Exemplo n.º 1
0
def test_sympyissue_from_PR1599():
    n1, n2, n3, n4 = symbols('n1 n2 n3 n4', negative=True)
    assert simplify(I*sqrt(n1)) == -sqrt(-n1)
    assert (powsimp(sqrt(n1)*sqrt(n2)*sqrt(n3)) ==
            -I*sqrt(-n1)*sqrt(-n2)*sqrt(-n3))
    assert (powsimp(root(n1, 3)*root(n2, 3)*root(n3, 3)*root(n4, 3)) ==
            -cbrt(-1)*cbrt(-n1)*cbrt(-n2)*cbrt(-n3)*cbrt(-n4))
Exemplo n.º 2
0
def test_combsimp_gamma():
    R = Rational

    assert combsimp(gamma(x)) == gamma(x)
    assert combsimp(gamma(x + 1)/x) == gamma(x)
    assert combsimp(gamma(x)/(x - 1)) == gamma(x - 1)
    assert combsimp(x*gamma(x)) == gamma(x + 1)
    assert combsimp((x + 1)*gamma(x + 1)) == gamma(x + 2)
    assert combsimp(gamma(x + y)*(x + y)) == gamma(x + y + 1)
    assert combsimp(x/gamma(x + 1)) == 1/gamma(x)
    assert combsimp((x + 1)**2/gamma(x + 2)) == (x + 1)/gamma(x + 1)
    assert combsimp(x*gamma(x) + gamma(x + 3)/(x + 2)) == \
        (x + 2)*gamma(x + 1)

    assert combsimp(gamma(2*x)*x) == gamma(2*x + 1)/2
    assert combsimp(gamma(2*x)/(x - Rational(1, 2))) == 2*gamma(2*x - 1)

    assert combsimp(gamma(x)*gamma(1 - x)) == pi/sin(pi*x)
    assert combsimp(gamma(x)*gamma(-x)) == -pi/(x*sin(pi*x))
    assert combsimp(1/gamma(x + 3)/gamma(1 - x)) == \
        sin(pi*x)/(pi*x*(x + 1)*(x + 2))

    assert powsimp(combsimp(
        gamma(x)*gamma(x + Rational(1, 2))*gamma(y)/gamma(x + y))) == \
        2**(-2*x + 1)*sqrt(pi)*gamma(2*x)*gamma(y)/gamma(x + y)
    assert combsimp(1/gamma(x)/gamma(x - Rational(1, 3))/gamma(x + Rational(1, 3))) == \
        3**(3*x - Rational(3, 2))/(2*pi*gamma(3*x - 1))
    assert simplify(
        gamma(Rational(1, 2) + x/2)*gamma(1 + x/2)/gamma(1 + x)/sqrt(pi)*2**x) == 1
    assert combsimp(gamma(Rational(-1, 4))*gamma(Rational(-3, 4))) == 16*sqrt(2)*pi/3

    assert powsimp(combsimp(gamma(2*x)/gamma(x))) == \
        2**(2*x - 1)*gamma(x + Rational(1, 2))/sqrt(pi)

    # issue sympy/sympy#6792
    e = (-gamma(k)*gamma(k + 2) + gamma(k + 1)**2)/gamma(k)**2
    assert combsimp(e) == -k
    assert combsimp(1/e) == -1/k
    e = (gamma(x) + gamma(x + 1))/gamma(x)
    assert combsimp(e) == x + 1
    assert combsimp(1/e) == 1/(x + 1)
    e = (gamma(x) + gamma(x + 2))*(gamma(x - 1) + gamma(x))/gamma(x)
    assert combsimp(e) == (x**2 + x + 1)*gamma(x + 1)/(x - 1)
    e = (-gamma(k)*gamma(k + 2) + gamma(k + 1)**2)/gamma(k)**2
    assert combsimp(e**2) == k**2
    assert combsimp(e**2/gamma(k + 1)) == k/gamma(k)
    a = R(1, 2) + R(1, 3)
    b = a + R(1, 3)
    assert combsimp(gamma(2*k)/gamma(k)*gamma(k + a)*gamma(k + b))
    3*2**(2*k + 1)*3**(-3*k - 2)*sqrt(pi)*gamma(3*k + R(3, 2))/2

