Exemplo n.º 1
0
def test_issue_7173():
    assert laplace_transform(sinh(a*x)*cosh(a*x), x, s) == \
        (a/(s**2 - 4*a**2), 0,
        And(Or(Abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) <
        pi/2, Abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) <=
        pi/2), Or(Abs(periodic_argument(a, oo)) < pi/2,
        Abs(periodic_argument(a, oo)) <= pi/2)))
Exemplo n.º 2
0
def test_meijerg_eval():
    a = randcplx()
    arg = x*exp_polar(k*pi*I)
    expr1 = pi*meijerg([[], [(a + 1)/2]], [[a/2], [-a/2, (a + 1)/2]], arg**2/4)
    expr2 = besseli(a, arg)

    # Test that the two expressions agree for all arguments.
    for x_ in [0.5, 1.5]:
        for k_ in [0.0, 0.1, 0.3, 0.5, 0.8, 1, 5.751, 15.3]:
            assert abs((expr1 - expr2).evalf(subs={x: x_, k: k_}, strict=False)) < 1e-10
            assert abs((expr1 - expr2).evalf(subs={x: x_, k: -k_}, strict=False)) < 1e-10

    # Test continuity independently
    eps = 1e-13
    expr2 = expr1.subs({k: l})
    for x_ in [0.5, 1.5]:
        for k_ in [0.5, Rational(1, 3), 0.25, 0.75, Rational(2, 3), 1.0, 1.5]:
            assert abs((expr1 - expr2).evalf(
                       subs={x: x_, k: k_ + eps, l: k_ - eps})) < 1e-10
            assert abs((expr1 - expr2).evalf(
                       subs={x: x_, k: -k_ + eps, l: -k_ - eps})) < 1e-10

    expr = (meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(-I*pi)/4)
            + meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(I*pi)/4)) \
        / (2*sqrt(pi))
    assert (expr - pi/exp(1)).evalf(chop=True) == 0
Exemplo n.º 3
0
    def t(func, hyp, z):
        """ Test that func is a valid representation of hyp. """
        # First test that func agrees with hyp for small z
        if not tn(func.rewrite('nonrepsmall'), hyp, z,
                  a=Rational(-1, 2), b=Rational(-1, 2), c=Rational(1, 2), d=Rational(1, 2)):
            return False
        # Next check that the two small representations agree.
        if not tn(
            func.rewrite('nonrepsmall').subs({z: exp_polar(I*pi)*z}).replace(exp_polar, exp),
            func.subs({z: exp_polar(I*pi)*z}).rewrite('nonrepsmall'),
                z, a=Rational(-1, 2), b=Rational(-1, 2), c=Rational(1, 2), d=Rational(1, 2)):
            return False
        # Next check continuity along exp_polar(I*pi)*t
        expr = func.subs({z: exp_polar(I*pi)*z}).rewrite('nonrep')
        if abs(expr.subs({z: 1 + 1e-15}) - expr.subs({z: 1 - 1e-15})).evalf(strict=False) > 1e-10:
            return False
        # Finally check continuity of the big reps.

        def dosubs(func, a, b):
            rv = func.subs({z: exp_polar(a)*z}).rewrite('nonrep')
            return rv.subs({z: exp_polar(b)*z}).replace(exp_polar, exp)
        for n in [0, 1, 2, 3, 4, -1, -2, -3, -4]:
            expr1 = dosubs(func, 2*I*pi*n, I*pi/2)
            expr2 = dosubs(func, 2*I*pi*n + I*pi, -I*pi/2)
            if not tn(expr1, expr2, z):
                return False
            expr1 = dosubs(func, 2*I*pi*(n + 1), -I*pi/2)
            expr2 = dosubs(func, 2*I*pi*n + I*pi, I*pi/2)
            if not tn(expr1, expr2, z):
                return False
        return True
Exemplo n.º 4
0
def test_ei():
    pos = Symbol('p', positive=True)
    neg = Symbol('n', negative=True)
    assert Ei(-pos) == Ei(polar_lift(-1) * pos) - I * pi
    assert Ei(neg) == Ei(polar_lift(neg)) - I * pi
    assert tn_branch(Ei)
    assert mytd(Ei(x), exp(x) / x, x)
    assert mytn(Ei(x),
                Ei(x).rewrite(uppergamma),
                -uppergamma(0, x * polar_lift(-1)) - I * pi, x)
    assert mytn(Ei(x),
                Ei(x).rewrite(expint), -expint(1, x * polar_lift(-1)) - I * pi,
                x)
    assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x)
    assert Ei(x * exp_polar(2 * I * pi)) == Ei(x) + 2 * I * pi
    assert Ei(x * exp_polar(-2 * I * pi)) == Ei(x) - 2 * I * pi

    assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x)
    assert mytn(Ei(x * polar_lift(I)),
                Ei(x * polar_lift(I)).rewrite(Si),
                Ci(x) + I * Si(x) + I * pi / 2, x)

    assert Ei(log(x)).rewrite(li) == li(x)
    assert Ei(2 * log(x)).rewrite(li) == li(x**2)

    assert Ei(x).series(x) == EulerGamma + log(x) + x + x**2/4 + \
        x**3/18 + x**4/96 + x**5/600 + O(x**6)
Exemplo n.º 5
0
    def t(func, hyp, z):
        """Test that func is a valid representation of hyp."""
        # First test that func agrees with hyp for small z
        if not tn(func.rewrite('nonrepsmall'), hyp, z,
                  a=Rational(-1, 2), b=Rational(-1, 2), c=Rational(1, 2), d=Rational(1, 2)):
            return False
        # Next check that the two small representations agree.
        if not tn(
            func.rewrite('nonrepsmall').subs({z: exp_polar(I*pi)*z}).replace(exp_polar, exp),
            func.subs({z: exp_polar(I*pi)*z}).rewrite('nonrepsmall'),
                z, a=Rational(-1, 2), b=Rational(-1, 2), c=Rational(1, 2), d=Rational(1, 2)):
            return False
        # Next check continuity along exp_polar(I*pi)*t
        expr = func.subs({z: exp_polar(I*pi)*z}).rewrite('nonrep')
        if abs(expr.subs({z: 1 + 1e-15}) - expr.subs({z: 1 - 1e-15})).evalf(strict=False) > 1e-10:
            return False
        # Finally check continuity of the big reps.

        def dosubs(func, a, b):
            rv = func.subs({z: exp_polar(a)*z}).rewrite('nonrep')
            return rv.subs({z: exp_polar(b)*z}).replace(exp_polar, exp)
        for n in [0, 1, 2, 3, 4, -1, -2, -3, -4]:
            expr1 = dosubs(func, 2*I*pi*n, I*pi/2)
            expr2 = dosubs(func, 2*I*pi*n + I*pi, -I*pi/2)
            if not tn(expr1, expr2, z):
                return False
            expr1 = dosubs(func, 2*I*pi*(n + 1), -I*pi/2)
            expr2 = dosubs(func, 2*I*pi*n + I*pi, I*pi/2)
            if not tn(expr1, expr2, z):
                return False
        return True
Exemplo n.º 6
0
def test_ei():
    pos = Symbol('p', positive=True)
    neg = Symbol('n', negative=True)
    assert Ei(0) == -oo
    assert Ei(+oo) == oo
    assert Ei(-oo) == 0
    assert Ei(-pos) == Ei(polar_lift(-1) * pos) - I * pi
    assert Ei(neg) == Ei(polar_lift(neg)) - I * pi
    assert tn_branch(Ei)
    assert mytd(Ei(x), exp(x) / x, x)
    assert mytn(Ei(x),
                Ei(x).rewrite(uppergamma),
                -uppergamma(0, x * polar_lift(-1)) - I * pi, x)
    assert mytn(Ei(x),
                Ei(x).rewrite(expint), -expint(1, x * polar_lift(-1)) - I * pi,
                x)
    assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x)
    assert Ei(x * exp_polar(2 * I * pi)) == Ei(x) + 2 * I * pi
    assert Ei(x * exp_polar(-2 * I * pi)) == Ei(x) - 2 * I * pi

    assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x)
    assert mytn(Ei(x * polar_lift(I)),
                Ei(x * polar_lift(I)).rewrite(Si),
                Ci(x) + I * Si(x) + I * pi / 2, x)

    assert Ei(log(x)).rewrite(li) == li(x)
    assert Ei(2 * log(x)).rewrite(li) == li(x**2)

    assert Ei(x).series(x) == (EulerGamma + log(x) + x + x**2 / 4 + x**3 / 18 +
                               x**4 / 96 + x**5 / 600 + O(x**6))
    assert Ei(1 + x).series(x) == (Ei(1) + E * x + E * x**3 / 6 -
                                   E * x**4 / 12 + 3 * E * x**5 / 40 + O(x**6))

    pytest.raises(ArgumentIndexError, lambda: Ei(x).fdiff(2))
Exemplo n.º 7
0
def test_polylog_eval():
    assert polylog(s, 0) == 0
    assert polylog(s, 1) == zeta(s)
    assert polylog(s, -1) == -dirichlet_eta(s)
    assert polylog(s, exp_polar(I * pi)) == polylog(s, -1)
    assert polylog(s, 2 * exp_polar(2 * I * pi)) == polylog(
        s, 2 * exp_polar(2 * I * pi), evaluate=False)
Exemplo n.º 8
0
def test_branching():
    assert besselj(polar_lift(k), x) == besselj(k, x)
    assert besseli(polar_lift(k), x) == besseli(k, x)

    n = Symbol('n', integer=True)
    assert besselj(n, exp_polar(2*pi*I)*x) == besselj(n, x)
    assert besselj(n, polar_lift(x)) == besselj(n, x)
    assert besseli(n, exp_polar(2*pi*I)*x) == besseli(n, x)
    assert besseli(n, polar_lift(x)) == besseli(n, x)

    def tn(func, s):
        c = uniform(1, 5)
        expr = func(s, c*exp_polar(I*pi)) - func(s, c*exp_polar(-I*pi))
        eps = 1e-15
        expr2 = func(s + eps, -c + eps*I) - func(s + eps, -c - eps*I)
        return abs(expr - expr2).evalf(strict=False) < 1e-10

    nu = Symbol('nu')
    assert besselj(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besselj(nu, x)
    assert besseli(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besseli(nu, x)
    assert tn(besselj, 2)
    assert tn(besselj, pi)
    assert tn(besselj, I)
    assert tn(besseli, 2)
    assert tn(besseli, pi)
    assert tn(besseli, I)
Exemplo n.º 9
0
def test_branching():
    from diofant import exp_polar, polar_lift, Symbol, I, exp
    assert besselj(polar_lift(k), x) == besselj(k, x)
    assert besseli(polar_lift(k), x) == besseli(k, x)

    n = Symbol('n', integer=True)
    assert besselj(n, exp_polar(2 * pi * I) * x) == besselj(n, x)
    assert besselj(n, polar_lift(x)) == besselj(n, x)
    assert besseli(n, exp_polar(2 * pi * I) * x) == besseli(n, x)
    assert besseli(n, polar_lift(x)) == besseli(n, x)

    def tn(func, s):
        from random import uniform
        c = uniform(1, 5)
        expr = func(s, c * exp_polar(I * pi)) - func(s, c * exp_polar(-I * pi))
        eps = 1e-15
        expr2 = func(s + eps, -c + eps * I) - func(s + eps, -c - eps * I)
        return abs(expr.n() - expr2.n()).n() < 1e-10

    nu = Symbol('nu')
    assert besselj(nu,
                   exp_polar(2 * pi * I) *
                   x) == exp(2 * pi * I * nu) * besselj(nu, x)
    assert besseli(nu,
                   exp_polar(2 * pi * I) *
                   x) == exp(2 * pi * I * nu) * besseli(nu, x)
    assert tn(besselj, 2)
    assert tn(besselj, pi)
    assert tn(besselj, I)
    assert tn(besseli, 2)
    assert tn(besseli, pi)
    assert tn(besseli, I)
Exemplo n.º 10
0
def test_matplotlib_advanced():
    """Examples from the 'advanced' notebook."""
    try:
        name = 'test'
        tmp_file = TmpFileManager.tmp_file

        s = summation(1 / x**y, (x, 1, oo))
        p = plot(s, (y, 2, 10))
        p.save(tmp_file('%s_advanced_inf_sum' % name))

        p = plot(summation(1 / x, (x, 1, y)), (y, 2, 10), show=False)
        p[0].only_integers = True
        p[0].steps = True
        p.save(tmp_file('%s_advanced_fin_sum' % name))

