def test_issue_7173(): assert laplace_transform(sinh(a*x)*cosh(a*x), x, s) == \ (a/(s**2 - 4*a**2), 0, And(Or(Abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) < pi/2, Abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) <= pi/2), Or(Abs(periodic_argument(a, oo)) < pi/2, Abs(periodic_argument(a, oo)) <= pi/2)))
def test_meijerg_eval(): a = randcplx() arg = x*exp_polar(k*pi*I) expr1 = pi*meijerg([[], [(a + 1)/2]], [[a/2], [-a/2, (a + 1)/2]], arg**2/4) expr2 = besseli(a, arg) # Test that the two expressions agree for all arguments. for x_ in [0.5, 1.5]: for k_ in [0.0, 0.1, 0.3, 0.5, 0.8, 1, 5.751, 15.3]: assert abs((expr1 - expr2).evalf(subs={x: x_, k: k_}, strict=False)) < 1e-10 assert abs((expr1 - expr2).evalf(subs={x: x_, k: -k_}, strict=False)) < 1e-10 # Test continuity independently eps = 1e-13 expr2 = expr1.subs({k: l}) for x_ in [0.5, 1.5]: for k_ in [0.5, Rational(1, 3), 0.25, 0.75, Rational(2, 3), 1.0, 1.5]: assert abs((expr1 - expr2).evalf( subs={x: x_, k: k_ + eps, l: k_ - eps})) < 1e-10 assert abs((expr1 - expr2).evalf( subs={x: x_, k: -k_ + eps, l: -k_ - eps})) < 1e-10 expr = (meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(-I*pi)/4) + meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(I*pi)/4)) \ / (2*sqrt(pi)) assert (expr - pi/exp(1)).evalf(chop=True) == 0
def t(func, hyp, z): """ Test that func is a valid representation of hyp. """ # First test that func agrees with hyp for small z if not tn(func.rewrite('nonrepsmall'), hyp, z, a=Rational(-1, 2), b=Rational(-1, 2), c=Rational(1, 2), d=Rational(1, 2)): return False # Next check that the two small representations agree. if not tn( func.rewrite('nonrepsmall').subs({z: exp_polar(I*pi)*z}).replace(exp_polar, exp), func.subs({z: exp_polar(I*pi)*z}).rewrite('nonrepsmall'), z, a=Rational(-1, 2), b=Rational(-1, 2), c=Rational(1, 2), d=Rational(1, 2)): return False # Next check continuity along exp_polar(I*pi)*t expr = func.subs({z: exp_polar(I*pi)*z}).rewrite('nonrep') if abs(expr.subs({z: 1 + 1e-15}) - expr.subs({z: 1 - 1e-15})).evalf(strict=False) > 1e-10: return False # Finally check continuity of the big reps. def dosubs(func, a, b): rv = func.subs({z: exp_polar(a)*z}).rewrite('nonrep') return rv.subs({z: exp_polar(b)*z}).replace(exp_polar, exp) for n in [0, 1, 2, 3, 4, -1, -2, -3, -4]: expr1 = dosubs(func, 2*I*pi*n, I*pi/2) expr2 = dosubs(func, 2*I*pi*n + I*pi, -I*pi/2) if not tn(expr1, expr2, z): return False expr1 = dosubs(func, 2*I*pi*(n + 1), -I*pi/2) expr2 = dosubs(func, 2*I*pi*n + I*pi, I*pi/2) if not tn(expr1, expr2, z): return False return True
def test_ei(): pos = Symbol('p', positive=True) neg = Symbol('n', negative=True) assert Ei(-pos) == Ei(polar_lift(-1) * pos) - I * pi assert Ei(neg) == Ei(polar_lift(neg)) - I * pi assert tn_branch(Ei) assert mytd(Ei(x), exp(x) / x, x) assert mytn(Ei(x), Ei(x).rewrite(uppergamma), -uppergamma(0, x * polar_lift(-1)) - I * pi, x) assert mytn(Ei(x), Ei(x).rewrite(expint), -expint(1, x * polar_lift(-1)) - I * pi, x) assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x) assert Ei(x * exp_polar(2 * I * pi)) == Ei(x) + 2 * I * pi assert Ei(x * exp_polar(-2 * I * pi)) == Ei(x) - 2 * I * pi assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x) assert mytn(Ei(x * polar_lift(I)), Ei(x * polar_lift(I)).rewrite(Si), Ci(x) + I * Si(x) + I * pi / 2, x) assert Ei(log(x)).rewrite(li) == li(x) assert Ei(2 * log(x)).rewrite(li) == li(x**2) assert Ei(x).series(x) == EulerGamma + log(x) + x + x**2/4 + \ x**3/18 + x**4/96 + x**5/600 + O(x**6)
def t(func, hyp, z): """Test that func is a valid representation of hyp.""" # First test that func agrees with hyp for small z if not tn(func.rewrite('nonrepsmall'), hyp, z, a=Rational(-1, 2), b=Rational(-1, 2), c=Rational(1, 2), d=Rational(1, 2)): return False # Next check that the two small representations agree. if not tn( func.rewrite('nonrepsmall').subs({z: exp_polar(I*pi)*z}).replace(exp_polar, exp), func.subs({z: exp_polar(I*pi)*z}).rewrite('nonrepsmall'), z, a=Rational(-1, 2), b=Rational(-1, 2), c=Rational(1, 2), d=Rational(1, 2)): return False # Next check continuity along exp_polar(I*pi)*t expr = func.subs({z: exp_polar(I*pi)*z}).rewrite('nonrep') if abs(expr.subs({z: 1 + 1e-15}) - expr.subs({z: 1 - 1e-15})).evalf(strict=False) > 1e-10: return False # Finally check continuity of the big reps. def dosubs(func, a, b): rv = func.subs({z: exp_polar(a)*z}).rewrite('nonrep') return rv.subs({z: exp_polar(b)*z}).replace(exp_polar, exp) for n in [0, 1, 2, 3, 4, -1, -2, -3, -4]: expr1 = dosubs(func, 2*I*pi*n, I*pi/2) expr2 = dosubs(func, 2*I*pi*n + I*pi, -I*pi/2) if not tn(expr1, expr2, z): return False expr1 = dosubs(func, 2*I*pi*(n + 1), -I*pi/2) expr2 = dosubs(func, 2*I*pi*n + I*pi, I*pi/2) if not tn(expr1, expr2, z): return False return True
def test_ei(): pos = Symbol('p', positive=True) neg = Symbol('n', negative=True) assert Ei(0) == -oo assert Ei(+oo) == oo assert Ei(-oo) == 0 assert Ei(-pos) == Ei(polar_lift(-1) * pos) - I * pi assert Ei(neg) == Ei(polar_lift(neg)) - I * pi assert tn_branch(Ei) assert mytd(Ei(x), exp(x) / x, x) assert mytn(Ei(x), Ei(x).rewrite(uppergamma), -uppergamma(0, x * polar_lift(-1)) - I * pi, x) assert mytn(Ei(x), Ei(x).rewrite(expint), -expint(1, x * polar_lift(-1)) - I * pi, x) assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x) assert Ei(x * exp_polar(2 * I * pi)) == Ei(x) + 2 * I * pi assert Ei(x * exp_polar(-2 * I * pi)) == Ei(x) - 2 * I * pi assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x) assert mytn(Ei(x * polar_lift(I)), Ei(x * polar_lift(I)).rewrite(Si), Ci(x) + I * Si(x) + I * pi / 2, x) assert Ei(log(x)).rewrite(li) == li(x) assert Ei(2 * log(x)).rewrite(li) == li(x**2) assert Ei(x).series(x) == (EulerGamma + log(x) + x + x**2 / 4 + x**3 / 18 + x**4 / 96 + x**5 / 600 + O(x**6)) assert Ei(1 + x).series(x) == (Ei(1) + E * x + E * x**3 / 6 - E * x**4 / 12 + 3 * E * x**5 / 40 + O(x**6)) pytest.raises(ArgumentIndexError, lambda: Ei(x).fdiff(2))
def test_polylog_eval(): assert polylog(s, 0) == 0 assert polylog(s, 1) == zeta(s) assert polylog(s, -1) == -dirichlet_eta(s) assert polylog(s, exp_polar(I * pi)) == polylog(s, -1) assert polylog(s, 2 * exp_polar(2 * I * pi)) == polylog( s, 2 * exp_polar(2 * I * pi), evaluate=False)
def test_branching(): assert besselj(polar_lift(k), x) == besselj(k, x) assert besseli(polar_lift(k), x) == besseli(k, x) n = Symbol('n', integer=True) assert besselj(n, exp_polar(2*pi*I)*x) == besselj(n, x) assert besselj(n, polar_lift(x)) == besselj(n, x) assert besseli(n, exp_polar(2*pi*I)*x) == besseli(n, x) assert besseli(n, polar_lift(x)) == besseli(n, x) def tn(func, s): c = uniform(1, 5) expr = func(s, c*exp_polar(I*pi)) - func(s, c*exp_polar(-I*pi)) eps = 1e-15 expr2 = func(s + eps, -c + eps*I) - func(s + eps, -c - eps*I) return abs(expr - expr2).evalf(strict=False) < 1e-10 nu = Symbol('nu') assert besselj(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besselj(nu, x) assert besseli(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besseli(nu, x) assert tn(besselj, 2) assert tn(besselj, pi) assert tn(besselj, I) assert tn(besseli, 2) assert tn(besseli, pi) assert tn(besseli, I)
def test_branching(): from diofant import exp_polar, polar_lift, Symbol, I, exp assert besselj(polar_lift(k), x) == besselj(k, x) assert besseli(polar_lift(k), x) == besseli(k, x) n = Symbol('n', integer=True) assert besselj(n, exp_polar(2 * pi * I) * x) == besselj(n, x) assert besselj(n, polar_lift(x)) == besselj(n, x) assert besseli(n, exp_polar(2 * pi * I) * x) == besseli(n, x) assert besseli(n, polar_lift(x)) == besseli(n, x) def tn(func, s): from random import uniform c = uniform(1, 5) expr = func(s, c * exp_polar(I * pi)) - func(s, c * exp_polar(-I * pi)) eps = 1e-15 expr2 = func(s + eps, -c + eps * I) - func(s + eps, -c - eps * I) return abs(expr.n() - expr2.n()).n() < 1e-10 nu = Symbol('nu') assert besselj(nu, exp_polar(2 * pi * I) * x) == exp(2 * pi * I * nu) * besselj(nu, x) assert besseli(nu, exp_polar(2 * pi * I) * x) == exp(2 * pi * I * nu) * besseli(nu, x) assert tn(besselj, 2) assert tn(besselj, pi) assert tn(besselj, I) assert tn(besseli, 2) assert tn(besseli, pi) assert tn(besseli, I)