    A, B = symbols('A B', commutative=False)
    assert combsimp(e*B*A) == combsimp(e)*B*A

    # check iteration
    assert combsimp(gamma(2*k)/gamma(k)*gamma(-k - R(1, 2))) == (
        -2**(2*k + 1)*sqrt(pi)/(2*((2*k + 1)*cos(pi*k))))
    assert combsimp(
        gamma(k)*gamma(k + R(1, 3))*gamma(k + R(2, 3))/gamma(3*k/2)) == (
        3*2**(3*k + 1)*3**(-3*k - Rational(1, 2))*sqrt(pi)*gamma(3*k/2 + Rational(1, 2))/2)
Exemplo n.º 3
0
def test_roots_binomial():
    assert roots_binomial(Poly(5*x, x)) == [0]
    assert roots_binomial(Poly(5*x**4, x)) == [0, 0, 0, 0]
    assert roots_binomial(Poly(5*x + 2, x)) == [-Rational(2, 5)]

    A = 10**Rational(3, 4)/10

    assert roots_binomial(Poly(5*x**4 + 2, x)) == \
        [-A - A*I, -A + A*I, A - A*I, A + A*I]

    a1 = Symbol('a1', nonnegative=True)
    b1 = Symbol('b1', nonnegative=True)

    r0 = roots_quadratic(Poly(a1*x**2 + b1, x))
    r1 = roots_binomial(Poly(a1*x**2 + b1, x))

    assert powsimp(r0[0]) == powsimp(r1[0])
    assert powsimp(r0[1]) == powsimp(r1[1])
    for a, b, s, n in itertools.product((1, 2), (1, 2), (-1, 1), (2, 3, 4, 5)):
        if a == b and a != 1:  # a == b == 1 is sufficient
            continue
        p = Poly(a*x**n + s*b)
        ans = roots_binomial(p)
        assert ans == _nsort(ans)

    # issue sympy/sympy#8813
    assert roots(Poly(2*x**3 - 16*y**3, x)) == {
        2*y*(-Rational(1, 2) - sqrt(3)*I/2): 1,
        2*y: 1,
        2*y*(-Rational(1, 2) + sqrt(3)*I/2): 1}
Exemplo n.º 4
0
def test_sympyissue_6367():
    z = -5*sqrt(2)/(2*sqrt(2*sqrt(29) + 29)) + sqrt(-sqrt(29)/29 + Rational(1, 2))
    assert Mul(*[powsimp(a) for a in Mul.make_args(z.normal())]) == 0
    assert powsimp(z.normal()) == 0
    assert simplify(z) == 0
    assert powsimp(sqrt(2 + sqrt(3))*sqrt(2 - sqrt(3)) + 1) == 2
    assert powsimp(z) != 0
Exemplo n.º 5
0
def test_powsimp_negated_base():
    assert powsimp((-x + y)/sqrt(x - y)) == -sqrt(x - y)
    assert powsimp((-x + y)*(-z + y)/sqrt(x - y)/sqrt(z - y)) == sqrt(x - y)*sqrt(z - y)
    p = symbols('p', positive=True)
    assert powsimp((-p)**a/p**a) == (-1)**a
    n = symbols('n', negative=True)
    assert powsimp((-n)**a/n**a) == (-1)**a
    # if x is 0 then the lhs is 0**a*oo**a which is not (-1)**a
    assert powsimp((-x)**a/x**a) != (-1)**a
Exemplo n.º 6
0
def test_powsimp_negated_base():
    assert powsimp((-x + y) / sqrt(x - y)) == -sqrt(x - y)
    assert powsimp((-x + y) * (-z + y) / sqrt(x - y) /
                   sqrt(z - y)) == sqrt(x - y) * sqrt(z - y)
    p = symbols('p', positive=True)
    assert powsimp((-p)**a / p**a) == (-1)**a
    n = symbols('n', negative=True)
    assert powsimp((-n)**a / n**a) == (-1)**a
    # if x is 0 then the lhs is 0**a*oo**a which is not (-1)**a
    assert powsimp((-x)**a / x**a) != (-1)**a
Exemplo n.º 7
0
def test_TR2i():
    # just a reminder that ratios of powers only simplify if both
    # numerator and denominator satisfy the condition that each
    # has a positive base or an integer exponent; e.g. the following,
    # at y=-1, x=1/2 gives sqrt(2)*I != -sqrt(2)*I
    assert powsimp(2**x/y**x) != (2/y)**x