        ###
        # Test expressions that can not be translated to np and
        # generate complex results.
        ###
        plot(sin(x) + I * cos(x)).save(tmp_file())
        plot(sqrt(sqrt(-x))).save(tmp_file())
        plot(LambertW(x)).save(tmp_file())
        plot(sqrt(LambertW(x))).save(tmp_file())

        # Characteristic function of a StudentT distribution with nu=10
        plot((meijerg(
            ((1 / 2, ), ()),
            ((5, 0, 1 / 2), ()), 5 * x**2 * exp_polar(-I * pi) / 2) + meijerg(
                ((1 / 2, ), ()),
                ((5, 0, 1 / 2),
                 ()), 5 * x**2 * exp_polar(I * pi) / 2)) / (48 * pi),
             (x, 1e-6, 1e-2)).save(tmp_file())
    finally:
        TmpFileManager.cleanup()
Exemplo n.º 11
0
def test_ei():
    pos = Symbol('p', positive=True)
    neg = Symbol('n', negative=True)
    assert Ei(0) == -oo
    assert Ei(+oo) == oo
    assert Ei(-oo) == 0
    assert Ei(-pos) == Ei(polar_lift(-1)*pos) - I*pi
    assert Ei(neg) == Ei(polar_lift(neg)) - I*pi
    assert tn_branch(Ei)
    assert mytd(Ei(x), exp(x)/x, x)
    assert mytn(Ei(x), Ei(x).rewrite(uppergamma),
                -uppergamma(0, x*polar_lift(-1)) - I*pi, x)
    assert mytn(Ei(x), Ei(x).rewrite(expint),
                -expint(1, x*polar_lift(-1)) - I*pi, x)
    assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x)
    assert Ei(x*exp_polar(2*I*pi)) == Ei(x) + 2*I*pi
    assert Ei(x*exp_polar(-2*I*pi)) == Ei(x) - 2*I*pi

    assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x)
    assert mytn(Ei(x*polar_lift(I)), Ei(x*polar_lift(I)).rewrite(Si),
                Ci(x) + I*Si(x) + I*pi/2, x)

    assert Ei(log(x)).rewrite(li) == li(x)
    assert Ei(2*log(x)).rewrite(li) == li(x**2)

    assert Ei(x).series(x) == (EulerGamma + log(x) + x + x**2/4 +
                               x**3/18 + x**4/96 + x**5/600 + O(x**6))
    assert Ei(1 + x).series(x) == (Ei(1) + E*x + E*x**3/6 - E*x**4/12 +
                                   3*E*x**5/40 + O(x**6))

    pytest.raises(ArgumentIndexError, lambda: Ei(x).fdiff(2))
Exemplo n.º 12
0
def test_meijerg_eval():
    a = randcplx()
    arg = x*exp_polar(k*pi*I)
    expr1 = pi*meijerg([[], [(a + 1)/2]], [[a/2], [-a/2, (a + 1)/2]], arg**2/4)
    expr2 = besseli(a, arg)

    # Test that the two expressions agree for all arguments.
    for x_ in [0.5, 1.5]:
        for k_ in [0.0, 0.1, 0.3, 0.5, 0.8, 1, 5.751, 15.3]:
            assert abs((expr1 - expr2).evalf(subs={x: x_, k: k_}, strict=False)) < 1e-10
            assert abs((expr1 - expr2).evalf(subs={x: x_, k: -k_}, strict=False)) < 1e-10

    # Test continuity independently
    eps = 1e-13
    expr2 = expr1.subs({k: l})
    for x_ in [0.5, 1.5]:
        for k_ in [0.5, Rational(1, 3), 0.25, 0.75, Rational(2, 3), 1.0, 1.5]:
            assert abs((expr1 - expr2).evalf(
                       subs={x: x_, k: k_ + eps, l: k_ - eps})) < 1e-10
            assert abs((expr1 - expr2).evalf(
                       subs={x: x_, k: -k_ + eps, l: -k_ - eps})) < 1e-10

    expr = (meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(-I*pi)/4)
            + meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(I*pi)/4)) \
        / (2*sqrt(pi))
    assert (expr - pi/exp(1)).evalf(chop=True) == 0
Exemplo n.º 13
0
def test_matplotlib_advanced():
    """Examples from the 'advanced' notebook."""
    try:
        name = 'test'
        tmp_file = TmpFileManager.tmp_file

        s = summation(1/x**y, (x, 1, oo))
        p = plot(s, (y, 2, 10))
        p.save(tmp_file('%s_advanced_inf_sum' % name))

        p = plot(summation(1/x, (x, 1, y)), (y, 2, 10), show=False)
        p[0].only_integers = True
        p[0].steps = True
        p.save(tmp_file('%s_advanced_fin_sum' % name))

        ###
        # Test expressions that can not be translated to np and
        # generate complex results.
        ###
        plot(sin(x) + I*cos(x)).save(tmp_file())
        plot(sqrt(sqrt(-x))).save(tmp_file())
        plot(LambertW(x)).save(tmp_file())
        plot(sqrt(LambertW(x))).save(tmp_file())

        # Characteristic function of a StudentT distribution with nu=10
        plot((meijerg(((1 / 2,), ()), ((5, 0, 1 / 2), ()),
                      5 * x**2 * exp_polar(-I*pi)/2)
              + meijerg(((1/2,), ()), ((5, 0, 1/2), ()),
                        5*x**2 * exp_polar(I*pi)/2)) / (48 * pi), (x, 1e-6, 1e-2)).save(tmp_file())
    finally:
        TmpFileManager.cleanup()
Exemplo n.º 14
0
 def tn(func, s):
     from random import uniform
     c = uniform(1, 5)
     expr = func(s, c * exp_polar(I * pi)) - func(s, c * exp_polar(-I * pi))
     eps = 1e-15
     expr2 = func(s + eps, -c + eps * I) - func(s + eps, -c - eps * I)
     return abs(expr.n() - expr2.n()).n() < 1e-10
Exemplo n.º 15
0
def test_branching():
    assert besselj(polar_lift(k), x) == besselj(k, x)
    assert besseli(polar_lift(k), x) == besseli(k, x)

    n = Symbol('n', integer=True)
    assert besselj(n, exp_polar(2 * pi * I) * x) == besselj(n, x)
    assert besselj(n, polar_lift(x)) == besselj(n, x)
    assert besseli(n, exp_polar(2 * pi * I) * x) == besseli(n, x)
    assert besseli(n, polar_lift(x)) == besseli(n, x)

    def tn(func, s):
        c = uniform(1, 5)
        expr = func(s, c * exp_polar(I * pi)) - func(s, c * exp_polar(-I * pi))
        eps = 1e-15
        expr2 = func(s + eps, -c + eps * I) - func(s + eps, -c - eps * I)
        return abs(expr - expr2).evalf(strict=False) < 1e-10

    nu = Symbol('nu')
    assert besselj(nu,
                   exp_polar(2 * pi * I) *
                   x) == exp(2 * pi * I * nu) * besselj(nu, x)
    assert besseli(nu,
                   exp_polar(2 * pi * I) *
                   x) == exp(2 * pi * I * nu) * besseli(nu, x)
    assert tn(besselj, 2)
    assert tn(besselj, pi)
    assert tn(besselj, I)
    assert tn(besseli, 2)
    assert tn(besseli, pi)
    assert tn(besseli, I)
Exemplo n.º 16
0
def test_sympyissue_7173():
    assert laplace_transform(sinh(a*x)*cosh(a*x), x, s) == \
        (a/(s**2 - 4*a**2), 0,
         And(Or(Abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) <
                pi/2, Abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) <=
                pi/2), Or(Abs(periodic_argument(a, oo)) < pi/2,
                          Abs(periodic_argument(a, oo)) <= pi/2)))
Exemplo n.º 17
0
def test_gamma():
    assert gamma(nan) == nan
    assert gamma(oo) == oo

    assert gamma(-100) == zoo
    assert gamma(0) == zoo

    assert gamma(1) == 1
    assert gamma(2) == 1
    assert gamma(3) == 2

    assert gamma(102) == factorial(101)

    assert gamma(Rational(1, 2)) == sqrt(pi)

    assert gamma(Rational(3, 2)) == Rational(1, 2)*sqrt(pi)
    assert gamma(Rational(5, 2)) == Rational(3, 4)*sqrt(pi)
    assert gamma(Rational(7, 2)) == Rational(15, 8)*sqrt(pi)

    assert gamma(Rational(-1, 2)) == -2*sqrt(pi)
    assert gamma(Rational(-3, 2)) == Rational(4, 3)*sqrt(pi)
    assert gamma(Rational(-5, 2)) == -Rational(8, 15)*sqrt(pi)

    assert gamma(Rational(-15, 2)) == Rational(256, 2027025)*sqrt(pi)

    assert gamma(Rational(
        -11, 8)).expand(func=True) == Rational(64, 33)*gamma(Rational(5, 8))
    assert gamma(Rational(
        -10, 3)).expand(func=True) == Rational(81, 280)*gamma(Rational(2, 3))
    assert gamma(Rational(
        14, 3)).expand(func=True) == Rational(880, 81)*gamma(Rational(2, 3))
    assert gamma(Rational(
        17, 7)).expand(func=True) == Rational(30, 49)*gamma(Rational(3, 7))
    assert gamma(Rational(
        19, 8)).expand(func=True) == Rational(33, 64)*gamma(Rational(3, 8))

    assert gamma(x).diff(x) == gamma(x)*polygamma(0, x)
    pytest.raises(ArgumentIndexError, lambda: gamma(x).fdiff(2))

    assert gamma(x - 1).expand(func=True) == gamma(x)/(x - 1)
    assert gamma(x + 2).expand(func=True, mul=False) == x*(x + 1)*gamma(x)

    assert conjugate(gamma(x)) == gamma(conjugate(x))

    assert expand_func(gamma(x + Rational(3, 2))) == \
        (x + Rational(1, 2))*gamma(x + Rational(1, 2))

    assert expand_func(gamma(x - Rational(1, 2))) == \
        gamma(Rational(1, 2) + x)/(x - Rational(1, 2))

    # Test a bug:
    assert expand_func(gamma(x + Rational(3, 4))) == gamma(x + Rational(3, 4))

    assert gamma(3*exp_polar(I*pi)/4).is_nonnegative is False
    assert gamma(3*exp_polar(I*pi)/4).is_nonpositive is True

    # Issue sympy/sympy#8526
    k = Symbol('k', integer=True, nonnegative=True)
    assert isinstance(gamma(k), gamma)
    assert gamma(-k) == zoo
Exemplo n.º 18
0
def tn_branch(s, func):
    from diofant import I, pi, exp_polar
    from random import uniform
    c = uniform(1, 5)
    expr = func(s, c * exp_polar(I * pi)) - func(s, c * exp_polar(-I * pi))
    eps = 1e-15
    expr2 = func(s + eps, -c + eps * I) - func(s + eps, -c - eps * I)
    return abs(expr.n() - expr2.n()).n() < 1e-10
Exemplo n.º 19
0
def tn_arg(func):
    def test(arg, e1, e2):
        v = uniform(1, 5)
        v1 = func(arg * x).subs({x: v}).evalf(strict=False)
        v2 = func(e1 * v + e2 * 1e-15).evalf(strict=False)
        return abs(v1 - v2).evalf(strict=False) < 1e-10
    return test(exp_polar(I*pi/2), I, 1) and \
        test(exp_polar(-I*pi/2), -I, 1) and \
        test(exp_polar(I*pi), -1, I) and \
        test(exp_polar(-I*pi), -1, -I)
Exemplo n.º 20
0
def tn_branch(func, s=None):
    def fn(x):
        if s is None:
            return func(x)
        return func(s, x)
    c = uniform(1, 5)
    expr = fn(c*exp_polar(I*pi)) - fn(c*exp_polar(-I*pi))
    eps = 1e-15
    expr2 = fn(-c + eps*I) - fn(-c - eps*I)
    return abs(expr - expr2).evalf(strict=False) < 1e-10
Exemplo n.º 21
0
def tn_arg(func):
    def test(arg, e1, e2):
        v = uniform(1, 5)
        v1 = func(arg*x).subs({x: v}).evalf(strict=False)
        v2 = func(e1*v + e2*1e-15).evalf(strict=False)
        return abs(v1 - v2).evalf(strict=False) < 1e-10
    return test(exp_polar(I*pi/2), I, 1) and \
        test(exp_polar(-I*pi/2), -I, 1) and \
        test(exp_polar(I*pi), -1, I) and \
        test(exp_polar(-I*pi), -1, -I)
Exemplo n.º 22
0
def test_principal_branch():
    p = Symbol('p', positive=True)
    neg = Symbol('x', negative=True)

    assert principal_branch(polar_lift(x), p) == principal_branch(x, p)
    assert principal_branch(polar_lift(2 + I), p) == principal_branch(2 + I, p)
    assert principal_branch(2 * x, p) == 2 * principal_branch(x, p)
    assert principal_branch(1, pi) == exp_polar(0)
    assert principal_branch(-1, 2 * pi) == exp_polar(I * pi)
    assert principal_branch(-1, pi) == exp_polar(0)
    assert principal_branch(exp_polar(3*pi*I)*x, 2*pi) == \
        principal_branch(exp_polar(I*pi)*x, 2*pi)
    assert principal_branch(neg * exp_polar(pi * I),
                            2 * pi) == neg * exp_polar(-I * pi)

    assert N_equals(principal_branch((1 + I)**2, 2 * pi), 2 * I)
    assert N_equals(principal_branch((1 + I)**2, 3 * pi), 2 * I)
    assert N_equals(principal_branch((1 + I)**2, 1 * pi), 2 * I)