def test_matplotlib_advanced(): """Examples from the 'advanced' notebook.""" try: name = 'test' tmp_file = TmpFileManager.tmp_file s = summation(1 / x**y, (x, 1, oo)) p = plot(s, (y, 2, 10)) p.save(tmp_file('%s_advanced_inf_sum' % name)) p = plot(summation(1 / x, (x, 1, y)), (y, 2, 10), show=False) p[0].only_integers = True p[0].steps = True p.save(tmp_file('%s_advanced_fin_sum' % name)) ### # Test expressions that can not be translated to np and # generate complex results. ### plot(sin(x) + I * cos(x)).save(tmp_file()) plot(sqrt(sqrt(-x))).save(tmp_file()) plot(LambertW(x)).save(tmp_file()) plot(sqrt(LambertW(x))).save(tmp_file()) # Characteristic function of a StudentT distribution with nu=10 plot((meijerg( ((1 / 2, ), ()), ((5, 0, 1 / 2), ()), 5 * x**2 * exp_polar(-I * pi) / 2) + meijerg( ((1 / 2, ), ()), ((5, 0, 1 / 2), ()), 5 * x**2 * exp_polar(I * pi) / 2)) / (48 * pi), (x, 1e-6, 1e-2)).save(tmp_file()) finally: TmpFileManager.cleanup()
def test_ei(): pos = Symbol('p', positive=True) neg = Symbol('n', negative=True) assert Ei(0) == -oo assert Ei(+oo) == oo assert Ei(-oo) == 0 assert Ei(-pos) == Ei(polar_lift(-1)*pos) - I*pi assert Ei(neg) == Ei(polar_lift(neg)) - I*pi assert tn_branch(Ei) assert mytd(Ei(x), exp(x)/x, x) assert mytn(Ei(x), Ei(x).rewrite(uppergamma), -uppergamma(0, x*polar_lift(-1)) - I*pi, x) assert mytn(Ei(x), Ei(x).rewrite(expint), -expint(1, x*polar_lift(-1)) - I*pi, x) assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x) assert Ei(x*exp_polar(2*I*pi)) == Ei(x) + 2*I*pi assert Ei(x*exp_polar(-2*I*pi)) == Ei(x) - 2*I*pi assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x) assert mytn(Ei(x*polar_lift(I)), Ei(x*polar_lift(I)).rewrite(Si), Ci(x) + I*Si(x) + I*pi/2, x) assert Ei(log(x)).rewrite(li) == li(x) assert Ei(2*log(x)).rewrite(li) == li(x**2) assert Ei(x).series(x) == (EulerGamma + log(x) + x + x**2/4 + x**3/18 + x**4/96 + x**5/600 + O(x**6)) assert Ei(1 + x).series(x) == (Ei(1) + E*x + E*x**3/6 - E*x**4/12 + 3*E*x**5/40 + O(x**6)) pytest.raises(ArgumentIndexError, lambda: Ei(x).fdiff(2))
def test_matplotlib_advanced(): """Examples from the 'advanced' notebook.""" try: name = 'test' tmp_file = TmpFileManager.tmp_file s = summation(1/x**y, (x, 1, oo)) p = plot(s, (y, 2, 10)) p.save(tmp_file('%s_advanced_inf_sum' % name)) p = plot(summation(1/x, (x, 1, y)), (y, 2, 10), show=False) p[0].only_integers = True p[0].steps = True p.save(tmp_file('%s_advanced_fin_sum' % name)) ### # Test expressions that can not be translated to np and # generate complex results. ### plot(sin(x) + I*cos(x)).save(tmp_file()) plot(sqrt(sqrt(-x))).save(tmp_file()) plot(LambertW(x)).save(tmp_file()) plot(sqrt(LambertW(x))).save(tmp_file()) # Characteristic function of a StudentT distribution with nu=10 plot((meijerg(((1 / 2,), ()), ((5, 0, 1 / 2), ()), 5 * x**2 * exp_polar(-I*pi)/2) + meijerg(((1/2,), ()), ((5, 0, 1/2), ()), 5*x**2 * exp_polar(I*pi)/2)) / (48 * pi), (x, 1e-6, 1e-2)).save(tmp_file()) finally: TmpFileManager.cleanup()
def tn(func, s): from random import uniform c = uniform(1, 5) expr = func(s, c * exp_polar(I * pi)) - func(s, c * exp_polar(-I * pi)) eps = 1e-15 expr2 = func(s + eps, -c + eps * I) - func(s + eps, -c - eps * I) return abs(expr.n() - expr2.n()).n() < 1e-10
def test_branching(): assert besselj(polar_lift(k), x) == besselj(k, x) assert besseli(polar_lift(k), x) == besseli(k, x) n = Symbol('n', integer=True) assert besselj(n, exp_polar(2 * pi * I) * x) == besselj(n, x) assert besselj(n, polar_lift(x)) == besselj(n, x) assert besseli(n, exp_polar(2 * pi * I) * x) == besseli(n, x) assert besseli(n, polar_lift(x)) == besseli(n, x) def tn(func, s): c = uniform(1, 5) expr = func(s, c * exp_polar(I * pi)) - func(s, c * exp_polar(-I * pi)) eps = 1e-15 expr2 = func(s + eps, -c + eps * I) - func(s + eps, -c - eps * I) return abs(expr - expr2).evalf(strict=False) < 1e-10 nu = Symbol('nu') assert besselj(nu, exp_polar(2 * pi * I) * x) == exp(2 * pi * I * nu) * besselj(nu, x) assert besseli(nu, exp_polar(2 * pi * I) * x) == exp(2 * pi * I * nu) * besseli(nu, x) assert tn(besselj, 2) assert tn(besselj, pi) assert tn(besselj, I) assert tn(besseli, 2) assert tn(besseli, pi) assert tn(besseli, I)
def test_sympyissue_7173(): assert laplace_transform(sinh(a*x)*cosh(a*x), x, s) == \ (a/(s**2 - 4*a**2), 0, And(Or(Abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) < pi/2, Abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) <= pi/2), Or(Abs(periodic_argument(a, oo)) < pi/2, Abs(periodic_argument(a, oo)) <= pi/2)))
def test_gamma(): assert gamma(nan) == nan assert gamma(oo) == oo assert gamma(-100) == zoo assert gamma(0) == zoo assert gamma(1) == 1 assert gamma(2) == 1 assert gamma(3) == 2 assert gamma(102) == factorial(101) assert gamma(Rational(1, 2)) == sqrt(pi) assert gamma(Rational(3, 2)) == Rational(1, 2)*sqrt(pi) assert gamma(Rational(5, 2)) == Rational(3, 4)*sqrt(pi) assert gamma(Rational(7, 2)) == Rational(15, 8)*sqrt(pi) assert gamma(Rational(-1, 2)) == -2*sqrt(pi) assert gamma(Rational(-3, 2)) == Rational(4, 3)*sqrt(pi) assert gamma(Rational(-5, 2)) == -Rational(8, 15)*sqrt(pi) assert gamma(Rational(-15, 2)) == Rational(256, 2027025)*sqrt(pi) assert gamma(Rational( -11, 8)).expand(func=True) == Rational(64, 33)*gamma(Rational(5, 8)) assert gamma(Rational( -10, 3)).expand(func=True) == Rational(81, 280)*gamma(Rational(2, 3)) assert gamma(Rational( 14, 3)).expand(func=True) == Rational(880, 81)*gamma(Rational(2, 3)) assert gamma(Rational( 17, 7)).expand(func=True) == Rational(30, 49)*gamma(Rational(3, 7)) assert gamma(Rational( 19, 8)).expand(func=True) == Rational(33, 64)*gamma(Rational(3, 8)) assert gamma(x).diff(x) == gamma(x)*polygamma(0, x) pytest.raises(ArgumentIndexError, lambda: gamma(x).fdiff(2)) assert gamma(x - 1).expand(func=True) == gamma(x)/(x - 1) assert gamma(x + 2).expand(func=True, mul=False) == x*(x + 1)*gamma(x) assert conjugate(gamma(x)) == gamma(conjugate(x)) assert expand_func(gamma(x + Rational(3, 2))) == \ (x + Rational(1, 2))*gamma(x + Rational(1, 2)) assert expand_func(gamma(x - Rational(1, 2))) == \ gamma(Rational(1, 2) + x)/(x - Rational(1, 2)) # Test a bug: assert expand_func(gamma(x + Rational(3, 4))) == gamma(x + Rational(3, 4)) assert gamma(3*exp_polar(I*pi)/4).is_nonnegative is False assert gamma(3*exp_polar(I*pi)/4).is_nonpositive is True # Issue sympy/sympy#8526 k = Symbol('k', integer=True, nonnegative=True) assert isinstance(gamma(k), gamma) assert gamma(-k) == zoo
def tn_branch(s, func): from diofant import I, pi, exp_polar from random import uniform c = uniform(1, 5) expr = func(s, c * exp_polar(I * pi)) - func(s, c * exp_polar(-I * pi)) eps = 1e-15 expr2 = func(s + eps, -c + eps * I) - func(s + eps, -c - eps * I) return abs(expr.n() - expr2.n()).n() < 1e-10
def tn_arg(func): def test(arg, e1, e2): v = uniform(1, 5) v1 = func(arg * x).subs({x: v}).evalf(strict=False) v2 = func(e1 * v + e2 * 1e-15).evalf(strict=False) return abs(v1 - v2).evalf(strict=False) < 1e-10 return test(exp_polar(I*pi/2), I, 1) and \ test(exp_polar(-I*pi/2), -I, 1) and \ test(exp_polar(I*pi), -1, I) and \ test(exp_polar(-I*pi), -1, -I)
def tn_branch(func, s=None): def fn(x): if s is None: return func(x) return func(s, x) c = uniform(1, 5) expr = fn(c*exp_polar(I*pi)) - fn(c*exp_polar(-I*pi)) eps = 1e-15 expr2 = fn(-c + eps*I) - fn(-c - eps*I) return abs(expr - expr2).evalf(strict=False) < 1e-10
def tn_arg(func): def test(arg, e1, e2): v = uniform(1, 5) v1 = func(arg*x).subs({x: v}).evalf(strict=False) v2 = func(e1*v + e2*1e-15).evalf(strict=False) return abs(v1 - v2).evalf(strict=False) < 1e-10 return test(exp_polar(I*pi/2), I, 1) and \ test(exp_polar(-I*pi/2), -I, 1) and \ test(exp_polar(I*pi), -1, I) and \ test(exp_polar(-I*pi), -1, -I)
def test_principal_branch(): p = Symbol('p', positive=True) neg = Symbol('x', negative=True) assert principal_branch(polar_lift(x), p) == principal_branch(x, p) assert principal_branch(polar_lift(2 + I), p) == principal_branch(2 + I, p) assert principal_branch(2 * x, p) == 2 * principal_branch(x, p) assert principal_branch(1, pi) == exp_polar(0) assert principal_branch(-1, 2 * pi) == exp_polar(I * pi) assert principal_branch(-1, pi) == exp_polar(0) assert principal_branch(exp_polar(3*pi*I)*x, 2*pi) == \ principal_branch(exp_polar(I*pi)*x, 2*pi) assert principal_branch(neg * exp_polar(pi * I), 2 * pi) == neg * exp_polar(-I * pi) assert N_equals(principal_branch((1 + I)**2, 2 * pi), 2 * I) assert N_equals(principal_branch((1 + I)**2, 3 * pi), 2 * I) assert N_equals(principal_branch((1 + I)**2, 1 * pi), 2 * I) # test argument sanitization assert isinstance(principal_branch(x, I), principal_branch) assert isinstance(principal_branch(x, -4), principal_branch) assert isinstance(principal_branch(x, -oo), principal_branch) assert isinstance(principal_branch(x, zoo), principal_branch) assert (principal_branch((4 + I)**2, 2 * pi).evalf() == principal_branch( (4 + I)**2, 2 * pi)) assert principal_branch(exp_polar(-I * pi) * polar_lift(-1 - I), 2 * pi) == sqrt(2) * exp_polar(I * pi / 4)