    assert TR2i(sin(x)/cos(x)) == tan(x)
    assert TR2i(sin(x)*sin(y)/cos(x)) == tan(x)*sin(y)
    assert TR2i(1/(sin(x)/cos(x))) == 1/tan(x)
    assert TR2i(1/(sin(x)*sin(y)/cos(x))) == 1/tan(x)/sin(y)
    assert TR2i(sin(x)/2/(cos(x) + 1)) == sin(x)/(cos(x) + 1)/2

    assert TR2i(sin(x)/2/(cos(x) + 1), half=True) == tan(x/2)/2
    assert TR2i(sin(1)/(cos(1) + 1), half=True) == tan(S.Half)
    assert TR2i(sin(2)/(cos(2) + 1), half=True) == tan(1)
    assert TR2i(sin(4)/(cos(4) + 1), half=True) == tan(2)
    assert TR2i(sin(5)/(cos(5) + 1), half=True) == tan(5*S.Half)
    assert TR2i((cos(1) + 1)/sin(1), half=True) == 1/tan(S.Half)
    assert TR2i((cos(2) + 1)/sin(2), half=True) == 1/tan(1)
    assert TR2i((cos(4) + 1)/sin(4), half=True) == 1/tan(2)
    assert TR2i((cos(5) + 1)/sin(5), half=True) == 1/tan(5*S.Half)
    assert TR2i((cos(1) + 1)**(-a)*sin(1)**a, half=True) == tan(S.Half)**a
    assert TR2i((cos(2) + 1)**(-a)*sin(2)**a, half=True) == tan(1)**a
    assert TR2i((cos(4) + 1)**(-a)*sin(4)**a, half=True) == (cos(4) + 1)**(-a)*sin(4)**a
    assert TR2i((cos(5) + 1)**(-a)*sin(5)**a, half=True) == (cos(5) + 1)**(-a)*sin(5)**a
    assert TR2i((cos(1) + 1)**a*sin(1)**(-a), half=True) == tan(S.Half)**(-a)
    assert TR2i((cos(2) + 1)**a*sin(2)**(-a), half=True) == tan(1)**(-a)
    assert TR2i((cos(4) + 1)**a*sin(4)**(-a), half=True) == (cos(4) + 1)**a*sin(4)**(-a)
    assert TR2i((cos(5) + 1)**a*sin(5)**(-a), half=True) == (cos(5) + 1)**a*sin(5)**(-a)

    i = symbols('i', integer=True)
    assert TR2i(((cos(5) + 1)**i*sin(5)**(-i)), half=True) == tan(5*S.Half)**(-i)
    assert TR2i(1/((cos(5) + 1)**i*sin(5)**(-i)), half=True) == tan(5*S.Half)**i
Exemplo n.º 8
0
def test_TR2i():
    # just a reminder that ratios of powers only simplify if both
    # numerator and denominator satisfy the condition that each
    # has a positive base or an integer exponent; e.g. the following,
    # at y=-1, x=1/2 gives sqrt(2)*I != -sqrt(2)*I
    assert powsimp(2**x/y**x) != (2/y)**x

    assert TR2i(sin(x)/cos(x)) == tan(x)
    assert TR2i(sin(x)*sin(y)/cos(x)) == tan(x)*sin(y)
    assert TR2i(1/(sin(x)/cos(x))) == 1/tan(x)
    assert TR2i(1/(sin(x)*sin(y)/cos(x))) == 1/tan(x)/sin(y)
    assert TR2i(sin(x)/2/(cos(x) + 1)) == sin(x)/(cos(x) + 1)/2