    # test argument sanitization
    assert isinstance(principal_branch(x, I), principal_branch)
    assert isinstance(principal_branch(x, -4), principal_branch)
    assert isinstance(principal_branch(x, -oo), principal_branch)
    assert isinstance(principal_branch(x, zoo), principal_branch)

    assert (principal_branch((4 + I)**2, 2 * pi).evalf() == principal_branch(
        (4 + I)**2, 2 * pi))

    assert principal_branch(exp_polar(-I * pi) * polar_lift(-1 - I),
                            2 * pi) == sqrt(2) * exp_polar(I * pi / 4)
Exemplo n.º 23
0
def test_expint():
    assert mytn(expint(x, y),
                expint(x, y).rewrite(uppergamma),
                y**(x - 1) * uppergamma(1 - x, y), x)
    assert mytd(expint(x, y),
                -y**(x - 1) * meijerg([], [1, 1], [0, 0, 1 - x], [], y), x)
    assert mytd(expint(x, y), -expint(x - 1, y), y)
    assert mytn(expint(1, x),
                expint(1, x).rewrite(Ei), -Ei(x * polar_lift(-1)) + I * pi, x)

    assert expint(-4, x) == exp(-x)/x + 4*exp(-x)/x**2 + 12*exp(-x)/x**3 \
        + 24*exp(-x)/x**4 + 24*exp(-x)/x**5
    assert expint(-Rational(3, 2), x) == \
        exp(-x)/x + 3*exp(-x)/(2*x**2) - 3*sqrt(pi)*erf(sqrt(x))/(4*x**Rational(5, 2)) \
        + 3*sqrt(pi)/(4*x**Rational(5, 2))

    assert tn_branch(expint, 1)
    assert tn_branch(expint, 2)
    assert tn_branch(expint, 3)
    assert tn_branch(expint, 1.7)
    assert tn_branch(expint, pi)

    assert expint(y, x*exp_polar(2*I*pi)) == \
        x**(y - 1)*(exp(2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
    assert expint(y, x*exp_polar(-2*I*pi)) == \
        x**(y - 1)*(exp(-2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
    assert expint(2,
                  x * exp_polar(2 * I * pi)) == 2 * I * pi * x + expint(2, x)
    assert expint(2, x *
                  exp_polar(-2 * I * pi)) == -2 * I * pi * x + expint(2, x)
    assert expint(1, x).rewrite(Ei).rewrite(expint) == expint(1, x)

    assert mytn(E1(x), E1(x).rewrite(Shi), Shi(x) - Chi(x), x)
    assert mytn(E1(polar_lift(I) * x),
                E1(polar_lift(I) * x).rewrite(Si),
                -Ci(x) + I * Si(x) - I * pi / 2, x)

    assert mytn(expint(2, x),
                expint(2, x).rewrite(Ei).rewrite(expint), -x * E1(x) + exp(-x),
                x)
    assert mytn(expint(3, x),
                expint(3, x).rewrite(Ei).rewrite(expint),
                x**2 * E1(x) / 2 + (1 - x) * exp(-x) / 2, x)

    assert expint(Rational(3, 2), z).nseries(z, n=10) == \
        2 + 2*z - z**2/3 + z**3/15 - z**4/84 + z**5/540 - \
        2*sqrt(pi)*sqrt(z) + O(z**6)

    assert E1(z).series(z) == -EulerGamma - log(z) + z - \
        z**2/4 + z**3/18 - z**4/96 + z**5/600 + O(z**6)

    assert expint(4, z).series(z) == Rational(1, 3) - z/2 + z**2/2 + \
        z**3*(log(z)/6 - Rational(11, 36) + EulerGamma/6) - z**4/24 + \
        z**5/240 + O(z**6)
Exemplo n.º 24
0
def tn_arg(func):
    def test(arg, e1, e2):
        from random import uniform
        v = uniform(1, 5)
        v1 = func(arg*x).subs(x, v).n()
        v2 = func(e1*v + e2*1e-15).n()
        return abs(v1 - v2).n() < 1e-10
    return test(exp_polar(I*pi/2), I, 1) and \
        test(exp_polar(-I*pi/2), -I, 1) and \
        test(exp_polar(I*pi), -1, I) and \
        test(exp_polar(-I*pi), -1, -I)
Exemplo n.º 25
0
def tn_branch(func, s=None):
    def fn(x):
        if s is None:
            return func(x)
        return func(s, x)

    c = uniform(1, 5)
    expr = fn(c * exp_polar(I * pi)) - fn(c * exp_polar(-I * pi))
    eps = 1e-15
    expr2 = fn(-c + eps * I) - fn(-c - eps * I)
    return abs(expr - expr2).evalf(strict=False) < 1e-10
Exemplo n.º 26
0
def test_laplace_transform_2():
    LT = laplace_transform
    # issue sympy/sympy#7173
    assert LT(sinh(a*x)*cosh(a*x), x, s) == \
        (a/(s**2 - 4*a**2), 0,
         And(Or(abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) <
                pi/2, abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) <=
                pi/2), Or(abs(periodic_argument(a, oo)) < pi/2,
                          abs(periodic_argument(a, oo)) <= pi/2)))

    # issues sympy/sympy#8368 and sympy/sympy#7173
    assert LT(sinh(x) * cosh(x), x, s) == (1 / (s**2 - 4), 2, Ne(s / 2, 1))
Exemplo n.º 27
0
def test_si():
    assert Si(I * x) == I * Shi(x)
    assert Shi(I * x) == I * Si(x)
    assert Si(-I * x) == -I * Shi(x)
    assert Shi(-I * x) == -I * Si(x)
    assert Si(-x) == -Si(x)
    assert Shi(-x) == -Shi(x)
    assert Si(exp_polar(2 * pi * I) * x) == Si(x)
    assert Si(exp_polar(-2 * pi * I) * x) == Si(x)
    assert Shi(exp_polar(2 * pi * I) * x) == Shi(x)
    assert Shi(exp_polar(-2 * pi * I) * x) == Shi(x)

    assert Si(oo) == pi / 2
    assert Si(-oo) == -pi / 2
    assert Shi(oo) == oo
    assert Shi(-oo) == -oo

    assert mytd(Si(x), sin(x) / x, x)
    assert mytd(Shi(x), sinh(x) / x, x)

    assert mytn(
        Si(x),
        Si(x).rewrite(Ei),
        -I * (-Ei(x * exp_polar(-I * pi / 2)) / 2 +
              Ei(x * exp_polar(I * pi / 2)) / 2 - I * pi) + pi / 2, x)
    assert mytn(
        Si(x),
        Si(x).rewrite(expint),
        -I * (-expint(1, x * exp_polar(-I * pi / 2)) / 2 +
              expint(1, x * exp_polar(I * pi / 2)) / 2) + pi / 2, x)
    assert mytn(Shi(x),
                Shi(x).rewrite(Ei),
                Ei(x) / 2 - Ei(x * exp_polar(I * pi)) / 2 + I * pi / 2, x)
    assert mytn(
        Shi(x),
        Shi(x).rewrite(expint),
        expint(1, x) / 2 - expint(1, x * exp_polar(I * pi)) / 2 - I * pi / 2,
        x)

    assert tn_arg(Si)
    assert tn_arg(Shi)

    assert Si(x).nseries(x, n=8) == \
        x - x**3/18 + x**5/600 - x**7/35280 + O(x**9)
    assert Shi(x).nseries(x, n=8) == \
        x + x**3/18 + x**5/600 + x**7/35280 + O(x**9)
    assert Si(sin(x)).nseries(
        x, n=5) == x - 2 * x**3 / 9 + 17 * x**5 / 450 + O(x**7)
    assert Si(x).series(x, 1, n=3) == \
        Si(1) + (x - 1)*sin(1) + (x - 1)**2*(-sin(1)/2 + cos(1)/2) + O((x - 1)**3, (x, 1))

    pytest.raises(ArgumentIndexError, lambda: Si(z).fdiff(2))
Exemplo n.º 28
0
def tn_branch(func, s=None):
    from diofant import I, pi, exp_polar
    from random import uniform

    def fn(x):
        if s is None:
            return func(x)
        return func(s, x)
    c = uniform(1, 5)
    expr = fn(c*exp_polar(I*pi)) - fn(c*exp_polar(-I*pi))
    eps = 1e-15
    expr2 = fn(-c + eps*I) - fn(-c - eps*I)
    return abs(expr.n() - expr2.n()).n() < 1e-10
Exemplo n.º 29
0
def test_besselsimp():
    assert besselsimp(exp(-I*pi*y/2)*besseli(y, z*exp_polar(I*pi/2))) == \
        besselj(y, z)
    assert besselsimp(exp(-I*pi*a/2)*besseli(a, 2*sqrt(x)*exp_polar(I*pi/2))) == \
        besselj(a, 2*sqrt(x))
    assert besselsimp(sqrt(2)*sqrt(pi)*root(x, 4)*exp(I*pi/4)*exp(-I*pi*a/2) *
                      besseli(-Rational(1, 2), sqrt(x)*exp_polar(I*pi/2)) *
                      besseli(a, sqrt(x)*exp_polar(I*pi/2))/2) == \
        besselj(a, sqrt(x)) * cos(sqrt(x))
    assert besselsimp(besseli(Rational(-1, 2), z)) == \
        sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besseli(a, z*exp_polar(-I*pi/2))) == \
        exp(-I*pi*a/2)*besselj(a, z)
    assert cosine_transform(1/t*sin(a/t), t, y) == \
        sqrt(2)*sqrt(pi)*besselj(0, 2*sqrt(a)*sqrt(y))/2
Exemplo n.º 30
0
def test_lerchphi():
    from diofant import combsimp, exp_polar, polylog, log, lerchphi
    assert hyperexpand(hyper([1, a], [a + 1], z) / a) == lerchphi(z, 1, a)
    assert hyperexpand(hyper([1, a, a], [a + 1, a + 1], z) / a**2) == lerchphi(
        z, 2, a)
    assert hyperexpand(hyper([1, a, a, a], [a + 1, a + 1, a + 1], z)/a**3) == \
        lerchphi(z, 3, a)
    assert hyperexpand(hyper([1] + [a]*10, [a + 1]*10, z)/a**10) == \
        lerchphi(z, 10, a)
    assert combsimp(
        hyperexpand(meijerg([0, 1 - a], [], [0], [-a],
                            exp_polar(-I * pi) * z))) == lerchphi(z, 1, a)
    assert combsimp(
        hyperexpand(
            meijerg([0, 1 - a, 1 - a], [], [0], [-a, -a],
                    exp_polar(-I * pi) * z))) == lerchphi(z, 2, a)
    assert combsimp(
        hyperexpand(
            meijerg([0, 1 - a, 1 - a, 1 - a], [], [0], [-a, -a, -a],
                    exp_polar(-I * pi) * z))) == lerchphi(z, 3, a)

    assert hyperexpand(z * hyper([1, 1], [2], z)) == -log(1 + -z)
    assert hyperexpand(z * hyper([1, 1, 1], [2, 2], z)) == polylog(2, z)
    assert hyperexpand(z * hyper([1, 1, 1, 1], [2, 2, 2], z)) == polylog(3, z)

    assert hyperexpand(hyper([1, a, 1 + Rational(1, 2)], [a + 1, Rational(1, 2)], z)) == \
        -2*a/(z - 1) + (-2*a**2 + a)*lerchphi(z, 1, a)

    # Now numerical tests. These make sure reductions etc are carried out
    # correctly

    # a rational function (polylog at negative integer order)
    assert can_do([2, 2, 2], [1, 1])

    # NOTE these contain log(1-x) etc ... better make sure we have |z| < 1
    # reduction of order for polylog
    assert can_do([1, 1, 1, b + 5], [2, 2, b], div=10)