def test_expint(): assert mytn(expint(x, y), expint(x, y).rewrite(uppergamma), y**(x - 1) * uppergamma(1 - x, y), x) assert mytd(expint(x, y), -y**(x - 1) * meijerg([], [1, 1], [0, 0, 1 - x], [], y), x) assert mytd(expint(x, y), -expint(x - 1, y), y) assert mytn(expint(1, x), expint(1, x).rewrite(Ei), -Ei(x * polar_lift(-1)) + I * pi, x) assert expint(-4, x) == exp(-x)/x + 4*exp(-x)/x**2 + 12*exp(-x)/x**3 \ + 24*exp(-x)/x**4 + 24*exp(-x)/x**5 assert expint(-Rational(3, 2), x) == \ exp(-x)/x + 3*exp(-x)/(2*x**2) - 3*sqrt(pi)*erf(sqrt(x))/(4*x**Rational(5, 2)) \ + 3*sqrt(pi)/(4*x**Rational(5, 2)) assert tn_branch(expint, 1) assert tn_branch(expint, 2) assert tn_branch(expint, 3) assert tn_branch(expint, 1.7) assert tn_branch(expint, pi) assert expint(y, x*exp_polar(2*I*pi)) == \ x**(y - 1)*(exp(2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x) assert expint(y, x*exp_polar(-2*I*pi)) == \ x**(y - 1)*(exp(-2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x) assert expint(2, x * exp_polar(2 * I * pi)) == 2 * I * pi * x + expint(2, x) assert expint(2, x * exp_polar(-2 * I * pi)) == -2 * I * pi * x + expint(2, x) assert expint(1, x).rewrite(Ei).rewrite(expint) == expint(1, x) assert mytn(E1(x), E1(x).rewrite(Shi), Shi(x) - Chi(x), x) assert mytn(E1(polar_lift(I) * x), E1(polar_lift(I) * x).rewrite(Si), -Ci(x) + I * Si(x) - I * pi / 2, x) assert mytn(expint(2, x), expint(2, x).rewrite(Ei).rewrite(expint), -x * E1(x) + exp(-x), x) assert mytn(expint(3, x), expint(3, x).rewrite(Ei).rewrite(expint), x**2 * E1(x) / 2 + (1 - x) * exp(-x) / 2, x) assert expint(Rational(3, 2), z).nseries(z, n=10) == \ 2 + 2*z - z**2/3 + z**3/15 - z**4/84 + z**5/540 - \ 2*sqrt(pi)*sqrt(z) + O(z**6) assert E1(z).series(z) == -EulerGamma - log(z) + z - \ z**2/4 + z**3/18 - z**4/96 + z**5/600 + O(z**6) assert expint(4, z).series(z) == Rational(1, 3) - z/2 + z**2/2 + \ z**3*(log(z)/6 - Rational(11, 36) + EulerGamma/6) - z**4/24 + \ z**5/240 + O(z**6)
def tn_arg(func): def test(arg, e1, e2): from random import uniform v = uniform(1, 5) v1 = func(arg*x).subs(x, v).n() v2 = func(e1*v + e2*1e-15).n() return abs(v1 - v2).n() < 1e-10 return test(exp_polar(I*pi/2), I, 1) and \ test(exp_polar(-I*pi/2), -I, 1) and \ test(exp_polar(I*pi), -1, I) and \ test(exp_polar(-I*pi), -1, -I)
def tn_branch(func, s=None): def fn(x): if s is None: return func(x) return func(s, x) c = uniform(1, 5) expr = fn(c * exp_polar(I * pi)) - fn(c * exp_polar(-I * pi)) eps = 1e-15 expr2 = fn(-c + eps * I) - fn(-c - eps * I) return abs(expr - expr2).evalf(strict=False) < 1e-10
def test_laplace_transform_2(): LT = laplace_transform # issue sympy/sympy#7173 assert LT(sinh(a*x)*cosh(a*x), x, s) == \ (a/(s**2 - 4*a**2), 0, And(Or(abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) < pi/2, abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) <= pi/2), Or(abs(periodic_argument(a, oo)) < pi/2, abs(periodic_argument(a, oo)) <= pi/2))) # issues sympy/sympy#8368 and sympy/sympy#7173 assert LT(sinh(x) * cosh(x), x, s) == (1 / (s**2 - 4), 2, Ne(s / 2, 1))
def test_si(): assert Si(I * x) == I * Shi(x) assert Shi(I * x) == I * Si(x) assert Si(-I * x) == -I * Shi(x) assert Shi(-I * x) == -I * Si(x) assert Si(-x) == -Si(x) assert Shi(-x) == -Shi(x) assert Si(exp_polar(2 * pi * I) * x) == Si(x) assert Si(exp_polar(-2 * pi * I) * x) == Si(x) assert Shi(exp_polar(2 * pi * I) * x) == Shi(x) assert Shi(exp_polar(-2 * pi * I) * x) == Shi(x) assert Si(oo) == pi / 2 assert Si(-oo) == -pi / 2 assert Shi(oo) == oo assert Shi(-oo) == -oo assert mytd(Si(x), sin(x) / x, x) assert mytd(Shi(x), sinh(x) / x, x) assert mytn( Si(x), Si(x).rewrite(Ei), -I * (-Ei(x * exp_polar(-I * pi / 2)) / 2 + Ei(x * exp_polar(I * pi / 2)) / 2 - I * pi) + pi / 2, x) assert mytn( Si(x), Si(x).rewrite(expint), -I * (-expint(1, x * exp_polar(-I * pi / 2)) / 2 + expint(1, x * exp_polar(I * pi / 2)) / 2) + pi / 2, x) assert mytn(Shi(x), Shi(x).rewrite(Ei), Ei(x) / 2 - Ei(x * exp_polar(I * pi)) / 2 + I * pi / 2, x) assert mytn( Shi(x), Shi(x).rewrite(expint), expint(1, x) / 2 - expint(1, x * exp_polar(I * pi)) / 2 - I * pi / 2, x) assert tn_arg(Si) assert tn_arg(Shi) assert Si(x).nseries(x, n=8) == \ x - x**3/18 + x**5/600 - x**7/35280 + O(x**9) assert Shi(x).nseries(x, n=8) == \ x + x**3/18 + x**5/600 + x**7/35280 + O(x**9) assert Si(sin(x)).nseries( x, n=5) == x - 2 * x**3 / 9 + 17 * x**5 / 450 + O(x**7) assert Si(x).series(x, 1, n=3) == \ Si(1) + (x - 1)*sin(1) + (x - 1)**2*(-sin(1)/2 + cos(1)/2) + O((x - 1)**3, (x, 1)) pytest.raises(ArgumentIndexError, lambda: Si(z).fdiff(2))
def tn_branch(func, s=None): from diofant import I, pi, exp_polar from random import uniform def fn(x): if s is None: return func(x) return func(s, x) c = uniform(1, 5) expr = fn(c*exp_polar(I*pi)) - fn(c*exp_polar(-I*pi)) eps = 1e-15 expr2 = fn(-c + eps*I) - fn(-c - eps*I) return abs(expr.n() - expr2.n()).n() < 1e-10
def test_besselsimp(): assert besselsimp(exp(-I*pi*y/2)*besseli(y, z*exp_polar(I*pi/2))) == \ besselj(y, z) assert besselsimp(exp(-I*pi*a/2)*besseli(a, 2*sqrt(x)*exp_polar(I*pi/2))) == \ besselj(a, 2*sqrt(x)) assert besselsimp(sqrt(2)*sqrt(pi)*root(x, 4)*exp(I*pi/4)*exp(-I*pi*a/2) * besseli(-Rational(1, 2), sqrt(x)*exp_polar(I*pi/2)) * besseli(a, sqrt(x)*exp_polar(I*pi/2))/2) == \ besselj(a, sqrt(x)) * cos(sqrt(x)) assert besselsimp(besseli(Rational(-1, 2), z)) == \ sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(besseli(a, z*exp_polar(-I*pi/2))) == \ exp(-I*pi*a/2)*besselj(a, z) assert cosine_transform(1/t*sin(a/t), t, y) == \ sqrt(2)*sqrt(pi)*besselj(0, 2*sqrt(a)*sqrt(y))/2
def test_lerchphi(): from diofant import combsimp, exp_polar, polylog, log, lerchphi assert hyperexpand(hyper([1, a], [a + 1], z) / a) == lerchphi(z, 1, a) assert hyperexpand(hyper([1, a, a], [a + 1, a + 1], z) / a**2) == lerchphi( z, 2, a) assert hyperexpand(hyper([1, a, a, a], [a + 1, a + 1, a + 1], z)/a**3) == \ lerchphi(z, 3, a) assert hyperexpand(hyper([1] + [a]*10, [a + 1]*10, z)/a**10) == \ lerchphi(z, 10, a) assert combsimp( hyperexpand(meijerg([0, 1 - a], [], [0], [-a], exp_polar(-I * pi) * z))) == lerchphi(z, 1, a) assert combsimp( hyperexpand( meijerg([0, 1 - a, 1 - a], [], [0], [-a, -a], exp_polar(-I * pi) * z))) == lerchphi(z, 2, a) assert combsimp( hyperexpand( meijerg([0, 1 - a, 1 - a, 1 - a], [], [0], [-a, -a, -a], exp_polar(-I * pi) * z))) == lerchphi(z, 3, a) assert hyperexpand(z * hyper([1, 1], [2], z)) == -log(1 + -z) assert hyperexpand(z * hyper([1, 1, 1], [2, 2], z)) == polylog(2, z) assert hyperexpand(z * hyper([1, 1, 1, 1], [2, 2, 2], z)) == polylog(3, z) assert hyperexpand(hyper([1, a, 1 + Rational(1, 2)], [a + 1, Rational(1, 2)], z)) == \ -2*a/(z - 1) + (-2*a**2 + a)*lerchphi(z, 1, a) # Now numerical tests. These make sure reductions etc are carried out # correctly # a rational function (polylog at negative integer order) assert can_do([2, 2, 2], [1, 1]) # NOTE these contain log(1-x) etc ... better make sure we have |z| < 1 # reduction of order for polylog assert can_do([1, 1, 1, b + 5], [2, 2, b], div=10) # reduction of order for lerchphi # XXX lerchphi in mpmath is flaky assert can_do([1, a, a, a, b + 5], [a + 1, a + 1, a + 1, b], numerical=False) # test a bug from diofant import Abs assert hyperexpand(hyper([Rational(1, 2), Rational(1, 2), Rational(1, 2), 1], [Rational(3, 2), Rational(3, 2), Rational(3, 2)], Rational(1, 4))) == \ Abs(-polylog(3, exp_polar(I*pi)/2) + polylog(3, Rational(1, 2)))
def test_branch_bug(): assert hyperexpand(hyper((-Rational(1, 3), Rational(1, 2)), (Rational(2, 3), Rational(3, 2)), -z)) == \ -z**Rational(1, 3)*lowergamma(exp_polar(I*pi)/3, z)/5 \ + sqrt(pi)*erf(sqrt(z))/(5*sqrt(z)) assert hyperexpand(meijerg([Rational(7, 6), 1], [], [Rational(2, 3)], [Rational(1, 6), 0], z)) == \ 2*z**Rational(2, 3)*(2*sqrt(pi)*erf(sqrt(z))/sqrt(z) - 2*lowergamma(Rational(2, 3), z)/z**Rational(2, 3))*gamma(Rational(2, 3))/gamma(Rational(5, 3))