    assert TR2i(sin(x)/2/(cos(x) + 1), half=True) == tan(x/2)/2
    assert TR2i(sin(1)/(cos(1) + 1), half=True) == tan(Rational(1, 2))
    assert TR2i(sin(2)/(cos(2) + 1), half=True) == tan(1)
    assert TR2i(sin(4)/(cos(4) + 1), half=True) == tan(2)
    assert TR2i(sin(5)/(cos(5) + 1), half=True) == tan(Rational(5, 2))
    assert TR2i((cos(1) + 1)/sin(1), half=True) == 1/tan(Rational(1, 2))
    assert TR2i((cos(2) + 1)/sin(2), half=True) == 1/tan(1)
    assert TR2i((cos(4) + 1)/sin(4), half=True) == 1/tan(2)
    assert TR2i((cos(5) + 1)/sin(5), half=True) == 1/tan(Rational(5, 2))
    assert TR2i((cos(1) + 1)**(-a)*sin(1)**a, half=True) == tan(Rational(1, 2))**a
    assert TR2i((cos(2) + 1)**(-a)*sin(2)**a, half=True) == tan(1)**a
    assert TR2i((cos(4) + 1)**(-a)*sin(4)**a, half=True) == (cos(4) + 1)**(-a)*sin(4)**a
    assert TR2i((cos(5) + 1)**(-a)*sin(5)**a, half=True) == (cos(5) + 1)**(-a)*sin(5)**a
    assert TR2i((cos(1) + 1)**a*sin(1)**(-a), half=True) == tan(Rational(1, 2))**(-a)
    assert TR2i((cos(2) + 1)**a*sin(2)**(-a), half=True) == tan(1)**(-a)
    assert TR2i((cos(4) + 1)**a*sin(4)**(-a), half=True) == (cos(4) + 1)**a*sin(4)**(-a)
    assert TR2i((cos(5) + 1)**a*sin(5)**(-a), half=True) == (cos(5) + 1)**a*sin(5)**(-a)

    i = symbols('i', integer=True)
    assert TR2i(((cos(5) + 1)**i*sin(5)**(-i)), half=True) == tan(Rational(5, 2))**(-i)
    assert TR2i(1/((cos(5) + 1)**i*sin(5)**(-i)), half=True) == tan(Rational(5, 2))**i
Exemplo n.º 9
0
def test_sympyissue_9324():
    def count(val):
        return count_ops(val, visual=False)

    M = MatrixSymbol('M', 10, 10)
    assert count(M[0, 0]) == 0
    assert count(2 * M[0, 0] + M[5, 7]) == 2
    P = MatrixSymbol('P', 3, 3)
    Q = MatrixSymbol('Q', 3, 3)
    assert count(P + Q) == 9
    expr = powsimp(M, deep=True)
    assert expr == M
    assert expr.name == 'M'
    m = Symbol('m', integer=True)
    n = Symbol('n', integer=True)
    M = MatrixSymbol('M', m + n, m * m)
    assert count(M[0, 1]) == 0
Exemplo n.º 10
0
def test_powsimp_polar():
    p, q = symbols('p q', polar=True)

    assert (polar_lift(-1))**(2 * x) == exp_polar(2 * pi * I * x)
    assert powsimp(p**x * q**x) == (p * q)**x
    assert p**x * (1 / p)**x == 1
    assert (1 / p)**x == p**(-x)

    assert exp_polar(x) * exp_polar(y) == exp_polar(x) * exp_polar(y)
    assert powsimp(exp_polar(x) * exp_polar(y)) == exp_polar(x + y)
    assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y) == \
        (p*exp_polar(1))**(x + y)
    assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y, combine='exp') == \
        exp_polar(x + y)*p**(x + y)
    assert powsimp(
        exp_polar(x)*exp_polar(y)*exp_polar(2)*sin(x) + sin(y) + p**x*p**y) \
        == p**(x + y) + sin(x)*exp_polar(2 + x + y) + sin(y)
    assert powsimp(sin(exp_polar(x)*exp_polar(y))) == \
        sin(exp_polar(x)*exp_polar(y))
    assert powsimp(sin(exp_polar(x)*exp_polar(y)), deep=True) == \
        sin(exp_polar(x + y))
Exemplo n.º 11
0
def test_powsimp_polar():
    p, q, r = symbols('p q r', polar=True)

    assert (polar_lift(-1))**(2*x) == exp_polar(2*pi*I*x)
    assert powsimp(p**x * q**x) == (p*q)**x
    assert p**x * (1/p)**x == 1
    assert (1/p)**x == p**(-x)