    # reduction of order for lerchphi
    # XXX lerchphi in mpmath is flaky
    assert can_do([1, a, a, a, b + 5], [a + 1, a + 1, a + 1, b],
                  numerical=False)

    # test a bug
    from diofant import Abs
    assert hyperexpand(hyper([Rational(1, 2), Rational(1, 2), Rational(1, 2), 1],
                             [Rational(3, 2), Rational(3, 2), Rational(3, 2)], Rational(1, 4))) == \
        Abs(-polylog(3, exp_polar(I*pi)/2) + polylog(3, Rational(1, 2)))
Exemplo n.º 31
0
def test_branch_bug():
    assert hyperexpand(hyper((-Rational(1, 3), Rational(1, 2)), (Rational(2, 3), Rational(3, 2)), -z)) == \
        -z**Rational(1, 3)*lowergamma(exp_polar(I*pi)/3, z)/5 \
        + sqrt(pi)*erf(sqrt(z))/(5*sqrt(z))
    assert hyperexpand(meijerg([Rational(7, 6), 1], [], [Rational(2, 3)], [Rational(1, 6), 0], z)) == \
        2*z**Rational(2, 3)*(2*sqrt(pi)*erf(sqrt(z))/sqrt(z) -
                             2*lowergamma(Rational(2, 3), z)/z**Rational(2, 3))*gamma(Rational(2, 3))/gamma(Rational(5, 3))
Exemplo n.º 32
0
def test_hyper_unpolarify():
    a = exp_polar(2 * pi * I) * x
    b = x
    assert hyper([], [], a).argument == b
    assert hyper([0], [], a).argument == a
    assert hyper([0], [0], a).argument == b
    assert hyper([0, 1], [0], a).argument == a
Exemplo n.º 33
0
def test_meijerg_with_Floats():
    # see sympy/sympy#10681
    f = meijerg(((3.0, 1), ()), ((Rational(3, 2),), (0,)), z)
    a = -2.3632718012073
    g = a*z**Rational(3, 2)*hyper((-0.5, Rational(3, 2)),
                                  (Rational(5, 2),), z*exp_polar(I*pi))
    assert RR.almosteq((hyperexpand(f)/g).n(), 1.0, 1e-12)
Exemplo n.º 34
0
def test_branch_bug():
    assert hyperexpand(hyper((-Rational(1, 3), Rational(1, 2)), (Rational(2, 3), Rational(3, 2)), -z)) == \
        -cbrt(z)*lowergamma(exp_polar(I*pi)/3, z)/5 \
        + sqrt(pi)*erf(sqrt(z))/(5*sqrt(z))
    assert hyperexpand(meijerg([Rational(7, 6), 1], [], [Rational(2, 3)], [Rational(1, 6), 0], z)) == \
        2*z**Rational(2, 3)*(2*sqrt(pi)*erf(sqrt(z))/sqrt(z) -
                             2*lowergamma(Rational(2, 3), z)/z**Rational(2, 3))*gamma(Rational(2, 3))/gamma(Rational(5, 3))
Exemplo n.º 35
0
def test_hyper_unpolarify():
    a = exp_polar(2*pi*I)*x
    b = x
    assert hyper([], [], a).argument == b
    assert hyper([0], [], a).argument == a
    assert hyper([0], [0], a).argument == b
    assert hyper([0, 1], [0], a).argument == a
Exemplo n.º 36
0
def test_meijerg_expand():
    from diofant import combsimp, simplify
    # from mpmath docs
    assert hyperexpand(meijerg([[], []], [[0], []], -z)) == exp(z)

    assert hyperexpand(meijerg([[1, 1], []], [[1], [0]], z)) == \
        log(z + 1)
    assert hyperexpand(meijerg([[1, 1], []], [[1], [1]], z)) == \
        z/(z + 1)
    assert hyperexpand(meijerg([[], []], [[Rational(1, 2)], [0]], (z/2)**2)) \
        == sin(z)/sqrt(pi)
    assert hyperexpand(meijerg([[], []], [[0], [Rational(1, 2)]], (z/2)**2)) \
        == cos(z)/sqrt(pi)
    assert can_do_meijer([], [a], [a - 1, a - S.Half], [])
    assert can_do_meijer([], [], [a / 2], [-a / 2], False)  # branches...
    assert can_do_meijer([a], [b], [a], [b, a - 1])

    # wikipedia
    assert hyperexpand(meijerg([1], [], [], [0], z)) == \
        Piecewise((0, abs(z) < 1), (1, abs(1/z) < 1),
                 (meijerg([1], [], [], [0], z), True))
    assert hyperexpand(meijerg([], [1], [0], [], z)) == \
        Piecewise((1, abs(z) < 1), (0, abs(1/z) < 1),
                 (meijerg([], [1], [0], [], z), True))

    # The Special Functions and their Approximations
    assert can_do_meijer([], [], [a + b / 2], [a, a - b / 2, a + S.Half])
    assert can_do_meijer([], [], [a], [b],
                         False)  # branches only agree for small z
    assert can_do_meijer([], [S.Half], [a], [-a])
    assert can_do_meijer([], [], [a, b], [])
    assert can_do_meijer([], [], [a, b], [])
    assert can_do_meijer([], [], [a, a + S.Half], [b, b + S.Half])
    assert can_do_meijer([], [], [a, -a], [0, S.Half], False)  # dito
    assert can_do_meijer([], [], [a, a + S.Half, b, b + S.Half], [])
    assert can_do_meijer([S.Half], [], [0], [a, -a])
    assert can_do_meijer([S.Half], [], [a], [0, -a], False)  # dito
    assert can_do_meijer([], [a - S.Half], [a, b], [a - S.Half], False)
    assert can_do_meijer([], [a + S.Half], [a + b, a - b, a], [], False)
    assert can_do_meijer([a + S.Half], [], [b, 2 * a - b, a], [], False)

    # This for example is actually zero.
    assert can_do_meijer([], [], [], [a, b])

    # Testing a bug:
    assert hyperexpand(meijerg([0, 2], [], [], [-1, 1], z)) == \
        Piecewise((0, abs(z) < 1),
                  (z/2 - 1/(2*z), abs(1/z) < 1),
                  (meijerg([0, 2], [], [], [-1, 1], z), True))

    # Test that the simplest possible answer is returned:
    assert combsimp(simplify(hyperexpand(
        meijerg([1], [1 - a], [-a/2, -a/2 + Rational(1, 2)], [], 1/z)))) == \
        -2*sqrt(pi)*(sqrt(z + 1) + 1)**a/a

    # Test that hyper is returned
    assert hyperexpand(meijerg([1], [], [a], [0, 0], z)) == hyper(
        (a, ), (a + 1, a + 1),
        z * exp_polar(I * pi)) * z**a * gamma(a) / gamma(a + 1)**2
Exemplo n.º 37
0
def test_hyper_unpolarify():
    from diofant import exp_polar
    a = exp_polar(2 * pi * I) * x
    b = x
    assert hyper([], [], a).argument == b
    assert hyper([0], [], a).argument == a
    assert hyper([0], [0], a).argument == b
    assert hyper([0, 1], [0], a).argument == a
Exemplo n.º 38
0
def test_polarify():
    z = Symbol('z', polar=True)
    f = Function('f')
    ES = {}

    assert polarify(-1) == (polar_lift(-1), ES)
    assert polarify(1 + I) == (polar_lift(1 + I), ES)

    assert polarify(exp(x), subs=False) == exp(x)
    assert polarify(1 + x, subs=False) == 1 + x
    assert polarify(f(I) + x, subs=False) == f(polar_lift(I)) + x

    assert polarify(x, lift=True) == polar_lift(x)
    assert polarify(z, lift=True) == z
    assert polarify(f(x), lift=True) == f(polar_lift(x))
    assert polarify(1 + x, lift=True) == polar_lift(1 + x)
    assert polarify(1 + f(x), lift=True) == polar_lift(1 + f(polar_lift(x)))

    newex, subs = polarify(f(x) + z)
    assert newex.subs(subs) == f(x) + z

    mu = Symbol('mu')
    sigma = Symbol('sigma', positive=True)

    # Make sure polarify(lift=True) doesn't try to lift the integration
    # variable
    assert polarify(
        Integral(
            sqrt(2) * x * exp(-(-mu + x)**2 / (2 * sigma**2)) /
            (2 * sqrt(pi) * sigma), (x, -oo, oo)),
        lift=True) == Integral(
            sqrt(2) * (sigma * exp_polar(0))**exp_polar(I * pi) * exp(
                (sigma * exp_polar(0))**(2 * exp_polar(I * pi)) * exp_polar(
                    I * pi) * polar_lift(-mu + x)**(2 * exp_polar(0)) / 2) *
            exp_polar(0) * polar_lift(x) / (2 * sqrt(pi)), (x, -oo, oo))
Exemplo n.º 39
0
def test_principal_branch():
    p = Symbol('p', positive=True)
    neg = Symbol('x', negative=True)

    assert principal_branch(polar_lift(x), p) == principal_branch(x, p)
    assert principal_branch(polar_lift(2 + I), p) == principal_branch(2 + I, p)
    assert principal_branch(2*x, p) == 2*principal_branch(x, p)
    assert principal_branch(1, pi) == exp_polar(0)
    assert principal_branch(-1, 2*pi) == exp_polar(I*pi)
    assert principal_branch(-1, pi) == exp_polar(0)
    assert principal_branch(exp_polar(3*pi*I)*x, 2*pi) == \
        principal_branch(exp_polar(I*pi)*x, 2*pi)
    assert principal_branch(neg*exp_polar(pi*I), 2*pi) == neg*exp_polar(-I*pi)

    assert N_equals(principal_branch((1 + I)**2, 2*pi), 2*I)
    assert N_equals(principal_branch((1 + I)**2, 3*pi), 2*I)
    assert N_equals(principal_branch((1 + I)**2, 1*pi), 2*I)

    # test argument sanitization
    assert isinstance(principal_branch(x, I), principal_branch)
    assert isinstance(principal_branch(x, -4), principal_branch)
    assert isinstance(principal_branch(x, -oo), principal_branch)
    assert isinstance(principal_branch(x, zoo), principal_branch)

    assert (principal_branch((4 + I)**2, 2*pi).evalf() ==
            principal_branch((4 + I)**2, 2*pi))
Exemplo n.º 40
0
def test_exp_log():
    x = Symbol("x", extended_real=True)
    assert log(exp(x)) == x
    assert exp(log(x)) == x
    assert log(x).inverse() == exp

    y = Symbol("y", polar=True)
    assert log(exp_polar(z)) == z
    assert exp(log(y)) == y
Exemplo n.º 41
0
def test_exp_log():
    x = Symbol("x", extended_real=True)
    assert log(exp(x)) == x
    assert exp(log(x)) == x
    assert log(x).inverse() == exp

    y = Symbol("y", polar=True)
    assert log(exp_polar(z)) == z
    assert exp(log(y)) == y
Exemplo n.º 42
0
def test_lowergamma():
    assert lowergamma(x, y).diff(y) == y**(x - 1)*exp(-y)
    assert td(lowergamma(randcplx(), y), y)
    assert td(lowergamma(x, randcplx()), x)
    assert lowergamma(x, y).diff(x) == \
        gamma(x)*polygamma(0, x) - uppergamma(x, y)*log(y) \
        - meijerg([], [1, 1], [0, 0, x], [], y)
    pytest.raises(ArgumentIndexError, lambda: lowergamma(x, y).fdiff(3))

    assert lowergamma(Rational(1, 2), x) == sqrt(pi)*erf(sqrt(x))
    assert not lowergamma(Rational(1, 2) - 3, x).has(lowergamma)
    assert not lowergamma(Rational(1, 2) + 3, x).has(lowergamma)
    assert lowergamma(Rational(1, 2), x, evaluate=False).has(lowergamma)
    assert tn(lowergamma(Rational(1, 2) + 3, x, evaluate=False),
              lowergamma(Rational(1, 2) + 3, x), x)
    assert tn(lowergamma(Rational(1, 2) - 3, x, evaluate=False),
              lowergamma(Rational(1, 2) - 3, x), x)
    assert lowergamma(0, 1) == zoo

    assert tn_branch(-3, lowergamma)
    assert tn_branch(-4, lowergamma)
    assert tn_branch(Rational(1, 3), lowergamma)
    assert tn_branch(pi, lowergamma)
    assert lowergamma(3, exp_polar(4*pi*I)*x) == lowergamma(3, x)
    assert lowergamma(y, exp_polar(5*pi*I)*x) == \
        exp(4*I*pi*y)*lowergamma(y, x*exp_polar(pi*I))
    assert lowergamma(-2, exp_polar(5*pi*I)*x) == \
        lowergamma(-2, x*exp_polar(I*pi)) + 2*pi*I