def test_hyper_unpolarify(): a = exp_polar(2 * pi * I) * x b = x assert hyper([], [], a).argument == b assert hyper([0], [], a).argument == a assert hyper([0], [0], a).argument == b assert hyper([0, 1], [0], a).argument == a
def test_meijerg_with_Floats(): # see sympy/sympy#10681 f = meijerg(((3.0, 1), ()), ((Rational(3, 2),), (0,)), z) a = -2.3632718012073 g = a*z**Rational(3, 2)*hyper((-0.5, Rational(3, 2)), (Rational(5, 2),), z*exp_polar(I*pi)) assert RR.almosteq((hyperexpand(f)/g).n(), 1.0, 1e-12)
def test_branch_bug(): assert hyperexpand(hyper((-Rational(1, 3), Rational(1, 2)), (Rational(2, 3), Rational(3, 2)), -z)) == \ -cbrt(z)*lowergamma(exp_polar(I*pi)/3, z)/5 \ + sqrt(pi)*erf(sqrt(z))/(5*sqrt(z)) assert hyperexpand(meijerg([Rational(7, 6), 1], [], [Rational(2, 3)], [Rational(1, 6), 0], z)) == \ 2*z**Rational(2, 3)*(2*sqrt(pi)*erf(sqrt(z))/sqrt(z) - 2*lowergamma(Rational(2, 3), z)/z**Rational(2, 3))*gamma(Rational(2, 3))/gamma(Rational(5, 3))
def test_hyper_unpolarify(): a = exp_polar(2*pi*I)*x b = x assert hyper([], [], a).argument == b assert hyper([0], [], a).argument == a assert hyper([0], [0], a).argument == b assert hyper([0, 1], [0], a).argument == a
def test_meijerg_expand(): from diofant import combsimp, simplify # from mpmath docs assert hyperexpand(meijerg([[], []], [[0], []], -z)) == exp(z) assert hyperexpand(meijerg([[1, 1], []], [[1], [0]], z)) == \ log(z + 1) assert hyperexpand(meijerg([[1, 1], []], [[1], [1]], z)) == \ z/(z + 1) assert hyperexpand(meijerg([[], []], [[Rational(1, 2)], [0]], (z/2)**2)) \ == sin(z)/sqrt(pi) assert hyperexpand(meijerg([[], []], [[0], [Rational(1, 2)]], (z/2)**2)) \ == cos(z)/sqrt(pi) assert can_do_meijer([], [a], [a - 1, a - S.Half], []) assert can_do_meijer([], [], [a / 2], [-a / 2], False) # branches... assert can_do_meijer([a], [b], [a], [b, a - 1]) # wikipedia assert hyperexpand(meijerg([1], [], [], [0], z)) == \ Piecewise((0, abs(z) < 1), (1, abs(1/z) < 1), (meijerg([1], [], [], [0], z), True)) assert hyperexpand(meijerg([], [1], [0], [], z)) == \ Piecewise((1, abs(z) < 1), (0, abs(1/z) < 1), (meijerg([], [1], [0], [], z), True)) # The Special Functions and their Approximations assert can_do_meijer([], [], [a + b / 2], [a, a - b / 2, a + S.Half]) assert can_do_meijer([], [], [a], [b], False) # branches only agree for small z assert can_do_meijer([], [S.Half], [a], [-a]) assert can_do_meijer([], [], [a, b], []) assert can_do_meijer([], [], [a, b], []) assert can_do_meijer([], [], [a, a + S.Half], [b, b + S.Half]) assert can_do_meijer([], [], [a, -a], [0, S.Half], False) # dito assert can_do_meijer([], [], [a, a + S.Half, b, b + S.Half], []) assert can_do_meijer([S.Half], [], [0], [a, -a]) assert can_do_meijer([S.Half], [], [a], [0, -a], False) # dito assert can_do_meijer([], [a - S.Half], [a, b], [a - S.Half], False) assert can_do_meijer([], [a + S.Half], [a + b, a - b, a], [], False) assert can_do_meijer([a + S.Half], [], [b, 2 * a - b, a], [], False) # This for example is actually zero. assert can_do_meijer([], [], [], [a, b]) # Testing a bug: assert hyperexpand(meijerg([0, 2], [], [], [-1, 1], z)) == \ Piecewise((0, abs(z) < 1), (z/2 - 1/(2*z), abs(1/z) < 1), (meijerg([0, 2], [], [], [-1, 1], z), True)) # Test that the simplest possible answer is returned: assert combsimp(simplify(hyperexpand( meijerg([1], [1 - a], [-a/2, -a/2 + Rational(1, 2)], [], 1/z)))) == \ -2*sqrt(pi)*(sqrt(z + 1) + 1)**a/a # Test that hyper is returned assert hyperexpand(meijerg([1], [], [a], [0, 0], z)) == hyper( (a, ), (a + 1, a + 1), z * exp_polar(I * pi)) * z**a * gamma(a) / gamma(a + 1)**2
def test_hyper_unpolarify(): from diofant import exp_polar a = exp_polar(2 * pi * I) * x b = x assert hyper([], [], a).argument == b assert hyper([0], [], a).argument == a assert hyper([0], [0], a).argument == b assert hyper([0, 1], [0], a).argument == a
def test_polarify(): z = Symbol('z', polar=True) f = Function('f') ES = {} assert polarify(-1) == (polar_lift(-1), ES) assert polarify(1 + I) == (polar_lift(1 + I), ES) assert polarify(exp(x), subs=False) == exp(x) assert polarify(1 + x, subs=False) == 1 + x assert polarify(f(I) + x, subs=False) == f(polar_lift(I)) + x assert polarify(x, lift=True) == polar_lift(x) assert polarify(z, lift=True) == z assert polarify(f(x), lift=True) == f(polar_lift(x)) assert polarify(1 + x, lift=True) == polar_lift(1 + x) assert polarify(1 + f(x), lift=True) == polar_lift(1 + f(polar_lift(x))) newex, subs = polarify(f(x) + z) assert newex.subs(subs) == f(x) + z mu = Symbol('mu') sigma = Symbol('sigma', positive=True) # Make sure polarify(lift=True) doesn't try to lift the integration # variable assert polarify( Integral( sqrt(2) * x * exp(-(-mu + x)**2 / (2 * sigma**2)) / (2 * sqrt(pi) * sigma), (x, -oo, oo)), lift=True) == Integral( sqrt(2) * (sigma * exp_polar(0))**exp_polar(I * pi) * exp( (sigma * exp_polar(0))**(2 * exp_polar(I * pi)) * exp_polar( I * pi) * polar_lift(-mu + x)**(2 * exp_polar(0)) / 2) * exp_polar(0) * polar_lift(x) / (2 * sqrt(pi)), (x, -oo, oo))
def test_principal_branch(): p = Symbol('p', positive=True) neg = Symbol('x', negative=True) assert principal_branch(polar_lift(x), p) == principal_branch(x, p) assert principal_branch(polar_lift(2 + I), p) == principal_branch(2 + I, p) assert principal_branch(2*x, p) == 2*principal_branch(x, p) assert principal_branch(1, pi) == exp_polar(0) assert principal_branch(-1, 2*pi) == exp_polar(I*pi) assert principal_branch(-1, pi) == exp_polar(0) assert principal_branch(exp_polar(3*pi*I)*x, 2*pi) == \ principal_branch(exp_polar(I*pi)*x, 2*pi) assert principal_branch(neg*exp_polar(pi*I), 2*pi) == neg*exp_polar(-I*pi) assert N_equals(principal_branch((1 + I)**2, 2*pi), 2*I) assert N_equals(principal_branch((1 + I)**2, 3*pi), 2*I) assert N_equals(principal_branch((1 + I)**2, 1*pi), 2*I) # test argument sanitization assert isinstance(principal_branch(x, I), principal_branch) assert isinstance(principal_branch(x, -4), principal_branch) assert isinstance(principal_branch(x, -oo), principal_branch) assert isinstance(principal_branch(x, zoo), principal_branch) assert (principal_branch((4 + I)**2, 2*pi).evalf() == principal_branch((4 + I)**2, 2*pi))
def test_exp_log(): x = Symbol("x", extended_real=True) assert log(exp(x)) == x assert exp(log(x)) == x assert log(x).inverse() == exp y = Symbol("y", polar=True) assert log(exp_polar(z)) == z assert exp(log(y)) == y
def test_lowergamma(): assert lowergamma(x, y).diff(y) == y**(x - 1)*exp(-y) assert td(lowergamma(randcplx(), y), y) assert td(lowergamma(x, randcplx()), x) assert lowergamma(x, y).diff(x) == \ gamma(x)*polygamma(0, x) - uppergamma(x, y)*log(y) \ - meijerg([], [1, 1], [0, 0, x], [], y) pytest.raises(ArgumentIndexError, lambda: lowergamma(x, y).fdiff(3)) assert lowergamma(Rational(1, 2), x) == sqrt(pi)*erf(sqrt(x)) assert not lowergamma(Rational(1, 2) - 3, x).has(lowergamma) assert not lowergamma(Rational(1, 2) + 3, x).has(lowergamma) assert lowergamma(Rational(1, 2), x, evaluate=False).has(lowergamma) assert tn(lowergamma(Rational(1, 2) + 3, x, evaluate=False), lowergamma(Rational(1, 2) + 3, x), x) assert tn(lowergamma(Rational(1, 2) - 3, x, evaluate=False), lowergamma(Rational(1, 2) - 3, x), x) assert lowergamma(0, 1) == zoo assert tn_branch(-3, lowergamma) assert tn_branch(-4, lowergamma) assert tn_branch(Rational(1, 3), lowergamma) assert tn_branch(pi, lowergamma) assert lowergamma(3, exp_polar(4*pi*I)*x) == lowergamma(3, x) assert lowergamma(y, exp_polar(5*pi*I)*x) == \ exp(4*I*pi*y)*lowergamma(y, x*exp_polar(pi*I)) assert lowergamma(-2, exp_polar(5*pi*I)*x) == \ lowergamma(-2, x*exp_polar(I*pi)) + 2*pi*I assert conjugate(lowergamma(x, y)) == lowergamma(conjugate(x), conjugate(y)) assert conjugate(lowergamma(x, 0)) == conjugate(lowergamma(x, 0)) assert conjugate(lowergamma(x, -oo)) == conjugate(lowergamma(x, -oo)) assert lowergamma( x, y).rewrite(expint) == -y**x*expint(-x + 1, y) + gamma(x) k = Symbol('k', integer=True) assert lowergamma( k, y).rewrite(expint) == -y**k*expint(-k + 1, y) + gamma(k) k = Symbol('k', integer=True, positive=False) assert lowergamma(k, y).rewrite(expint) == lowergamma(k, y) assert lowergamma(x, y).rewrite(uppergamma) == gamma(x) - uppergamma(x, y) assert (x*lowergamma(x, 1)/gamma(x + 1)).limit(x, 0) == 1