    assert exp_polar(x)*exp_polar(y) == exp_polar(x)*exp_polar(y)
    assert powsimp(exp_polar(x)*exp_polar(y)) == exp_polar(x + y)
    assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y) == \
        (p*exp_polar(1))**(x + y)
    assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y, combine='exp') == \
        exp_polar(x + y)*p**(x + y)
    assert powsimp(
        exp_polar(x)*exp_polar(y)*exp_polar(2)*sin(x) + sin(y) + p**x*p**y) \
        == p**(x + y) + sin(x)*exp_polar(2 + x + y) + sin(y)
    assert powsimp(sin(exp_polar(x)*exp_polar(y))) == \
        sin(exp_polar(x)*exp_polar(y))
    assert powsimp(sin(exp_polar(x)*exp_polar(y)), deep=True) == \
        sin(exp_polar(x + y))
Exemplo n.º 12
0
def test_issue_5728():
    b = x * sqrt(y)
    a = sqrt(b)
    c = sqrt(sqrt(x) * y)
    assert powsimp(a * b) == sqrt(b)**3
    assert powsimp(a * b**2 * sqrt(y)) == sqrt(y) * a**5
    assert powsimp(a * x**2 * c**3 * y) == c**3 * a**5
    assert powsimp(a * x * c**3 * y**2) == c**7 * a
    assert powsimp(x * c**3 * y**2) == c**7
    assert powsimp(x * c**3 * y) == x * y * c**3
    assert powsimp(sqrt(x) * c**3 * y) == c**5
    assert powsimp(sqrt(x) * a**3 * sqrt(y)) == sqrt(x) * sqrt(y) * a**3
    assert powsimp(Mul(sqrt(x)*c**3*sqrt(y), y, evaluate=False)) == \
        sqrt(x)*sqrt(y)**3*c**3
    assert powsimp(a**2 * a * x**2 * y) == a**7

    # symbolic powers work, too
    b = x**y * y
    a = b * sqrt(b)
    assert a.is_Mul is True
    assert powsimp(a) == sqrt(b)**3

    # as does exp
    a = x * exp(2 * y / 3)
    assert powsimp(a * sqrt(a)) == sqrt(a)**3
    assert powsimp(a**2 * sqrt(a)) == sqrt(a)**5
    assert powsimp(a**2 * sqrt(sqrt(a))) == sqrt(sqrt(a))**9
Exemplo n.º 13
0
def test_issue_9324_powsimp_on_matrix_symbol():
    M = MatrixSymbol('M', 10, 10)
    expr = powsimp(M, deep=True)
    assert expr == M
    assert expr.args[0] == 'M'
Exemplo n.º 14
0
def test_issue_6440():
    assert powsimp(16 * 2**a * 8**b) == 2**(a + 3 * b + 4)
Exemplo n.º 15
0
def test_sympyissue_9324_powsimp_on_matrix_symbol():
    M = MatrixSymbol('M', 10, 10)
    expr = powsimp(M, deep=True)
    assert expr == M
    assert expr.name == 'M'
Exemplo n.º 16
0
 def mysimp(expr):
     return expand(powsimp(logcombine(expr, force=True),
                           force=True,
                           deep=True),
                   force=True).replace(exp_polar, exp)
Exemplo n.º 17
0
def test_combsimp_gamma():
    R = Rational

    assert combsimp(gamma(x)) == gamma(x)
    assert combsimp(gamma(x + 1) / x) == gamma(x)
    assert combsimp(gamma(x) / (x - 1)) == gamma(x - 1)
    assert combsimp(x * gamma(x)) == gamma(x + 1)
    assert combsimp((x + 1) * gamma(x + 1)) == gamma(x + 2)
    assert combsimp(gamma(x + y) * (x + y)) == gamma(x + y + 1)
    assert combsimp(x / gamma(x + 1)) == 1 / gamma(x)
    assert combsimp((x + 1)**2 / gamma(x + 2)) == (x + 1) / gamma(x + 1)
    assert combsimp(x*gamma(x) + gamma(x + 3)/(x + 2)) == \
        (x + 2)*gamma(x + 1)