    assert conjugate(lowergamma(x, y)) == lowergamma(conjugate(x), conjugate(y))
    assert conjugate(lowergamma(x, 0)) == conjugate(lowergamma(x, 0))
    assert conjugate(lowergamma(x, -oo)) == conjugate(lowergamma(x, -oo))

    assert lowergamma(
        x, y).rewrite(expint) == -y**x*expint(-x + 1, y) + gamma(x)
    k = Symbol('k', integer=True)
    assert lowergamma(
        k, y).rewrite(expint) == -y**k*expint(-k + 1, y) + gamma(k)
    k = Symbol('k', integer=True, positive=False)
    assert lowergamma(k, y).rewrite(expint) == lowergamma(k, y)
    assert lowergamma(x, y).rewrite(uppergamma) == gamma(x) - uppergamma(x, y)

    assert (x*lowergamma(x, 1)/gamma(x + 1)).limit(x, 0) == 1
Exemplo n.º 43
0
def test_si():
    assert Si(I*x) == I*Shi(x)
    assert Shi(I*x) == I*Si(x)
    assert Si(-I*x) == -I*Shi(x)
    assert Shi(-I*x) == -I*Si(x)
    assert Si(-x) == -Si(x)
    assert Shi(-x) == -Shi(x)
    assert Si(exp_polar(2*pi*I)*x) == Si(x)
    assert Si(exp_polar(-2*pi*I)*x) == Si(x)
    assert Shi(exp_polar(2*pi*I)*x) == Shi(x)
    assert Shi(exp_polar(-2*pi*I)*x) == Shi(x)

    assert Si(oo) == pi/2
    assert Si(-oo) == -pi/2
    assert Shi(oo) == oo
    assert Shi(-oo) == -oo

    assert mytd(Si(x), sin(x)/x, x)
    assert mytd(Shi(x), sinh(x)/x, x)

    assert mytn(Si(x), Si(x).rewrite(Ei),
                -I*(-Ei(x*exp_polar(-I*pi/2))/2
                    + Ei(x*exp_polar(I*pi/2))/2 - I*pi) + pi/2, x)
    assert mytn(Si(x), Si(x).rewrite(expint),
                -I*(-expint(1, x*exp_polar(-I*pi/2))/2 +
                    expint(1, x*exp_polar(I*pi/2))/2) + pi/2, x)
    assert mytn(Shi(x), Shi(x).rewrite(Ei),
                Ei(x)/2 - Ei(x*exp_polar(I*pi))/2 + I*pi/2, x)
    assert mytn(Shi(x), Shi(x).rewrite(expint),
                expint(1, x)/2 - expint(1, x*exp_polar(I*pi))/2 - I*pi/2, x)

    assert tn_arg(Si)
    assert tn_arg(Shi)

    assert Si(x).nseries(x, n=8) == \
        x - x**3/18 + x**5/600 - x**7/35280 + O(x**9)
    assert Shi(x).nseries(x, n=8) == \
        x + x**3/18 + x**5/600 + x**7/35280 + O(x**9)
    assert Si(sin(x)).nseries(x, n=5) == x - 2*x**3/9 + 17*x**5/450 + O(x**7)
    assert Si(x).series(x, 1, n=3) == \
        Si(1) + (x - 1)*sin(1) + (x - 1)**2*(-sin(1)/2 + cos(1)/2) + O((x - 1)**3, (x, 1))

    pytest.raises(ArgumentIndexError, lambda: Si(z).fdiff(2))
Exemplo n.º 44
0
def test_lerchphi():
    assert hyperexpand(hyper([1, a], [a + 1], z)/a) == lerchphi(z, 1, a)
    assert hyperexpand(
        hyper([1, a, a], [a + 1, a + 1], z)/a**2) == lerchphi(z, 2, a)
    assert hyperexpand(hyper([1, a, a, a], [a + 1, a + 1, a + 1], z)/a**3) == \
        lerchphi(z, 3, a)
    assert hyperexpand(hyper([1] + [a]*10, [a + 1]*10, z)/a**10) == \
        lerchphi(z, 10, a)
    assert combsimp(hyperexpand(meijerg([0, 1 - a], [], [0],
                                        [-a], exp_polar(-I*pi)*z))) == lerchphi(z, 1, a)
    assert combsimp(hyperexpand(meijerg([0, 1 - a, 1 - a], [], [0],
                                        [-a, -a], exp_polar(-I*pi)*z))) == lerchphi(z, 2, a)
    assert combsimp(hyperexpand(meijerg([0, 1 - a, 1 - a, 1 - a], [], [0],
                                        [-a, -a, -a], exp_polar(-I*pi)*z))) == lerchphi(z, 3, a)

    assert hyperexpand(z*hyper([1, 1], [2], z)) == -log(1 + -z)
    assert hyperexpand(z*hyper([1, 1, 1], [2, 2], z)) == polylog(2, z)
    assert hyperexpand(z*hyper([1, 1, 1, 1], [2, 2, 2], z)) == polylog(3, z)

    assert hyperexpand(hyper([1, a, 1 + Rational(1, 2)], [a + 1, Rational(1, 2)], z)) == \
        -2*a/(z - 1) + (-2*a**2 + a)*lerchphi(z, 1, a)

    # Now numerical tests. These make sure reductions etc are carried out
    # correctly

    # a rational function (polylog at negative integer order)
    assert can_do([2, 2, 2], [1, 1])

    # NOTE these contain log(1-x) etc ... better make sure we have |z| < 1
    # reduction of order for polylog
    assert can_do([1, 1, 1, b + 5], [2, 2, b], div=10)

    # reduction of order for lerchphi
    # XXX lerchphi in mpmath is flaky
    assert can_do(
        [1, a, a, a, b + 5], [a + 1, a + 1, a + 1, b], numerical=False)

    # test a bug
    assert hyperexpand(hyper([Rational(1, 2), Rational(1, 2), Rational(1, 2), 1],
                             [Rational(3, 2), Rational(3, 2), Rational(3, 2)], Rational(1, 4))) == \
        abs(-polylog(3, exp_polar(I*pi)/2) + polylog(3, Rational(1, 2)))
Exemplo n.º 45
0
def test_polarify():
    z = Symbol('z', polar=True)
    f = Function('f')
    ES = {}

    assert polarify(-1) == (polar_lift(-1), ES)
    assert polarify(1 + I) == (polar_lift(1 + I), ES)

    assert polarify(exp(x), subs=False) == exp(x)
    assert polarify(1 + x, subs=False) == 1 + x
    assert polarify(f(I) + x, subs=False) == f(polar_lift(I)) + x

    assert polarify(x, lift=True) == polar_lift(x)
    assert polarify(z, lift=True) == z
    assert polarify(f(x), lift=True) == f(polar_lift(x))
    assert polarify(1 + x, lift=True) == polar_lift(1 + x)
    assert polarify(1 + f(x), lift=True) == polar_lift(1 + f(polar_lift(x)))

    newex, subs = polarify(f(x) + z)
    assert newex.subs(subs) == f(x) + z

    mu = Symbol("mu")
    sigma = Symbol("sigma", positive=True)

    # Make sure polarify(lift=True) doesn't try to lift the integration
    # variable
    assert polarify(
        Integral(sqrt(2)*x*exp(-(-mu + x)**2/(2*sigma**2))/(2*sqrt(pi)*sigma),
                 (x, -oo, oo)), lift=True) == Integral(sqrt(2)*(sigma*exp_polar(0))**exp_polar(I*pi) *
                                                       exp((sigma*exp_polar(0))**(2*exp_polar(I*pi))*exp_polar(I*pi)*polar_lift(-mu + x) **
                                                           (2*exp_polar(0))/2)*exp_polar(0)*polar_lift(x)/(2*sqrt(pi)), (x, -oo, oo))
Exemplo n.º 46
0
def test_unpolarify():
    p = exp_polar(7*I) + 1
    u = exp(7*I) + 1

    assert unpolarify(1) == 1
    assert unpolarify(p) == u
    assert unpolarify(p**2) == u**2
    assert unpolarify(p**x) == p**x
    assert unpolarify(p*x) == u*x
    assert unpolarify(p + x) == u + x
    assert unpolarify(sqrt(sin(p))) == sqrt(sin(u))

    # Test reduction to principal branch 2*pi.
    t = principal_branch(x, 2*pi)
    assert unpolarify(t) == x
    assert unpolarify(sqrt(t)) == sqrt(t)

    # Test exponents_only.
    assert unpolarify(p**p, exponents_only=True) == p**u
    assert unpolarify(uppergamma(x, p**p)) == uppergamma(x, p**u)

    # Test functions.
    assert unpolarify(sin(p)) == sin(u)
    assert unpolarify(tanh(p)) == tanh(u)
    assert unpolarify(gamma(p)) == gamma(u)
    assert unpolarify(erf(p)) == erf(u)
    assert unpolarify(uppergamma(x, p)) == uppergamma(x, p)

    assert unpolarify(uppergamma(sin(p), sin(p + exp_polar(0)))) == \
        uppergamma(sin(u), sin(u + 1))
    assert unpolarify(uppergamma(polar_lift(0), 2*exp_polar(0))) == \
        uppergamma(0, 2)

    assert unpolarify(Eq(p, 0)) == Eq(u, 0)
    assert unpolarify(Ne(p, 0)) == Ne(u, 0)
    assert unpolarify(polar_lift(x) > 0) == (x > 0)

    # Test bools
    assert unpolarify(True) is True
Exemplo n.º 47
0
def test_expint():
    assert mytn(expint(x, y), expint(x, y).rewrite(uppergamma),
                y**(x - 1)*uppergamma(1 - x, y), x)
    assert mytd(
        expint(x, y), -y**(x - 1)*meijerg([], [1, 1], [0, 0, 1 - x], [], y), x)
    assert mytd(expint(x, y), -expint(x - 1, y), y)
    assert mytn(expint(1, x), expint(1, x).rewrite(Ei),
                -Ei(x*polar_lift(-1)) + I*pi, x)

    assert expint(-4, x) == exp(-x)/x + 4*exp(-x)/x**2 + 12*exp(-x)/x**3 \
        + 24*exp(-x)/x**4 + 24*exp(-x)/x**5
    assert expint(-Rational(3, 2), x) == \
        exp(-x)/x + 3*exp(-x)/(2*x**2) - 3*sqrt(pi)*erf(sqrt(x))/(4*x**Rational(5, 2)) \
        + 3*sqrt(pi)/(4*x**Rational(5, 2))

    assert tn_branch(expint, 1)
    assert tn_branch(expint, 2)
    assert tn_branch(expint, 3)
    assert tn_branch(expint, 1.7)
    assert tn_branch(expint, pi)

    assert expint(y, x*exp_polar(2*I*pi)) == \
        x**(y - 1)*(exp(2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
    assert expint(y, x*exp_polar(-2*I*pi)) == \
        x**(y - 1)*(exp(-2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
    assert expint(2, x*exp_polar(2*I*pi)) == 2*I*pi*x + expint(2, x)
    assert expint(2, x*exp_polar(-2*I*pi)) == -2*I*pi*x + expint(2, x)
    assert (expint(n, x*exp_polar(2*I*pi)) ==
            expint(n, x*exp_polar(2*I*pi), evaluate=False))

    assert expint(1, x).rewrite(Ei).rewrite(expint) == expint(1, x)
    assert (expint(2, x, evaluate=False).rewrite(Shi) ==
            expint(2, x, evaluate=False))
    assert mytn(E1(x), E1(x).rewrite(Shi), Shi(x) - Chi(x), x)
    assert mytn(E1(polar_lift(I)*x), E1(polar_lift(I)*x).rewrite(Si),
                -Ci(x) + I*Si(x) - I*pi/2, x)

    assert mytn(expint(2, x), expint(2, x).rewrite(Ei).rewrite(expint),
                -x*E1(x) + exp(-x), x)
    assert mytn(expint(3, x), expint(3, x).rewrite(Ei).rewrite(expint),
                x**2*E1(x)/2 + (1 - x)*exp(-x)/2, x)

    assert expint(Rational(3, 2), z).nseries(z, n=10) == \
        2 + 2*z - z**2/3 + z**3/15 - z**4/84 + z**5/540 - \
        2*sqrt(pi)*sqrt(z) + O(z**6)

    assert E1(z).series(z) == -EulerGamma - log(z) + z - \
        z**2/4 + z**3/18 - z**4/96 + z**5/600 + O(z**6)

    assert expint(4, z).series(z) == Rational(1, 3) - z/2 + z**2/2 + \
        z**3*(log(z)/6 - Rational(11, 36) + EulerGamma/6) - z**4/24 + \
        z**5/240 + O(z**6)
    assert (expint(x, x).series(x, x0=1, n=2) ==
            expint(1, 1) + (x - 1)*(-meijerg(((), (1, 1)),
                                             ((0, 0, 0), ()), 1) - 1/E) +
            O((x - 1)**2, (x, 1)))

    pytest.raises(ArgumentIndexError, lambda: expint(x, y).fdiff(3))
Exemplo n.º 48
0
def test_rewrite_single():
    def t(expr, c, m):
        e = _rewrite_single(meijerg([a], [b], [c], [d], expr), x)
        assert e is not None
        assert isinstance(e[0][0][2], meijerg)
        assert e[0][0][2].argument.as_coeff_mul(x) == (c, (m,))

    def tn(expr):
        assert _rewrite_single(meijerg([a], [b], [c], [d], expr), x) is None

    t(x, 1, x)
    t(x**2, 1, x**2)
    t(x**2 + y*x**2, y + 1, x**2)
    tn(x**2 + x)
    tn(x**y)

    def u(expr, x):
        r = _rewrite_single(expr, x)
        e = Add(*[res[0]*res[2] for res in r[0]]).replace(
            exp_polar, exp)  # XXX Hack?
        assert verify_numerically(e, expr, x)

    u(exp(-x)*sin(x), x)