def test_si(): assert Si(I*x) == I*Shi(x) assert Shi(I*x) == I*Si(x) assert Si(-I*x) == -I*Shi(x) assert Shi(-I*x) == -I*Si(x) assert Si(-x) == -Si(x) assert Shi(-x) == -Shi(x) assert Si(exp_polar(2*pi*I)*x) == Si(x) assert Si(exp_polar(-2*pi*I)*x) == Si(x) assert Shi(exp_polar(2*pi*I)*x) == Shi(x) assert Shi(exp_polar(-2*pi*I)*x) == Shi(x) assert Si(oo) == pi/2 assert Si(-oo) == -pi/2 assert Shi(oo) == oo assert Shi(-oo) == -oo assert mytd(Si(x), sin(x)/x, x) assert mytd(Shi(x), sinh(x)/x, x) assert mytn(Si(x), Si(x).rewrite(Ei), -I*(-Ei(x*exp_polar(-I*pi/2))/2 + Ei(x*exp_polar(I*pi/2))/2 - I*pi) + pi/2, x) assert mytn(Si(x), Si(x).rewrite(expint), -I*(-expint(1, x*exp_polar(-I*pi/2))/2 + expint(1, x*exp_polar(I*pi/2))/2) + pi/2, x) assert mytn(Shi(x), Shi(x).rewrite(Ei), Ei(x)/2 - Ei(x*exp_polar(I*pi))/2 + I*pi/2, x) assert mytn(Shi(x), Shi(x).rewrite(expint), expint(1, x)/2 - expint(1, x*exp_polar(I*pi))/2 - I*pi/2, x) assert tn_arg(Si) assert tn_arg(Shi) assert Si(x).nseries(x, n=8) == \ x - x**3/18 + x**5/600 - x**7/35280 + O(x**9) assert Shi(x).nseries(x, n=8) == \ x + x**3/18 + x**5/600 + x**7/35280 + O(x**9) assert Si(sin(x)).nseries(x, n=5) == x - 2*x**3/9 + 17*x**5/450 + O(x**7) assert Si(x).series(x, 1, n=3) == \ Si(1) + (x - 1)*sin(1) + (x - 1)**2*(-sin(1)/2 + cos(1)/2) + O((x - 1)**3, (x, 1)) pytest.raises(ArgumentIndexError, lambda: Si(z).fdiff(2))
def test_lerchphi(): assert hyperexpand(hyper([1, a], [a + 1], z)/a) == lerchphi(z, 1, a) assert hyperexpand( hyper([1, a, a], [a + 1, a + 1], z)/a**2) == lerchphi(z, 2, a) assert hyperexpand(hyper([1, a, a, a], [a + 1, a + 1, a + 1], z)/a**3) == \ lerchphi(z, 3, a) assert hyperexpand(hyper([1] + [a]*10, [a + 1]*10, z)/a**10) == \ lerchphi(z, 10, a) assert combsimp(hyperexpand(meijerg([0, 1 - a], [], [0], [-a], exp_polar(-I*pi)*z))) == lerchphi(z, 1, a) assert combsimp(hyperexpand(meijerg([0, 1 - a, 1 - a], [], [0], [-a, -a], exp_polar(-I*pi)*z))) == lerchphi(z, 2, a) assert combsimp(hyperexpand(meijerg([0, 1 - a, 1 - a, 1 - a], [], [0], [-a, -a, -a], exp_polar(-I*pi)*z))) == lerchphi(z, 3, a) assert hyperexpand(z*hyper([1, 1], [2], z)) == -log(1 + -z) assert hyperexpand(z*hyper([1, 1, 1], [2, 2], z)) == polylog(2, z) assert hyperexpand(z*hyper([1, 1, 1, 1], [2, 2, 2], z)) == polylog(3, z) assert hyperexpand(hyper([1, a, 1 + Rational(1, 2)], [a + 1, Rational(1, 2)], z)) == \ -2*a/(z - 1) + (-2*a**2 + a)*lerchphi(z, 1, a) # Now numerical tests. These make sure reductions etc are carried out # correctly # a rational function (polylog at negative integer order) assert can_do([2, 2, 2], [1, 1]) # NOTE these contain log(1-x) etc ... better make sure we have |z| < 1 # reduction of order for polylog assert can_do([1, 1, 1, b + 5], [2, 2, b], div=10) # reduction of order for lerchphi # XXX lerchphi in mpmath is flaky assert can_do( [1, a, a, a, b + 5], [a + 1, a + 1, a + 1, b], numerical=False) # test a bug assert hyperexpand(hyper([Rational(1, 2), Rational(1, 2), Rational(1, 2), 1], [Rational(3, 2), Rational(3, 2), Rational(3, 2)], Rational(1, 4))) == \ abs(-polylog(3, exp_polar(I*pi)/2) + polylog(3, Rational(1, 2)))
def test_polarify(): z = Symbol('z', polar=True) f = Function('f') ES = {} assert polarify(-1) == (polar_lift(-1), ES) assert polarify(1 + I) == (polar_lift(1 + I), ES) assert polarify(exp(x), subs=False) == exp(x) assert polarify(1 + x, subs=False) == 1 + x assert polarify(f(I) + x, subs=False) == f(polar_lift(I)) + x assert polarify(x, lift=True) == polar_lift(x) assert polarify(z, lift=True) == z assert polarify(f(x), lift=True) == f(polar_lift(x)) assert polarify(1 + x, lift=True) == polar_lift(1 + x) assert polarify(1 + f(x), lift=True) == polar_lift(1 + f(polar_lift(x))) newex, subs = polarify(f(x) + z) assert newex.subs(subs) == f(x) + z mu = Symbol("mu") sigma = Symbol("sigma", positive=True) # Make sure polarify(lift=True) doesn't try to lift the integration # variable assert polarify( Integral(sqrt(2)*x*exp(-(-mu + x)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (x, -oo, oo)), lift=True) == Integral(sqrt(2)*(sigma*exp_polar(0))**exp_polar(I*pi) * exp((sigma*exp_polar(0))**(2*exp_polar(I*pi))*exp_polar(I*pi)*polar_lift(-mu + x) ** (2*exp_polar(0))/2)*exp_polar(0)*polar_lift(x)/(2*sqrt(pi)), (x, -oo, oo))
def test_unpolarify(): p = exp_polar(7*I) + 1 u = exp(7*I) + 1 assert unpolarify(1) == 1 assert unpolarify(p) == u assert unpolarify(p**2) == u**2 assert unpolarify(p**x) == p**x assert unpolarify(p*x) == u*x assert unpolarify(p + x) == u + x assert unpolarify(sqrt(sin(p))) == sqrt(sin(u)) # Test reduction to principal branch 2*pi. t = principal_branch(x, 2*pi) assert unpolarify(t) == x assert unpolarify(sqrt(t)) == sqrt(t) # Test exponents_only. assert unpolarify(p**p, exponents_only=True) == p**u assert unpolarify(uppergamma(x, p**p)) == uppergamma(x, p**u) # Test functions. assert unpolarify(sin(p)) == sin(u) assert unpolarify(tanh(p)) == tanh(u) assert unpolarify(gamma(p)) == gamma(u) assert unpolarify(erf(p)) == erf(u) assert unpolarify(uppergamma(x, p)) == uppergamma(x, p) assert unpolarify(uppergamma(sin(p), sin(p + exp_polar(0)))) == \ uppergamma(sin(u), sin(u + 1)) assert unpolarify(uppergamma(polar_lift(0), 2*exp_polar(0))) == \ uppergamma(0, 2) assert unpolarify(Eq(p, 0)) == Eq(u, 0) assert unpolarify(Ne(p, 0)) == Ne(u, 0) assert unpolarify(polar_lift(x) > 0) == (x > 0) # Test bools assert unpolarify(True) is True
def test_expint(): assert mytn(expint(x, y), expint(x, y).rewrite(uppergamma), y**(x - 1)*uppergamma(1 - x, y), x) assert mytd( expint(x, y), -y**(x - 1)*meijerg([], [1, 1], [0, 0, 1 - x], [], y), x) assert mytd(expint(x, y), -expint(x - 1, y), y) assert mytn(expint(1, x), expint(1, x).rewrite(Ei), -Ei(x*polar_lift(-1)) + I*pi, x) assert expint(-4, x) == exp(-x)/x + 4*exp(-x)/x**2 + 12*exp(-x)/x**3 \ + 24*exp(-x)/x**4 + 24*exp(-x)/x**5 assert expint(-Rational(3, 2), x) == \ exp(-x)/x + 3*exp(-x)/(2*x**2) - 3*sqrt(pi)*erf(sqrt(x))/(4*x**Rational(5, 2)) \ + 3*sqrt(pi)/(4*x**Rational(5, 2)) assert tn_branch(expint, 1) assert tn_branch(expint, 2) assert tn_branch(expint, 3) assert tn_branch(expint, 1.7) assert tn_branch(expint, pi) assert expint(y, x*exp_polar(2*I*pi)) == \ x**(y - 1)*(exp(2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x) assert expint(y, x*exp_polar(-2*I*pi)) == \ x**(y - 1)*(exp(-2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x) assert expint(2, x*exp_polar(2*I*pi)) == 2*I*pi*x + expint(2, x) assert expint(2, x*exp_polar(-2*I*pi)) == -2*I*pi*x + expint(2, x) assert (expint(n, x*exp_polar(2*I*pi)) == expint(n, x*exp_polar(2*I*pi), evaluate=False)) assert expint(1, x).rewrite(Ei).rewrite(expint) == expint(1, x) assert (expint(2, x, evaluate=False).rewrite(Shi) == expint(2, x, evaluate=False)) assert mytn(E1(x), E1(x).rewrite(Shi), Shi(x) - Chi(x), x) assert mytn(E1(polar_lift(I)*x), E1(polar_lift(I)*x).rewrite(Si), -Ci(x) + I*Si(x) - I*pi/2, x) assert mytn(expint(2, x), expint(2, x).rewrite(Ei).rewrite(expint), -x*E1(x) + exp(-x), x) assert mytn(expint(3, x), expint(3, x).rewrite(Ei).rewrite(expint), x**2*E1(x)/2 + (1 - x)*exp(-x)/2, x) assert expint(Rational(3, 2), z).nseries(z, n=10) == \ 2 + 2*z - z**2/3 + z**3/15 - z**4/84 + z**5/540 - \ 2*sqrt(pi)*sqrt(z) + O(z**6) assert E1(z).series(z) == -EulerGamma - log(z) + z - \ z**2/4 + z**3/18 - z**4/96 + z**5/600 + O(z**6) assert expint(4, z).series(z) == Rational(1, 3) - z/2 + z**2/2 + \ z**3*(log(z)/6 - Rational(11, 36) + EulerGamma/6) - z**4/24 + \ z**5/240 + O(z**6) assert (expint(x, x).series(x, x0=1, n=2) == expint(1, 1) + (x - 1)*(-meijerg(((), (1, 1)), ((0, 0, 0), ()), 1) - 1/E) + O((x - 1)**2, (x, 1))) pytest.raises(ArgumentIndexError, lambda: expint(x, y).fdiff(3))
def test_rewrite_single(): def t(expr, c, m): e = _rewrite_single(meijerg([a], [b], [c], [d], expr), x) assert e is not None assert isinstance(e[0][0][2], meijerg) assert e[0][0][2].argument.as_coeff_mul(x) == (c, (m,)) def tn(expr): assert _rewrite_single(meijerg([a], [b], [c], [d], expr), x) is None t(x, 1, x) t(x**2, 1, x**2) t(x**2 + y*x**2, y + 1, x**2) tn(x**2 + x) tn(x**y) def u(expr, x): r = _rewrite_single(expr, x) e = Add(*[res[0]*res[2] for res in r[0]]).replace( exp_polar, exp) # XXX Hack? assert verify_numerically(e, expr, x) u(exp(-x)*sin(x), x) # The following has stopped working because hyperexpand changed slightly. # It is probably not worth fixing # u(exp(-x)*sin(x)*cos(x), x) # This one cannot be done numerically, since it comes out as a g-function # of argument 4*pi # NOTE This also tests a bug in inverse mellin transform (which used to # turn exp(4*pi*I*t) into a factor of exp(4*pi*I)**t instead of # exp_polar). # u(exp(x)*sin(x), x) assert _rewrite_single(exp(x)*sin(x), x) == \ ([(-sqrt(2)/(2*sqrt(pi)), 0, meijerg(((-Rational(1, 2), 0, Rational(1, 4), Rational(1, 2), Rational(3, 4)), (1,)), ((), (-Rational(1, 2), 0)), 64*exp_polar(-4*I*pi)/x**4))], True)
