 + x*besselj(1, x)**2 -
            besselj(0, x)*besselj(1, x))
    # TODO how does besselj(0, a*x)*besselj(0, b*x) work?
    # TODO how does besselj(0, x)**2*besselj(1, x)**2 work?
    # TODO sin(x)*besselj(0, x) etc come out a mess
    # TODO can x*log(x)*besselj(0, x) be done?
    # TODO how does besselj(1, x)*besselj(0, x+a) work?
    # TODO more indefinite integrals when struve functions etc are implemented

    # test a substitution
    assert integrate(besselj(1, x**2)*x, x, meijerg=True) == \
        -besselj(0, x**2)/2
Exemplo n.º 41
0
def test_linear_subs():
    assert integrate(sin(x - 1), x, meijerg=True) == -cos(1 - x)
    assert integrate(besselj(1, x - 1), x, meijerg=True) == -besselj(0, 1 - x)