    # The following has stopped working because hyperexpand changed slightly.
    # It is probably not worth fixing
    # u(exp(-x)*sin(x)*cos(x), x)

    # This one cannot be done numerically, since it comes out as a g-function
    # of argument 4*pi
    # NOTE This also tests a bug in inverse mellin transform (which used to
    #      turn exp(4*pi*I*t) into a factor of exp(4*pi*I)**t instead of
    #      exp_polar).
    # u(exp(x)*sin(x), x)
    assert _rewrite_single(exp(x)*sin(x), x) == \
        ([(-sqrt(2)/(2*sqrt(pi)), 0,
           meijerg(((-Rational(1, 2), 0, Rational(1, 4), Rational(1, 2), Rational(3, 4)), (1,)),
                   ((), (-Rational(1, 2), 0)), 64*exp_polar(-4*I*pi)/x**4))], True)
Exemplo n.º 49
0
def test_ci():
    m1 = exp_polar(I*pi)
    m1_ = exp_polar(-I*pi)
    pI = exp_polar(I*pi/2)
    mI = exp_polar(-I*pi/2)

    assert Ci(m1*x) == Ci(x) + I*pi
    assert Ci(m1_*x) == Ci(x) - I*pi
    assert Ci(pI*x) == Chi(x) + I*pi/2
    assert Ci(mI*x) == Chi(x) - I*pi/2
    assert Chi(m1*x) == Chi(x) + I*pi
    assert Chi(m1_*x) == Chi(x) - I*pi
    assert Chi(pI*x) == Ci(x) + I*pi/2
    assert Chi(mI*x) == Ci(x) - I*pi/2
    assert Ci(exp_polar(2*I*pi)*x) == Ci(x) + 2*I*pi
    assert Chi(exp_polar(-2*I*pi)*x) == Chi(x) - 2*I*pi
    assert Chi(exp_polar(2*I*pi)*x) == Chi(x) + 2*I*pi
    assert Ci(exp_polar(-2*I*pi)*x) == Ci(x) - 2*I*pi

    assert Ci(oo) == 0
    assert Ci(-oo) == I*pi
    assert Chi(oo) == oo
    assert Chi(-oo) == oo

    assert mytd(Ci(x), cos(x)/x, x)
    assert mytd(Chi(x), cosh(x)/x, x)

    assert mytn(Ci(x), Ci(x).rewrite(Ei),
                Ei(x*exp_polar(-I*pi/2))/2 + Ei(x*exp_polar(I*pi/2))/2, x)
    assert mytn(Chi(x), Chi(x).rewrite(Ei),
                Ei(x)/2 + Ei(x*exp_polar(I*pi))/2 - I*pi/2, x)

    assert tn_arg(Ci)
    assert tn_arg(Chi)

    assert Ci(x).nseries(x, n=4) == \
        EulerGamma + log(x) - x**2/4 + x**4/96 + O(x**6)
    assert Chi(x).nseries(x, n=4) == \
        EulerGamma + log(x) + x**2/4 + x**4/96 + O(x**6)
    assert limit(log(x) - Ci(2*x), x, 0) == -log(2) - EulerGamma
Exemplo n.º 50
0
 def dosubs(func, a, b):
     rv = func.subs({z: exp_polar(a)*z}).rewrite('nonrep')
     return rv.subs({z: exp_polar(b)*z}).replace(exp_polar, exp)
Exemplo n.º 51
0
def test_powsimp_polar():
    p, q, r = symbols('p q r', polar=True)

    assert (polar_lift(-1))**(2*x) == exp_polar(2*pi*I*x)
    assert powsimp(p**x * q**x) == (p*q)**x
    assert p**x * (1/p)**x == 1
    assert (1/p)**x == p**(-x)

    assert exp_polar(x)*exp_polar(y) == exp_polar(x)*exp_polar(y)
    assert powsimp(exp_polar(x)*exp_polar(y)) == exp_polar(x + y)
    assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y) == \
        (p*exp_polar(1))**(x + y)
    assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y, combine='exp') == \
        exp_polar(x + y)*p**(x + y)
    assert powsimp(
        exp_polar(x)*exp_polar(y)*exp_polar(2)*sin(x) + sin(y) + p**x*p**y) \
        == p**(x + y) + sin(x)*exp_polar(2 + x + y) + sin(y)
    assert powsimp(sin(exp_polar(x)*exp_polar(y))) == \
        sin(exp_polar(x)*exp_polar(y))
    assert powsimp(sin(exp_polar(x)*exp_polar(y)), deep=True) == \
        sin(exp_polar(x + y))
Exemplo n.º 52
0
def test_evalf():
    assert hyper((-1, 1), (-1,), 1).evalf() == Float('2.0')

    e = meijerg([], [], [], [], (exp_polar(-I*pi))*cos(exp_polar(-I*pi)))
    assert e.evalf() == e
Exemplo n.º 53
0
 def tn(func, s):
     c = uniform(1, 5)
     expr = func(s, c*exp_polar(I*pi)) - func(s, c*exp_polar(-I*pi))
     eps = 1e-15
     expr2 = func(s + eps, -c + eps*I) - func(s + eps, -c - eps*I)
     return abs(expr - expr2).evalf(strict=False) < 1e-10
Exemplo n.º 54
0
def test_hyperrep():
    # First test the base class works.
    a, b, c, d, z = symbols('a b c d z')

    class myrep(HyperRep):
        @classmethod
        def _expr_small(cls, x):
            return a

        @classmethod
        def _expr_small_minus(cls, x):
            return b

        @classmethod
        def _expr_big(cls, x, n):
            return c*n

        @classmethod
        def _expr_big_minus(cls, x, n):
            return d*n
    assert myrep(z).rewrite('nonrep') == Piecewise((0, abs(z) > 1), (a, True))
    assert myrep(exp_polar(I*pi)*z).rewrite('nonrep') == \
        Piecewise((0, abs(z) > 1), (b, True))
    assert myrep(exp_polar(2*I*pi)*z).rewrite('nonrep') == \
        Piecewise((c, abs(z) > 1), (a, True))
    assert myrep(exp_polar(3*I*pi)*z).rewrite('nonrep') == \
        Piecewise((d, abs(z) > 1), (b, True))
    assert myrep(exp_polar(4*I*pi)*z).rewrite('nonrep') == \
        Piecewise((2*c, abs(z) > 1), (a, True))
    assert myrep(exp_polar(5*I*pi)*z).rewrite('nonrep') == \
        Piecewise((2*d, abs(z) > 1), (b, True))
    assert myrep(z).rewrite('nonrepsmall') == a
    assert myrep(exp_polar(I*pi)*z).rewrite('nonrepsmall') == b

    def t(func, hyp, z):
        """ Test that func is a valid representation of hyp. """
        # First test that func agrees with hyp for small z
        if not tn(func.rewrite('nonrepsmall'), hyp, z,
                  a=Rational(-1, 2), b=Rational(-1, 2), c=Rational(1, 2), d=Rational(1, 2)):
            return False
        # Next check that the two small representations agree.
        if not tn(
            func.rewrite('nonrepsmall').subs({z: exp_polar(I*pi)*z}).replace(exp_polar, exp),
            func.subs({z: exp_polar(I*pi)*z}).rewrite('nonrepsmall'),
                z, a=Rational(-1, 2), b=Rational(-1, 2), c=Rational(1, 2), d=Rational(1, 2)):
            return False
        # Next check continuity along exp_polar(I*pi)*t
        expr = func.subs({z: exp_polar(I*pi)*z}).rewrite('nonrep')
        if abs(expr.subs({z: 1 + 1e-15}) - expr.subs({z: 1 - 1e-15})).evalf(strict=False) > 1e-10:
            return False
        # Finally check continuity of the big reps.

        def dosubs(func, a, b):
            rv = func.subs({z: exp_polar(a)*z}).rewrite('nonrep')
            return rv.subs({z: exp_polar(b)*z}).replace(exp_polar, exp)
        for n in [0, 1, 2, 3, 4, -1, -2, -3, -4]:
            expr1 = dosubs(func, 2*I*pi*n, I*pi/2)
            expr2 = dosubs(func, 2*I*pi*n + I*pi, -I*pi/2)
            if not tn(expr1, expr2, z):
                return False
            expr1 = dosubs(func, 2*I*pi*(n + 1), -I*pi/2)
            expr2 = dosubs(func, 2*I*pi*n + I*pi, I*pi/2)
            if not tn(expr1, expr2, z):
                return False
        return True

    # Now test the various representatives.
    a = Rational(1, 3)
    assert t(HyperRep_atanh(z), hyper([Rational(1, 2), 1], [Rational(3, 2)], z), z)
    assert t(HyperRep_power1(a, z), hyper([-a], [], z), z)
    assert t(HyperRep_power2(a, z), hyper([a, a - Rational(1, 2)], [2*a], z), z)
    assert t(HyperRep_log1(z), -z*hyper([1, 1], [2], z), z)
    assert t(HyperRep_asin1(z), hyper([Rational(1, 2), Rational(1, 2)], [Rational(3, 2)], z), z)
    assert t(HyperRep_asin2(z), hyper([1, 1], [Rational(3, 2)], z), z)
    assert t(HyperRep_sqrts1(a, z), hyper([-a, Rational(1, 2) - a], [Rational(1, 2)], z), z)
    assert t(HyperRep_sqrts2(a, z),
             -2*z/(2*a + 1)*hyper([-a - Rational(1, 2), -a], [Rational(1, 2)], z).diff(z), z)
    assert t(HyperRep_log2(z), -z/4*hyper([Rational(3, 2), 1, 1], [2, 2], z), z)
    assert t(HyperRep_cosasin(a, z), hyper([-a, a], [Rational(1, 2)], z), z)
    assert t(HyperRep_sinasin(a, z), 2*a*z*hyper([1 - a, 1 + a], [Rational(3, 2)], z), z)
Exemplo n.º 55
0
def test_polar():
    x, y = symbols('x y', polar=True)

    assert abs(exp_polar(I*4)) == 1
    assert exp_polar(I*10).evalf() == exp_polar(I*10)

    assert log(exp_polar(z)) == z
    assert log(x*y).expand() == log(x) + log(y)
    assert log(x**z).expand() == z*log(x)

    assert exp_polar(3).exp == 3

    # Compare exp(1.0*pi*I).
    assert (exp_polar(1.0*pi*I).evalf(5)).as_real_imag()[1] >= 0

    assert exp_polar(0).is_rational is True  # issue sympy/sympy#8008

    nz = Symbol('nz', rational=True, nonzero=True)
    assert exp_polar(nz).is_rational is False

    assert exp_polar(oo).is_finite is False
    assert exp_polar(-oo).is_finite
    assert exp_polar(zoo).is_finite is None

    assert exp_polar(-oo).is_zero

    ninf = Symbol('ninf', infinite=True, negative=True)
    assert exp_polar(ninf).is_zero

    r = Symbol('r', extended_real=True)
    assert exp_polar(r).is_extended_real
    assert exp_polar(x).is_extended_real is None
Exemplo n.º 56
0
def test_meijerg_expand():
    # from mpmath docs
    assert hyperexpand(meijerg([[], []], [[0], []], -z)) == exp(z)

    assert hyperexpand(meijerg([[1, 1], []], [[1], [0]], z)) == \
        log(z + 1)
    assert hyperexpand(meijerg([[1, 1], []], [[1], [1]], z)) == \
        z/(z + 1)
    assert hyperexpand(meijerg([[], []], [[Rational(1, 2)], [0]], (z/2)**2)) \
        == sin(z)/sqrt(pi)
    assert hyperexpand(meijerg([[], []], [[0], [Rational(1, 2)]], (z/2)**2)) \
        == cos(z)/sqrt(pi)
    assert can_do_meijer([], [a], [a - 1, a - Rational(1, 2)], [])
    assert can_do_meijer([], [], [a/2], [-a/2], False)  # branches...
    assert can_do_meijer([a], [b], [a], [b, a - 1])