def test_ci(): m1 = exp_polar(I*pi) m1_ = exp_polar(-I*pi) pI = exp_polar(I*pi/2) mI = exp_polar(-I*pi/2) assert Ci(m1*x) == Ci(x) + I*pi assert Ci(m1_*x) == Ci(x) - I*pi assert Ci(pI*x) == Chi(x) + I*pi/2 assert Ci(mI*x) == Chi(x) - I*pi/2 assert Chi(m1*x) == Chi(x) + I*pi assert Chi(m1_*x) == Chi(x) - I*pi assert Chi(pI*x) == Ci(x) + I*pi/2 assert Chi(mI*x) == Ci(x) - I*pi/2 assert Ci(exp_polar(2*I*pi)*x) == Ci(x) + 2*I*pi assert Chi(exp_polar(-2*I*pi)*x) == Chi(x) - 2*I*pi assert Chi(exp_polar(2*I*pi)*x) == Chi(x) + 2*I*pi assert Ci(exp_polar(-2*I*pi)*x) == Ci(x) - 2*I*pi assert Ci(oo) == 0 assert Ci(-oo) == I*pi assert Chi(oo) == oo assert Chi(-oo) == oo assert mytd(Ci(x), cos(x)/x, x) assert mytd(Chi(x), cosh(x)/x, x) assert mytn(Ci(x), Ci(x).rewrite(Ei), Ei(x*exp_polar(-I*pi/2))/2 + Ei(x*exp_polar(I*pi/2))/2, x) assert mytn(Chi(x), Chi(x).rewrite(Ei), Ei(x)/2 + Ei(x*exp_polar(I*pi))/2 - I*pi/2, x) assert tn_arg(Ci) assert tn_arg(Chi) assert Ci(x).nseries(x, n=4) == \ EulerGamma + log(x) - x**2/4 + x**4/96 + O(x**6) assert Chi(x).nseries(x, n=4) == \ EulerGamma + log(x) + x**2/4 + x**4/96 + O(x**6) assert limit(log(x) - Ci(2*x), x, 0) == -log(2) - EulerGamma
def dosubs(func, a, b): rv = func.subs({z: exp_polar(a)*z}).rewrite('nonrep') return rv.subs({z: exp_polar(b)*z}).replace(exp_polar, exp)
def test_powsimp_polar(): p, q, r = symbols('p q r', polar=True) assert (polar_lift(-1))**(2*x) == exp_polar(2*pi*I*x) assert powsimp(p**x * q**x) == (p*q)**x assert p**x * (1/p)**x == 1 assert (1/p)**x == p**(-x) assert exp_polar(x)*exp_polar(y) == exp_polar(x)*exp_polar(y) assert powsimp(exp_polar(x)*exp_polar(y)) == exp_polar(x + y) assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y) == \ (p*exp_polar(1))**(x + y) assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y, combine='exp') == \ exp_polar(x + y)*p**(x + y) assert powsimp( exp_polar(x)*exp_polar(y)*exp_polar(2)*sin(x) + sin(y) + p**x*p**y) \ == p**(x + y) + sin(x)*exp_polar(2 + x + y) + sin(y) assert powsimp(sin(exp_polar(x)*exp_polar(y))) == \ sin(exp_polar(x)*exp_polar(y)) assert powsimp(sin(exp_polar(x)*exp_polar(y)), deep=True) == \ sin(exp_polar(x + y))
def test_evalf(): assert hyper((-1, 1), (-1,), 1).evalf() == Float('2.0') e = meijerg([], [], [], [], (exp_polar(-I*pi))*cos(exp_polar(-I*pi))) assert e.evalf() == e
def tn(func, s): c = uniform(1, 5) expr = func(s, c*exp_polar(I*pi)) - func(s, c*exp_polar(-I*pi)) eps = 1e-15 expr2 = func(s + eps, -c + eps*I) - func(s + eps, -c - eps*I) return abs(expr - expr2).evalf(strict=False) < 1e-10
def test_hyperrep(): # First test the base class works. a, b, c, d, z = symbols('a b c d z') class myrep(HyperRep): @classmethod def _expr_small(cls, x): return a @classmethod def _expr_small_minus(cls, x): return b @classmethod def _expr_big(cls, x, n): return c*n @classmethod def _expr_big_minus(cls, x, n): return d*n assert myrep(z).rewrite('nonrep') == Piecewise((0, abs(z) > 1), (a, True)) assert myrep(exp_polar(I*pi)*z).rewrite('nonrep') == \ Piecewise((0, abs(z) > 1), (b, True)) assert myrep(exp_polar(2*I*pi)*z).rewrite('nonrep') == \ Piecewise((c, abs(z) > 1), (a, True)) assert myrep(exp_polar(3*I*pi)*z).rewrite('nonrep') == \ Piecewise((d, abs(z) > 1), (b, True)) assert myrep(exp_polar(4*I*pi)*z).rewrite('nonrep') == \ Piecewise((2*c, abs(z) > 1), (a, True)) assert myrep(exp_polar(5*I*pi)*z).rewrite('nonrep') == \ Piecewise((2*d, abs(z) > 1), (b, True)) assert myrep(z).rewrite('nonrepsmall') == a assert myrep(exp_polar(I*pi)*z).rewrite('nonrepsmall') == b def t(func, hyp, z): """ Test that func is a valid representation of hyp. """ # First test that func agrees with hyp for small z if not tn(func.rewrite('nonrepsmall'), hyp, z, a=Rational(-1, 2), b=Rational(-1, 2), c=Rational(1, 2), d=Rational(1, 2)): return False # Next check that the two small representations agree. if not tn( func.rewrite('nonrepsmall').subs({z: exp_polar(I*pi)*z}).replace(exp_polar, exp), func.subs({z: exp_polar(I*pi)*z}).rewrite('nonrepsmall'), z, a=Rational(-1, 2), b=Rational(-1, 2), c=Rational(1, 2), d=Rational(1, 2)): return False # Next check continuity along exp_polar(I*pi)*t expr = func.subs({z: exp_polar(I*pi)*z}).rewrite('nonrep') if abs(expr.subs({z: 1 + 1e-15}) - expr.subs({z: 1 - 1e-15})).evalf(strict=False) > 1e-10: return False # Finally check continuity of the big reps. def dosubs(func, a, b): rv = func.subs({z: exp_polar(a)*z}).rewrite('nonrep') return rv.subs({z: exp_polar(b)*z}).replace(exp_polar, exp) for n in [0, 1, 2, 3, 4, -1, -2, -3, -4]: expr1 = dosubs(func, 2*I*pi*n, I*pi/2) expr2 = dosubs(func, 2*I*pi*n + I*pi, -I*pi/2) if not tn(expr1, expr2, z): return False expr1 = dosubs(func, 2*I*pi*(n + 1), -I*pi/2) expr2 = dosubs(func, 2*I*pi*n + I*pi, I*pi/2) if not tn(expr1, expr2, z): return False return True # Now test the various representatives. a = Rational(1, 3) assert t(HyperRep_atanh(z), hyper([Rational(1, 2), 1], [Rational(3, 2)], z), z) assert t(HyperRep_power1(a, z), hyper([-a], [], z), z) assert t(HyperRep_power2(a, z), hyper([a, a - Rational(1, 2)], [2*a], z), z) assert t(HyperRep_log1(z), -z*hyper([1, 1], [2], z), z) assert t(HyperRep_asin1(z), hyper([Rational(1, 2), Rational(1, 2)], [Rational(3, 2)], z), z) assert t(HyperRep_asin2(z), hyper([1, 1], [Rational(3, 2)], z), z) assert t(HyperRep_sqrts1(a, z), hyper([-a, Rational(1, 2) - a], [Rational(1, 2)], z), z) assert t(HyperRep_sqrts2(a, z), -2*z/(2*a + 1)*hyper([-a - Rational(1, 2), -a], [Rational(1, 2)], z).diff(z), z) assert t(HyperRep_log2(z), -z/4*hyper([Rational(3, 2), 1, 1], [2, 2], z), z) assert t(HyperRep_cosasin(a, z), hyper([-a, a], [Rational(1, 2)], z), z) assert t(HyperRep_sinasin(a, z), 2*a*z*hyper([1 - a, 1 + a], [Rational(3, 2)], z), z)
def test_polar(): x, y = symbols('x y', polar=True) assert abs(exp_polar(I*4)) == 1 assert exp_polar(I*10).evalf() == exp_polar(I*10) assert log(exp_polar(z)) == z assert log(x*y).expand() == log(x) + log(y) assert log(x**z).expand() == z*log(x) assert exp_polar(3).exp == 3 # Compare exp(1.0*pi*I). assert (exp_polar(1.0*pi*I).evalf(5)).as_real_imag()[1] >= 0 assert exp_polar(0).is_rational is True # issue sympy/sympy#8008 nz = Symbol('nz', rational=True, nonzero=True) assert exp_polar(nz).is_rational is False assert exp_polar(oo).is_finite is False assert exp_polar(-oo).is_finite assert exp_polar(zoo).is_finite is None assert exp_polar(-oo).is_zero ninf = Symbol('ninf', infinite=True, negative=True) assert exp_polar(ninf).is_zero r = Symbol('r', extended_real=True) assert exp_polar(r).is_extended_real assert exp_polar(x).is_extended_real is None