    # wikipedia
    assert hyperexpand(meijerg([1], [], [], [0], z)) == \
        Piecewise((0, abs(z) < 1), (1, abs(1/z) < 1),
                  (meijerg([1], [], [], [0], z), True))
    assert hyperexpand(meijerg([], [1], [0], [], z)) == \
        Piecewise((1, abs(z) < 1), (0, abs(1/z) < 1),
                  (meijerg([], [1], [0], [], z), True))

    # The Special Functions and their Approximations
    assert can_do_meijer([], [], [a + b/2], [a, a - b/2, a + Rational(1, 2)])
    assert can_do_meijer(
        [], [], [a], [b], False)  # branches only agree for small z
    assert can_do_meijer([], [Rational(1, 2)], [a], [-a])
    assert can_do_meijer([], [], [a, b], [])
    assert can_do_meijer([], [], [a, b], [])
    assert can_do_meijer([], [], [a, a + Rational(1, 2)], [b, b + Rational(1, 2)])
    assert can_do_meijer([], [], [a, -a], [0, Rational(1, 2)], False)  # dito
    assert can_do_meijer([], [], [a, a + Rational(1, 2), b, b + Rational(1, 2)], [])
    assert can_do_meijer([Rational(1, 2)], [], [0], [a, -a])
    assert can_do_meijer([Rational(1, 2)], [], [a], [0, -a], False)  # dito
    assert can_do_meijer([], [a - Rational(1, 2)], [a, b], [a - Rational(1, 2)], False)
    assert can_do_meijer([], [a + Rational(1, 2)], [a + b, a - b, a], [], False)
    assert can_do_meijer([a + Rational(1, 2)], [], [b, 2*a - b, a], [], False)

    # This for example is actually zero.
    assert can_do_meijer([], [], [], [a, b])

    # Testing a bug:
    assert hyperexpand(meijerg([0, 2], [], [], [-1, 1], z)) == \
        Piecewise((0, abs(z) < 1),
                  (z/2 - 1/(2*z), abs(1/z) < 1),
                  (meijerg([0, 2], [], [], [-1, 1], z), True))

    # Test that the simplest possible answer is returned:
    assert combsimp(simplify(hyperexpand(
        meijerg([1], [1 - a], [-a/2, -a/2 + Rational(1, 2)], [], 1/z)))) == \
        -2*sqrt(pi)*(sqrt(z + 1) + 1)**a/a

    # Test that hyper is returned
    assert hyperexpand(meijerg([1], [], [a], [0, 0], z)) == hyper(
        (a,), (a + 1, a + 1), z*exp_polar(I*pi))*z**a*gamma(a)/gamma(a + 1)**2

    assert can_do_meijer([], [], [a + Rational(1, 2)], [a, a - b/2, a + b/2])
    assert can_do_meijer([], [], [3*a - Rational(1, 2), a, -a - Rational(1, 2)], [a - Rational(1, 2)])
    assert can_do_meijer([], [], [0, a - Rational(1, 2), -a - Rational(1, 2)], [Rational(1, 2)])
    assert can_do_meijer([Rational(1, 2)], [], [-a, a], [0])
Exemplo n.º 57
0
def test_sign():
    assert sign(1.2) == 1
    assert sign(-1.2) == -1
    assert sign(3*I) == I
    assert sign(-3*I) == -I
    assert sign(0) == 0
    assert sign(nan) == nan
    assert sign(2 + 2*I).doit() == sqrt(2)*(2 + 2*I)/4
    assert sign(2 + 3*I).simplify() == sign(2 + 3*I)
    assert sign(2 + 2*I).simplify() == sign(1 + I)
    assert sign(im(sqrt(1 - sqrt(3)))) == 1
    assert sign(sqrt(1 - sqrt(3))) == I

    x = Symbol('x')
    assert sign(x).is_finite is True
    assert sign(x).is_complex is True
    assert sign(x).is_imaginary is None
    assert sign(x).is_integer is None
    assert sign(x).is_extended_real is None
    assert sign(x).is_zero is None
    assert sign(x).doit() == sign(x)
    assert sign(1.2*x) == sign(x)
    assert sign(2*x) == sign(x)
    assert sign(I*x) == I*sign(x)
    assert sign(-2*I*x) == -I*sign(x)
    assert sign(conjugate(x)) == conjugate(sign(x))

    p = Symbol('p', positive=True)
    n = Symbol('n', negative=True)
    m = Symbol('m', negative=True)
    assert sign(2*p*x) == sign(x)
    assert sign(n*x) == -sign(x)
    assert sign(n*m*x) == sign(x)

    x = Symbol('x', imaginary=True)
    xn = Symbol('xn', imaginary=True, nonzero=True)
    assert sign(x).is_imaginary is True
    assert sign(x).is_integer is None
    assert sign(x).is_extended_real is None
    assert sign(x).is_zero is None
    assert sign(x).diff(x) == 2*DiracDelta(-I*x)
    assert sign(xn).doit() == xn / Abs(xn)
    assert conjugate(sign(x)) == -sign(x)

    x = Symbol('x', extended_real=True)
    assert sign(x).is_imaginary is None
    assert sign(x).is_integer is True
    assert sign(x).is_extended_real is True
    assert sign(x).is_zero is None
    assert sign(x).diff(x) == 2*DiracDelta(x)
    assert sign(x).doit() == sign(x)
    assert conjugate(sign(x)) == sign(x)

    assert sign(sin(x)).nseries(x) == 1
    y = Symbol('y')
    assert sign(x*y).nseries(x).removeO() == sign(y)

    x = Symbol('x', nonzero=True)
    assert sign(x).is_imaginary is None
    assert sign(x).is_integer is None
    assert sign(x).is_extended_real is None
    assert sign(x).is_zero is False
    assert sign(x).doit() == x / Abs(x)
    assert sign(Abs(x)) == 1
    assert Abs(sign(x)) == 1

    x = Symbol('x', positive=True)
    assert sign(x).is_imaginary is False
    assert sign(x).is_integer is True
    assert sign(x).is_extended_real is True
    assert sign(x).is_zero is False
    assert sign(x).doit() == x / Abs(x)
    assert sign(Abs(x)) == 1
    assert Abs(sign(x)) == 1

    x = 0
    assert sign(x).is_imaginary is True
    assert sign(x).is_integer is True
    assert sign(x).is_extended_real is True
    assert sign(x).is_zero is True
    assert sign(x).doit() == 0
    assert sign(Abs(x)) == 0
    assert Abs(sign(x)) == 0

    nz = Symbol('nz', nonzero=True, integer=True)
    assert sign(nz).is_imaginary is False
    assert sign(nz).is_integer is True
    assert sign(nz).is_extended_real is True
    assert sign(nz).is_zero is False
    assert sign(nz)**2 == 1
    assert (sign(nz)**3).args == (sign(nz), 3)

    assert sign(Symbol('x', nonnegative=True)).is_nonnegative
    assert sign(Symbol('x', nonnegative=True)).is_nonpositive is None
    assert sign(Symbol('x', nonpositive=True)).is_nonnegative is None
    assert sign(Symbol('x', nonpositive=True)).is_nonpositive
    assert sign(Symbol('x', extended_real=True)).is_nonnegative is None
    assert sign(Symbol('x', extended_real=True)).is_nonpositive is None
    assert sign(Symbol('x', extended_real=True, zero=False)).is_nonpositive is None

    x, y = Symbol('x', extended_real=True), Symbol('y')
    assert sign(x).rewrite(Piecewise) == \
        Piecewise((1, x > 0), (-1, x < 0), (0, True))
    assert sign(y).rewrite(Piecewise) == sign(y)
    assert sign(x).rewrite(Heaviside) == 2*Heaviside(x)-1
    assert sign(y).rewrite(Heaviside) == sign(y)

    # evaluate what can be evaluated
    assert sign(exp_polar(I*pi)*pi) is Integer(-1)

    eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))
    # if there is a fast way to know when and when you cannot prove an
    # expression like this is zero then the equality to zero is ok
    assert sign(eq) == 0
    q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6)
    p = cbrt(expand(q**3))
    d = p - q
    assert sign(d) == 0

    assert abs(sign(z)) == Abs(sign(z), evaluate=False)
Exemplo n.º 58
0
def test_polylog_eval():
    assert polylog(s, 0) == 0
    assert polylog(s, 1) == zeta(s)
    assert polylog(s, -1) == -dirichlet_eta(s)
    assert polylog(s, exp_polar(I*pi)) == polylog(s, -1)
    assert polylog(s, 2*exp_polar(2*I*pi)) == polylog(s, 2*exp_polar(2*I*pi), evaluate=False)
Exemplo n.º 59
0
def test_minimal_polynomial():
    assert minimal_polynomial(-7)(x) == x + 7
    assert minimal_polynomial(-1)(x) == x + 1
    assert minimal_polynomial( 0)(x) == x
    assert minimal_polynomial( 1)(x) == x - 1
    assert minimal_polynomial( 7)(x) == x - 7

    assert minimal_polynomial(Rational(1, 3), method='groebner')(x) == 3*x - 1

    pytest.raises(NotAlgebraic,
                  lambda: minimal_polynomial(pi, method='groebner'))
    pytest.raises(NotAlgebraic,
                  lambda: minimal_polynomial(sin(sqrt(2)), method='groebner'))
    pytest.raises(NotAlgebraic,
                  lambda: minimal_polynomial(2**pi, method='groebner'))

    pytest.raises(ValueError, lambda: minimal_polynomial(1, method='spam'))

    assert minimal_polynomial(sqrt(2))(x) == x**2 - 2
    assert minimal_polynomial(sqrt(5))(x) == x**2 - 5
    assert minimal_polynomial(sqrt(6))(x) == x**2 - 6

    assert minimal_polynomial(2*sqrt(2))(x) == x**2 - 8
    assert minimal_polynomial(3*sqrt(5))(x) == x**2 - 45
    assert minimal_polynomial(4*sqrt(6))(x) == x**2 - 96

    assert minimal_polynomial(2*sqrt(2) + 3)(x) == x**2 - 6*x + 1
    assert minimal_polynomial(3*sqrt(5) + 6)(x) == x**2 - 12*x - 9
    assert minimal_polynomial(4*sqrt(6) + 7)(x) == x**2 - 14*x - 47

    assert minimal_polynomial(2*sqrt(2) - 3)(x) == x**2 + 6*x + 1
    assert minimal_polynomial(3*sqrt(5) - 6)(x) == x**2 + 12*x - 9
    assert minimal_polynomial(4*sqrt(6) - 7)(x) == x**2 + 14*x - 47

    assert minimal_polynomial(sqrt(1 + sqrt(6)))(x) == x**4 - 2*x**2 - 5
    assert minimal_polynomial(sqrt(I + sqrt(6)))(x) == x**8 - 10*x**4 + 49

    assert minimal_polynomial(2*I + sqrt(2 + I))(x) == x**4 + 4*x**2 + 8*x + 37

    assert minimal_polynomial(sqrt(2) + sqrt(3))(x) == x**4 - 10*x**2 + 1
    assert minimal_polynomial(sqrt(2) + sqrt(3) + sqrt(6))(x) == x**4 - 22*x**2 - 48*x - 23

    e = 1/sqrt(sqrt(1 + sqrt(3)) - 4)
    assert minimal_polynomial(e) == minimal_polynomial(e, method='groebner')
    assert minimal_polynomial(e)(x) == (222*x**8 + 240*x**6 +
                                        94*x**4 + 16*x**2 + 1)

    a = 1 - 9*sqrt(2) + 7*sqrt(3)

    assert minimal_polynomial(1/a)(x) == 392*x**4 - 1232*x**3 + 612*x**2 + 4*x - 1
    assert minimal_polynomial(1/sqrt(a))(x) == 392*x**8 - 1232*x**6 + 612*x**4 + 4*x**2 - 1

    pytest.raises(NotAlgebraic, lambda: minimal_polynomial(oo))
    pytest.raises(NotAlgebraic, lambda: minimal_polynomial(2**y))
    pytest.raises(NotAlgebraic, lambda: minimal_polynomial(sin(1)))

    assert minimal_polynomial(sqrt(2))(x) == x**2 - 2

    assert minimal_polynomial(sqrt(2)) == PurePoly(x**2 - 2)
    assert minimal_polynomial(sqrt(2), method='groebner') == PurePoly(x**2 - 2)

    a = sqrt(2)
    b = sqrt(3)

    assert minimal_polynomial(b)(x) == x**2 - 3

    assert minimal_polynomial(a) == PurePoly(x**2 - 2)
    assert minimal_polynomial(b) == PurePoly(x**2 - 3)

    assert minimal_polynomial(sqrt(a)) == PurePoly(x**4 - 2)
    assert minimal_polynomial(a + 1) == PurePoly(x**2 - 2*x - 1)
    assert minimal_polynomial(sqrt(a/2 + 17))(x) == 2*x**4 - 68*x**2 + 577
    assert minimal_polynomial(sqrt(b/2 + 17))(x) == 4*x**4 - 136*x**2 + 1153

    # issue diofant/diofant#431
    K = QQ.algebraic_field(sqrt(2))
    theta = K.to_expr(K([Rational(1, 2), 17]))
    assert minimal_polynomial(theta)(x) == 2*x**2 - 68*x + 577

    K = QQ.algebraic_field(RootOf(x**7 + x - 1, 3))
    theta = K.to_expr(K([1, 2, 0, 0, 1]))
    ans = minimal_polynomial(theta)(x)
    assert ans == (x**7 - 7*x**6 + 19*x**5 - 27*x**4 + 63*x**3 -
                   115*x**2 + 82*x - 147)
    assert minimal_polynomial(theta, method='groebner')(x) == ans
    K = QQ.algebraic_field(RootOf(x**5 + 5*x - 1, 2))
    theta = K.to_expr(K([1, -1, 1]))
    ans = (x**30 - 15*x**28 - 10*x**27 + 135*x**26 + 330*x**25 - 705*x**24 -
           150*x**23 + 3165*x**22 - 6850*x**21 + 7182*x**20 + 3900*x**19 +
           4435*x**18 + 11970*x**17 - 259725*x**16 - 18002*x**15 +
           808215*x**14 - 200310*x**13 - 647115*x**12 + 299280*x**11 -
           1999332*x**10 + 910120*x**9 + 2273040*x**8 - 5560320*x**7 +
           5302000*x**6 - 2405376*x**5 + 1016640*x**4 - 804480*x**3 +
           257280*x**2 - 53760*x + 1280)
    assert minimal_polynomial(sqrt(theta) + root(theta, 3),
                              method='groebner')(x) == ans
    K1 = QQ.algebraic_field(RootOf(x**3 + 4*x - 15, 1))
    K2 = QQ.algebraic_field(RootOf(x**3 - x + 1, 0))
    theta = sqrt(1 + 1/(K1.to_expr(K1([1, 0, 1])) +
                        1/(sqrt(3) + K2.to_expr(K2([1, 2, -1])))))
    ans = (2262264837876687263*x**36 - 38939909597855051866*x**34 +
           315720420314462950715*x**32 - 1601958657418182606114*x**30 +
           5699493671077371036494*x**28 - 15096777696140985506150*x**26 +
           30847690820556462893974*x**24 - 49706549068200640994022*x**22 +
           64013601241426223813103*x**20 - 66358713088213594372990*x**18 +
           55482571280904904971976*x**16 - 37309340229165533529076*x**14 +
           20016999328983554519040*x**12 - 8446273798231518826782*x**10 +
           2738866994867366499481*x**8 - 657825125060873756424*x**6 +
           110036313740049140508*x**4 - 11416087328869938298*x**2 +
           551322649782053543)
    assert minimal_polynomial(theta)(x) == ans

    a = sqrt(2)/3 + 7
    f = 81*x**8 - 2268*x**6 - 4536*x**5 + 22644*x**4 + 63216*x**3 - \
        31608*x**2 - 189648*x + 141358

    assert minimal_polynomial(sqrt(a) + sqrt(sqrt(a)))(x) == f

    assert minimal_polynomial(a**Rational(3, 2))(x) == 729*x**4 - 506898*x**2 + 84604519

    K = QQ.algebraic_field(RootOf(x**3 + x - 1, 0))
    a = K.to_expr(K([1, 0]))
    assert minimal_polynomial(1/a**2)(x) == x**3 - x**2 - 2*x - 1

    # issue sympy/sympy#5994
    eq = (-1/(800*sqrt(Rational(-1, 240) + 1/(18000*cbrt(Rational(-1, 17280000) +
                                                         sqrt(15)*I/28800000)) + 2*cbrt(Rational(-1, 17280000) +
                                                                                        sqrt(15)*I/28800000))))
    assert minimal_polynomial(eq)(x) == 8000*x**2 - 1

    ex = 1 + sqrt(2) + sqrt(3)
    mp = minimal_polynomial(ex)(x)
    assert mp == x**4 - 4*x**3 - 4*x**2 + 16*x - 8

    ex = 1/(1 + sqrt(2) + sqrt(3))
    mp = minimal_polynomial(ex)(x)
    assert mp == 8*x**4 - 16*x**3 + 4*x**2 + 4*x - 1

    p = cbrt(expand((1 + sqrt(2) - 2*sqrt(3) + sqrt(7))**3))
    mp = minimal_polynomial(p)(x)
    assert mp == x**8 - 8*x**7 - 56*x**6 + 448*x**5 + 480*x**4 - 5056*x**3 + 1984*x**2 + 7424*x - 3008
    p = expand((1 + sqrt(2) - 2*sqrt(3) + sqrt(7))**3)
    mp = minimal_polynomial(p)(x)
    assert mp == x**8 - 512*x**7 - 118208*x**6 + 31131136*x**5 + 647362560*x**4 - 56026611712*x**3 + 116994310144*x**2 + 404854931456*x - 27216576512

    assert minimal_polynomial(-sqrt(5)/2 - Rational(1, 2) + (-sqrt(5)/2 - Rational(1, 2))**2)(x) == x - 1
    a = 1 + sqrt(2)
    assert minimal_polynomial((a*sqrt(2) + a)**3)(x) == x**2 - 198*x + 1

    p = 1/(1 + sqrt(2) + sqrt(3))
    assert minimal_polynomial(p, method='groebner')(x) == 8*x**4 - 16*x**3 + 4*x**2 + 4*x - 1

    p = 2/(1 + sqrt(2) + sqrt(3))
    assert minimal_polynomial(p, method='groebner')(x) == x**4 - 4*x**3 + 2*x**2 + 4*x - 2

    assert minimal_polynomial(1 + sqrt(2)*I, method='groebner')(x) == x**2 - 2*x + 3
    assert minimal_polynomial(1/(1 + sqrt(2)) + 1, method='groebner')(x) == x**2 - 2
    assert minimal_polynomial(sqrt(2)*I + I*(1 + sqrt(2)),
                              method='groebner')(x) == x**4 + 18*x**2 + 49

    assert minimal_polynomial(exp_polar(0))(x) == x - 1
Exemplo n.º 60
0
def test_expand():
    assert expand_func(besselj(Rational(1, 2), z).rewrite(jn)) == \
        sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
    assert expand_func(bessely(Rational(1, 2), z).rewrite(yn)) == \
        -sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))
    assert expand_func(besselj(I, z)) == besselj(I, z)

    # Test simplify helper
    assert simplify(besselj(Rational(1, 2), z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))

    # XXX: teach sin/cos to work around arguments like
    # x*exp_polar(I*pi*n/2).  Then change besselsimp -> expand_func
    assert besselsimp(besselj(Rational(1, 2), z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besselj(Rational(-1, 2), z)) == sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besselj(Rational(5, 2), z)) == \
        -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(besselj(-Rational(5, 2), z)) == \
        -sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(bessely(Rational(1, 2), z)) == \
        -(sqrt(2)*cos(z))/(sqrt(pi)*sqrt(z))
    assert besselsimp(bessely(Rational(-1, 2), z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(bessely(Rational(5, 2), z)) == \
        sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(bessely(Rational(-5, 2), z)) == \
        -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(besseli(Rational(1, 2), z)) == sqrt(2)*sinh(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besseli(Rational(-1, 2), z)) == \
        sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besseli(Rational(5, 2), z)) == \
        sqrt(2)*(z**2*sinh(z) - 3*z*cosh(z) + 3*sinh(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(besseli(Rational(-5, 2), z)) == \
        sqrt(2)*(z**2*cosh(z) - 3*z*sinh(z) + 3*cosh(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(besselk(Rational(1, 2), z)) == \
        besselsimp(besselk(Rational(-1, 2), z)) == sqrt(pi)*exp(-z)/(sqrt(2)*sqrt(z))
    assert besselsimp(besselk(Rational(5, 2), z)) == \
        besselsimp(besselk(Rational(-5, 2), z)) == \
        sqrt(2)*sqrt(pi)*(z**2 + 3*z + 3)*exp(-z)/(2*z**Rational(5, 2))

    def check(eq, ans):
        return tn(eq, ans) and eq == ans

    rn = randcplx(a=1, b=0, d=0, c=2)

    for besselx in [besselj, bessely, besseli, besselk]:
        ri = Rational(2*randint(-11, 10) + 1, 2)  # half integer in [-21/2, 21/2]
        assert tn(besselsimp(besselx(ri, z)), besselx(ri, z))

    assert check(expand_func(besseli(rn, x)),
                 besseli(rn - 2, x) - 2*(rn - 1)*besseli(rn - 1, x)/x)
    assert check(expand_func(besseli(-rn, x)),
                 besseli(-rn + 2, x) + 2*(-rn + 1)*besseli(-rn + 1, x)/x)

    assert check(expand_func(besselj(rn, x)),
                 -besselj(rn - 2, x) + 2*(rn - 1)*besselj(rn - 1, x)/x)
    assert check(expand_func(besselj(-rn, x)),
                 -besselj(-rn + 2, x) + 2*(-rn + 1)*besselj(-rn + 1, x)/x)

    assert check(expand_func(besselk(rn, x)),
                 besselk(rn - 2, x) + 2*(rn - 1)*besselk(rn - 1, x)/x)
    assert check(expand_func(besselk(-rn, x)),
                 besselk(-rn + 2, x) - 2*(-rn + 1)*besselk(-rn + 1, x)/x)

    assert check(expand_func(bessely(rn, x)),
                 -bessely(rn - 2, x) + 2*(rn - 1)*bessely(rn - 1, x)/x)
    assert check(expand_func(bessely(-rn, x)),
                 -bessely(-rn + 2, x) + 2*(-rn + 1)*bessely(-rn + 1, x)/x)

    n = Symbol('n', integer=True, positive=True)

    assert expand_func(besseli(n + 2, z)) == \
        besseli(n, z) + (-2*n - 2)*(-2*n*besseli(n, z)/z + besseli(n - 1, z))/z
    assert expand_func(besselj(n + 2, z)) == \
        -besselj(n, z) + (2*n + 2)*(2*n*besselj(n, z)/z - besselj(n - 1, z))/z
    assert expand_func(besselk(n + 2, z)) == \
        besselk(n, z) + (2*n + 2)*(2*n*besselk(n, z)/z + besselk(n - 1, z))/z
    assert expand_func(bessely(n + 2, z)) == \
        -bessely(n, z) + (2*n + 2)*(2*n*bessely(n, z)/z - bessely(n - 1, z))/z

    assert expand_func(besseli(n + Rational(1, 2), z).rewrite(jn)) == \
        (sqrt(2)*sqrt(z)*exp(-I*pi*(n + Rational(1, 2))/2) *
         exp_polar(I*pi/4)*jn(n, z*exp_polar(I*pi/2))/sqrt(pi))
    assert expand_func(besselj(n + Rational(1, 2), z).rewrite(jn)) == \
        sqrt(2)*sqrt(z)*jn(n, z)/sqrt(pi)

    r = Symbol('r', extended_real=True)
    p = Symbol('p', positive=True)
    i = Symbol('i', integer=True)

    for besselx in [besselj, bessely, besseli, besselk]:
        assert besselx(i, p).is_extended_real
        assert besselx(i, x).is_extended_real is None
        assert besselx(x, z).is_extended_real is None

    for besselx in [besselj, besseli]:
        assert besselx(i, r).is_extended_real
    for besselx in [bessely, besselk]:
        assert besselx(i, r).is_extended_real is None