def test_meijerg_expand(): # from mpmath docs assert hyperexpand(meijerg([[], []], [[0], []], -z)) == exp(z) assert hyperexpand(meijerg([[1, 1], []], [[1], [0]], z)) == \ log(z + 1) assert hyperexpand(meijerg([[1, 1], []], [[1], [1]], z)) == \ z/(z + 1) assert hyperexpand(meijerg([[], []], [[Rational(1, 2)], [0]], (z/2)**2)) \ == sin(z)/sqrt(pi) assert hyperexpand(meijerg([[], []], [[0], [Rational(1, 2)]], (z/2)**2)) \ == cos(z)/sqrt(pi) assert can_do_meijer([], [a], [a - 1, a - Rational(1, 2)], []) assert can_do_meijer([], [], [a/2], [-a/2], False) # branches... assert can_do_meijer([a], [b], [a], [b, a - 1]) # wikipedia assert hyperexpand(meijerg([1], [], [], [0], z)) == \ Piecewise((0, abs(z) < 1), (1, abs(1/z) < 1), (meijerg([1], [], [], [0], z), True)) assert hyperexpand(meijerg([], [1], [0], [], z)) == \ Piecewise((1, abs(z) < 1), (0, abs(1/z) < 1), (meijerg([], [1], [0], [], z), True)) # The Special Functions and their Approximations assert can_do_meijer([], [], [a + b/2], [a, a - b/2, a + Rational(1, 2)]) assert can_do_meijer( [], [], [a], [b], False) # branches only agree for small z assert can_do_meijer([], [Rational(1, 2)], [a], [-a]) assert can_do_meijer([], [], [a, b], []) assert can_do_meijer([], [], [a, b], []) assert can_do_meijer([], [], [a, a + Rational(1, 2)], [b, b + Rational(1, 2)]) assert can_do_meijer([], [], [a, -a], [0, Rational(1, 2)], False) # dito assert can_do_meijer([], [], [a, a + Rational(1, 2), b, b + Rational(1, 2)], []) assert can_do_meijer([Rational(1, 2)], [], [0], [a, -a]) assert can_do_meijer([Rational(1, 2)], [], [a], [0, -a], False) # dito assert can_do_meijer([], [a - Rational(1, 2)], [a, b], [a - Rational(1, 2)], False) assert can_do_meijer([], [a + Rational(1, 2)], [a + b, a - b, a], [], False) assert can_do_meijer([a + Rational(1, 2)], [], [b, 2*a - b, a], [], False) # This for example is actually zero. assert can_do_meijer([], [], [], [a, b]) # Testing a bug: assert hyperexpand(meijerg([0, 2], [], [], [-1, 1], z)) == \ Piecewise((0, abs(z) < 1), (z/2 - 1/(2*z), abs(1/z) < 1), (meijerg([0, 2], [], [], [-1, 1], z), True)) # Test that the simplest possible answer is returned: assert combsimp(simplify(hyperexpand( meijerg([1], [1 - a], [-a/2, -a/2 + Rational(1, 2)], [], 1/z)))) == \ -2*sqrt(pi)*(sqrt(z + 1) + 1)**a/a # Test that hyper is returned assert hyperexpand(meijerg([1], [], [a], [0, 0], z)) == hyper( (a,), (a + 1, a + 1), z*exp_polar(I*pi))*z**a*gamma(a)/gamma(a + 1)**2 assert can_do_meijer([], [], [a + Rational(1, 2)], [a, a - b/2, a + b/2]) assert can_do_meijer([], [], [3*a - Rational(1, 2), a, -a - Rational(1, 2)], [a - Rational(1, 2)]) assert can_do_meijer([], [], [0, a - Rational(1, 2), -a - Rational(1, 2)], [Rational(1, 2)]) assert can_do_meijer([Rational(1, 2)], [], [-a, a], [0])
def test_sign(): assert sign(1.2) == 1 assert sign(-1.2) == -1 assert sign(3*I) == I assert sign(-3*I) == -I assert sign(0) == 0 assert sign(nan) == nan assert sign(2 + 2*I).doit() == sqrt(2)*(2 + 2*I)/4 assert sign(2 + 3*I).simplify() == sign(2 + 3*I) assert sign(2 + 2*I).simplify() == sign(1 + I) assert sign(im(sqrt(1 - sqrt(3)))) == 1 assert sign(sqrt(1 - sqrt(3))) == I x = Symbol('x') assert sign(x).is_finite is True assert sign(x).is_complex is True assert sign(x).is_imaginary is None assert sign(x).is_integer is None assert sign(x).is_extended_real is None assert sign(x).is_zero is None assert sign(x).doit() == sign(x) assert sign(1.2*x) == sign(x) assert sign(2*x) == sign(x) assert sign(I*x) == I*sign(x) assert sign(-2*I*x) == -I*sign(x) assert sign(conjugate(x)) == conjugate(sign(x)) p = Symbol('p', positive=True) n = Symbol('n', negative=True) m = Symbol('m', negative=True) assert sign(2*p*x) == sign(x) assert sign(n*x) == -sign(x) assert sign(n*m*x) == sign(x) x = Symbol('x', imaginary=True) xn = Symbol('xn', imaginary=True, nonzero=True) assert sign(x).is_imaginary is True assert sign(x).is_integer is None assert sign(x).is_extended_real is None assert sign(x).is_zero is None assert sign(x).diff(x) == 2*DiracDelta(-I*x) assert sign(xn).doit() == xn / Abs(xn) assert conjugate(sign(x)) == -sign(x) x = Symbol('x', extended_real=True) assert sign(x).is_imaginary is None assert sign(x).is_integer is True assert sign(x).is_extended_real is True assert sign(x).is_zero is None assert sign(x).diff(x) == 2*DiracDelta(x) assert sign(x).doit() == sign(x) assert conjugate(sign(x)) == sign(x) assert sign(sin(x)).nseries(x) == 1 y = Symbol('y') assert sign(x*y).nseries(x).removeO() == sign(y) x = Symbol('x', nonzero=True) assert sign(x).is_imaginary is None assert sign(x).is_integer is None assert sign(x).is_extended_real is None assert sign(x).is_zero is False assert sign(x).doit() == x / Abs(x) assert sign(Abs(x)) == 1 assert Abs(sign(x)) == 1 x = Symbol('x', positive=True) assert sign(x).is_imaginary is False assert sign(x).is_integer is True assert sign(x).is_extended_real is True assert sign(x).is_zero is False assert sign(x).doit() == x / Abs(x) assert sign(Abs(x)) == 1 assert Abs(sign(x)) == 1 x = 0 assert sign(x).is_imaginary is True assert sign(x).is_integer is True assert sign(x).is_extended_real is True assert sign(x).is_zero is True assert sign(x).doit() == 0 assert sign(Abs(x)) == 0 assert Abs(sign(x)) == 0 nz = Symbol('nz', nonzero=True, integer=True) assert sign(nz).is_imaginary is False assert sign(nz).is_integer is True assert sign(nz).is_extended_real is True assert sign(nz).is_zero is False assert sign(nz)**2 == 1 assert (sign(nz)**3).args == (sign(nz), 3) assert sign(Symbol('x', nonnegative=True)).is_nonnegative assert sign(Symbol('x', nonnegative=True)).is_nonpositive is None assert sign(Symbol('x', nonpositive=True)).is_nonnegative is None assert sign(Symbol('x', nonpositive=True)).is_nonpositive assert sign(Symbol('x', extended_real=True)).is_nonnegative is None assert sign(Symbol('x', extended_real=True)).is_nonpositive is None assert sign(Symbol('x', extended_real=True, zero=False)).is_nonpositive is None x, y = Symbol('x', extended_real=True), Symbol('y') assert sign(x).rewrite(Piecewise) == \ Piecewise((1, x > 0), (-1, x < 0), (0, True)) assert sign(y).rewrite(Piecewise) == sign(y) assert sign(x).rewrite(Heaviside) == 2*Heaviside(x)-1 assert sign(y).rewrite(Heaviside) == sign(y) # evaluate what can be evaluated assert sign(exp_polar(I*pi)*pi) is Integer(-1) eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) # if there is a fast way to know when and when you cannot prove an # expression like this is zero then the equality to zero is ok assert sign(eq) == 0 q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6) p = cbrt(expand(q**3)) d = p - q assert sign(d) == 0 assert abs(sign(z)) == Abs(sign(z), evaluate=False)
def test_polylog_eval(): assert polylog(s, 0) == 0 assert polylog(s, 1) == zeta(s) assert polylog(s, -1) == -dirichlet_eta(s) assert polylog(s, exp_polar(I*pi)) == polylog(s, -1) assert polylog(s, 2*exp_polar(2*I*pi)) == polylog(s, 2*exp_polar(2*I*pi), evaluate=False)
def test_minimal_polynomial(): assert minimal_polynomial(-7)(x) == x + 7 assert minimal_polynomial(-1)(x) == x + 1 assert minimal_polynomial( 0)(x) == x assert minimal_polynomial( 1)(x) == x - 1 assert minimal_polynomial( 7)(x) == x - 7 assert minimal_polynomial(Rational(1, 3), method='groebner')(x) == 3*x - 1 pytest.raises(NotAlgebraic, lambda: minimal_polynomial(pi, method='groebner')) pytest.raises(NotAlgebraic, lambda: minimal_polynomial(sin(sqrt(2)), method='groebner')) pytest.raises(NotAlgebraic, lambda: minimal_polynomial(2**pi, method='groebner')) pytest.raises(ValueError, lambda: minimal_polynomial(1, method='spam')) assert minimal_polynomial(sqrt(2))(x) == x**2 - 2 assert minimal_polynomial(sqrt(5))(x) == x**2 - 5 assert minimal_polynomial(sqrt(6))(x) == x**2 - 6 assert minimal_polynomial(2*sqrt(2))(x) == x**2 - 8 assert minimal_polynomial(3*sqrt(5))(x) == x**2 - 45 assert minimal_polynomial(4*sqrt(6))(x) == x**2 - 96 assert minimal_polynomial(2*sqrt(2) + 3)(x) == x**2 - 6*x + 1 assert minimal_polynomial(3*sqrt(5) + 6)(x) == x**2 - 12*x - 9 assert minimal_polynomial(4*sqrt(6) + 7)(x) == x**2 - 14*x - 47 assert minimal_polynomial(2*sqrt(2) - 3)(x) == x**2 + 6*x + 1 assert minimal_polynomial(3*sqrt(5) - 6)(x) == x**2 + 12*x - 9 assert minimal_polynomial(4*sqrt(6) - 7)(x) == x**2 + 14*x - 47 assert minimal_polynomial(sqrt(1 + sqrt(6)))(x) == x**4 - 2*x**2 - 5 assert minimal_polynomial(sqrt(I + sqrt(6)))(x) == x**8 - 10*x**4 + 49 assert minimal_polynomial(2*I + sqrt(2 + I))(x) == x**4 + 4*x**2 + 8*x + 37 assert minimal_polynomial(sqrt(2) + sqrt(3))(x) == x**4 - 10*x**2 + 1 assert minimal_polynomial(sqrt(2) + sqrt(3) + sqrt(6))(x) == x**4 - 22*x**2 - 48*x - 23 e = 1/sqrt(sqrt(1 + sqrt(3)) - 4) assert minimal_polynomial(e) == minimal_polynomial(e, method='groebner') assert minimal_polynomial(e)(x) == (222*x**8 + 240*x**6 + 94*x**4 + 16*x**2 + 1) a = 1 - 9*sqrt(2) + 7*sqrt(3) assert minimal_polynomial(1/a)(x) == 392*x**4 - 1232*x**3 + 612*x**2 + 4*x - 1 assert minimal_polynomial(1/sqrt(a))(x) == 392*x**8 - 1232*x**6 + 612*x**4 + 4*x**2 - 1 pytest.raises(NotAlgebraic, lambda: minimal_polynomial(oo)) pytest.raises(NotAlgebraic, lambda: minimal_polynomial(2**y)) pytest.raises(NotAlgebraic, lambda: minimal_polynomial(sin(1))) assert minimal_polynomial(sqrt(2))(x) == x**2 - 2 assert minimal_polynomial(sqrt(2)) == PurePoly(x**2 - 2) assert minimal_polynomial(sqrt(2), method='groebner') == PurePoly(x**2 - 2) a = sqrt(2) b = sqrt(3) assert minimal_polynomial(b)(x) == x**2 - 3 assert minimal_polynomial(a) == PurePoly(x**2 - 2) assert minimal_polynomial(b) == PurePoly(x**2 - 3) assert minimal_polynomial(sqrt(a)) == PurePoly(x**4 - 2) assert minimal_polynomial(a + 1) == PurePoly(x**2 - 2*x - 1) assert minimal_polynomial(sqrt(a/2 + 17))(x) == 2*x**4 - 68*x**2 + 577 assert minimal_polynomial(sqrt(b/2 + 17))(x) == 4*x**4 - 136*x**2 + 1153 # issue diofant/diofant#431 K = QQ.algebraic_field(sqrt(2)) theta = K.to_expr(K([Rational(1, 2), 17])) assert minimal_polynomial(theta)(x) == 2*x**2 - 68*x + 577 K = QQ.algebraic_field(RootOf(x**7 + x - 1, 3)) theta = K.to_expr(K([1, 2, 0, 0, 1])) ans = minimal_polynomial(theta)(x) assert ans == (x**7 - 7*x**6 + 19*x**5 - 27*x**4 + 63*x**3 - 115*x**2 + 82*x - 147) assert minimal_polynomial(theta, method='groebner')(x) == ans K = QQ.algebraic_field(RootOf(x**5 + 5*x - 1, 2)) theta = K.to_expr(K([1, -1, 1])) ans = (x**30 - 15*x**28 - 10*x**27 + 135*x**26 + 330*x**25 - 705*x**24 - 150*x**23 + 3165*x**22 - 6850*x**21 + 7182*x**20 + 3900*x**19 + 4435*x**18 + 11970*x**17 - 259725*x**16 - 18002*x**15 + 808215*x**14 - 200310*x**13 - 647115*x**12 + 299280*x**11 - 1999332*x**10 + 910120*x**9 + 2273040*x**8 - 5560320*x**7 + 5302000*x**6 - 2405376*x**5 + 1016640*x**4 - 804480*x**3 + 257280*x**2 - 53760*x + 1280) assert minimal_polynomial(sqrt(theta) + root(theta, 3), method='groebner')(x) == ans K1 = QQ.algebraic_field(RootOf(x**3 + 4*x - 15, 1)) K2 = QQ.algebraic_field(RootOf(x**3 - x + 1, 0)) theta = sqrt(1 + 1/(K1.to_expr(K1([1, 0, 1])) + 1/(sqrt(3) + K2.to_expr(K2([1, 2, -1]))))) ans = (2262264837876687263*x**36 - 38939909597855051866*x**34 + 315720420314462950715*x**32 - 1601958657418182606114*x**30 + 5699493671077371036494*x**28 - 15096777696140985506150*x**26 + 30847690820556462893974*x**24 - 49706549068200640994022*x**22 + 64013601241426223813103*x**20 - 66358713088213594372990*x**18 + 55482571280904904971976*x**16 - 37309340229165533529076*x**14 + 20016999328983554519040*x**12 - 8446273798231518826782*x**10 + 2738866994867366499481*x**8 - 657825125060873756424*x**6 + 110036313740049140508*x**4 - 11416087328869938298*x**2 + 551322649782053543) assert minimal_polynomial(theta)(x) == ans a = sqrt(2)/3 + 7 f = 81*x**8 - 2268*x**6 - 4536*x**5 + 22644*x**4 + 63216*x**3 - \ 31608*x**2 - 189648*x + 141358 assert minimal_polynomial(sqrt(a) + sqrt(sqrt(a)))(x) == f assert minimal_polynomial(a**Rational(3, 2))(x) == 729*x**4 - 506898*x**2 + 84604519 K = QQ.algebraic_field(RootOf(x**3 + x - 1, 0)) a = K.to_expr(K([1, 0])) assert minimal_polynomial(1/a**2)(x) == x**3 - x**2 - 2*x - 1 # issue sympy/sympy#5994 eq = (-1/(800*sqrt(Rational(-1, 240) + 1/(18000*cbrt(Rational(-1, 17280000) + sqrt(15)*I/28800000)) + 2*cbrt(Rational(-1, 17280000) + sqrt(15)*I/28800000)))) assert minimal_polynomial(eq)(x) == 8000*x**2 - 1 ex = 1 + sqrt(2) + sqrt(3) mp = minimal_polynomial(ex)(x) assert mp == x**4 - 4*x**3 - 4*x**2 + 16*x - 8 ex = 1/(1 + sqrt(2) + sqrt(3)) mp = minimal_polynomial(ex)(x) assert mp == 8*x**4 - 16*x**3 + 4*x**2 + 4*x - 1 p = cbrt(expand((1 + sqrt(2) - 2*sqrt(3) + sqrt(7))**3)) mp = minimal_polynomial(p)(x) assert mp == x**8 - 8*x**7 - 56*x**6 + 448*x**5 + 480*x**4 - 5056*x**3 + 1984*x**2 + 7424*x - 3008 p = expand((1 + sqrt(2) - 2*sqrt(3) + sqrt(7))**3) mp = minimal_polynomial(p)(x) assert mp == x**8 - 512*x**7 - 118208*x**6 + 31131136*x**5 + 647362560*x**4 - 56026611712*x**3 + 116994310144*x**2 + 404854931456*x - 27216576512 assert minimal_polynomial(-sqrt(5)/2 - Rational(1, 2) + (-sqrt(5)/2 - Rational(1, 2))**2)(x) == x - 1 a = 1 + sqrt(2) assert minimal_polynomial((a*sqrt(2) + a)**3)(x) == x**2 - 198*x + 1 p = 1/(1 + sqrt(2) + sqrt(3)) assert minimal_polynomial(p, method='groebner')(x) == 8*x**4 - 16*x**3 + 4*x**2 + 4*x - 1 p = 2/(1 + sqrt(2) + sqrt(3)) assert minimal_polynomial(p, method='groebner')(x) == x**4 - 4*x**3 + 2*x**2 + 4*x - 2 assert minimal_polynomial(1 + sqrt(2)*I, method='groebner')(x) == x**2 - 2*x + 3 assert minimal_polynomial(1/(1 + sqrt(2)) + 1, method='groebner')(x) == x**2 - 2 assert minimal_polynomial(sqrt(2)*I + I*(1 + sqrt(2)), method='groebner')(x) == x**4 + 18*x**2 + 49 assert minimal_polynomial(exp_polar(0))(x) == x - 1
def test_expand(): assert expand_func(besselj(Rational(1, 2), z).rewrite(jn)) == \ sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z)) assert expand_func(bessely(Rational(1, 2), z).rewrite(yn)) == \ -sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z)) assert expand_func(besselj(I, z)) == besselj(I, z) # Test simplify helper assert simplify(besselj(Rational(1, 2), z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z)) # XXX: teach sin/cos to work around arguments like # x*exp_polar(I*pi*n/2). Then change besselsimp -> expand_func assert besselsimp(besselj(Rational(1, 2), z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(besselj(Rational(-1, 2), z)) == sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(besselj(Rational(5, 2), z)) == \ -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(besselj(-Rational(5, 2), z)) == \ -sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(bessely(Rational(1, 2), z)) == \ -(sqrt(2)*cos(z))/(sqrt(pi)*sqrt(z)) assert besselsimp(bessely(Rational(-1, 2), z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(bessely(Rational(5, 2), z)) == \ sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(bessely(Rational(-5, 2), z)) == \ -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(besseli(Rational(1, 2), z)) == sqrt(2)*sinh(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(besseli(Rational(-1, 2), z)) == \ sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(besseli(Rational(5, 2), z)) == \ sqrt(2)*(z**2*sinh(z) - 3*z*cosh(z) + 3*sinh(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(besseli(Rational(-5, 2), z)) == \ sqrt(2)*(z**2*cosh(z) - 3*z*sinh(z) + 3*cosh(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(besselk(Rational(1, 2), z)) == \ besselsimp(besselk(Rational(-1, 2), z)) == sqrt(pi)*exp(-z)/(sqrt(2)*sqrt(z)) assert besselsimp(besselk(Rational(5, 2), z)) == \ besselsimp(besselk(Rational(-5, 2), z)) == \ sqrt(2)*sqrt(pi)*(z**2 + 3*z + 3)*exp(-z)/(2*z**Rational(5, 2)) def check(eq, ans): return tn(eq, ans) and eq == ans rn = randcplx(a=1, b=0, d=0, c=2) for besselx in [besselj, bessely, besseli, besselk]: ri = Rational(2*randint(-11, 10) + 1, 2) # half integer in [-21/2, 21/2] assert tn(besselsimp(besselx(ri, z)), besselx(ri, z)) assert check(expand_func(besseli(rn, x)), besseli(rn - 2, x) - 2*(rn - 1)*besseli(rn - 1, x)/x) assert check(expand_func(besseli(-rn, x)), besseli(-rn + 2, x) + 2*(-rn + 1)*besseli(-rn + 1, x)/x) assert check(expand_func(besselj(rn, x)), -besselj(rn - 2, x) + 2*(rn - 1)*besselj(rn - 1, x)/x) assert check(expand_func(besselj(-rn, x)), -besselj(-rn + 2, x) + 2*(-rn + 1)*besselj(-rn + 1, x)/x) assert check(expand_func(besselk(rn, x)), besselk(rn - 2, x) + 2*(rn - 1)*besselk(rn - 1, x)/x) assert check(expand_func(besselk(-rn, x)), besselk(-rn + 2, x) - 2*(-rn + 1)*besselk(-rn + 1, x)/x) assert check(expand_func(bessely(rn, x)), -bessely(rn - 2, x) + 2*(rn - 1)*bessely(rn - 1, x)/x) assert check(expand_func(bessely(-rn, x)), -bessely(-rn + 2, x) + 2*(-rn + 1)*bessely(-rn + 1, x)/x) n = Symbol('n', integer=True, positive=True) assert expand_func(besseli(n + 2, z)) == \ besseli(n, z) + (-2*n - 2)*(-2*n*besseli(n, z)/z + besseli(n - 1, z))/z assert expand_func(besselj(n + 2, z)) == \ -besselj(n, z) + (2*n + 2)*(2*n*besselj(n, z)/z - besselj(n - 1, z))/z assert expand_func(besselk(n + 2, z)) == \ besselk(n, z) + (2*n + 2)*(2*n*besselk(n, z)/z + besselk(n - 1, z))/z assert expand_func(bessely(n + 2, z)) == \ -bessely(n, z) + (2*n + 2)*(2*n*bessely(n, z)/z - bessely(n - 1, z))/z assert expand_func(besseli(n + Rational(1, 2), z).rewrite(jn)) == \ (sqrt(2)*sqrt(z)*exp(-I*pi*(n + Rational(1, 2))/2) * exp_polar(I*pi/4)*jn(n, z*exp_polar(I*pi/2))/sqrt(pi)) assert expand_func(besselj(n + Rational(1, 2), z).rewrite(jn)) == \ sqrt(2)*sqrt(z)*jn(n, z)/sqrt(pi) r = Symbol('r', extended_real=True) p = Symbol('p', positive=True) i = Symbol('i', integer=True) for besselx in [besselj, bessely, besseli, besselk]: assert besselx(i, p).is_extended_real assert besselx(i, x).is_extended_real is None assert besselx(x, z).is_extended_real is None for besselx in [besselj, besseli]: assert besselx(i, r).is_extended_real for besselx in [bessely, besselk]: assert besselx(i, r).is_extended_real is None