    assert combsimp(gamma(2 * x) * x) == gamma(2 * x + 1) / 2
    assert combsimp(gamma(2 * x) /
                    (x - Rational(1, 2))) == 2 * gamma(2 * x - 1)

    assert combsimp(gamma(x) * gamma(1 - x)) == pi / sin(pi * x)
    assert combsimp(gamma(x) * gamma(-x)) == -pi / (x * sin(pi * x))
    assert combsimp(1/gamma(x + 3)/gamma(1 - x)) == \
        sin(pi*x)/(pi*x*(x + 1)*(x + 2))

    assert powsimp(combsimp(
        gamma(x)*gamma(x + Rational(1, 2))*gamma(y)/gamma(x + y))) == \
        2**(-2*x + 1)*sqrt(pi)*gamma(2*x)*gamma(y)/gamma(x + y)
    assert combsimp(1/gamma(x)/gamma(x - Rational(1, 3))/gamma(x + Rational(1, 3))) == \
        3**(3*x - Rational(3, 2))/(2*pi*gamma(3*x - 1))
    assert simplify(
        gamma(Rational(1, 2) + x / 2) * gamma(1 + x / 2) / gamma(1 + x) /
        sqrt(pi) * 2**x) == 1
    assert combsimp(gamma(Rational(-1, 4)) *
                    gamma(Rational(-3, 4))) == 16 * sqrt(2) * pi / 3

    assert powsimp(combsimp(gamma(2*x)/gamma(x))) == \
        2**(2*x - 1)*gamma(x + Rational(1, 2))/sqrt(pi)

    # issue sympy/sympy#6792
    e = (-gamma(k) * gamma(k + 2) + gamma(k + 1)**2) / gamma(k)**2
    assert combsimp(e) == -k
    assert combsimp(1 / e) == -1 / k
    e = (gamma(x) + gamma(x + 1)) / gamma(x)
    assert combsimp(e) == x + 1
    assert combsimp(1 / e) == 1 / (x + 1)
    e = (gamma(x) + gamma(x + 2)) * (gamma(x - 1) + gamma(x)) / gamma(x)
    assert combsimp(e) == (x**2 + x + 1) * gamma(x + 1) / (x - 1)
    e = (-gamma(k) * gamma(k + 2) + gamma(k + 1)**2) / gamma(k)**2
    assert combsimp(e**2) == k**2
    assert combsimp(e**2 / gamma(k + 1)) == k / gamma(k)
    a = R(1, 2) + R(1, 3)
    b = a + R(1, 3)
    assert combsimp(gamma(2 * k) / gamma(k) * gamma(k + a) * gamma(k + b))
    3 * 2**(2 * k + 1) * 3**(-3 * k - 2) * sqrt(pi) * gamma(3 * k +
                                                            R(3, 2)) / 2

    A, B = symbols('A B', commutative=False)
    assert combsimp(e * B * A) == combsimp(e) * B * A

    # check iteration
    assert combsimp(gamma(2 * k) / gamma(k) *
                    gamma(-k - R(1, 2))) == (-2**(2 * k + 1) * sqrt(pi) /
                                             (2 * ((2 * k + 1) * cos(pi * k))))
    assert combsimp(
        gamma(k) * gamma(k + R(1, 3)) * gamma(k + R(2, 3)) /
        gamma(3 * k / 2)) == (3 * 2**(3 * k + 1) * 3**(-3 * k - S.Half) *
                              sqrt(pi) * gamma(3 * k / 2 + S.Half) / 2)
Exemplo n.º 18
0
def diop_simplify(eq):
    return _mexpand(powsimp(_mexpand(eq)))
Exemplo n.º 19
0
 def mysimp(expr):
     return expand(
         powsimp(logcombine(expr, force=True), force=True, deep=True),
         force=True).replace(exp_polar, exp)
Exemplo n.º 20
0
 def mysimp(expr):
     from diofant import expand, logcombine, powsimp
     return expand(powsimp(logcombine(expr, force=True),
                           force=True,
                           deep=True),
                   force=True).replace(exp_polar, exp)
Exemplo n.º 21
0
def test_diofantissue_124():
    n = Symbol('n', odd=True)
    assert powsimp((-1)**(n/2)) in ((-1)**(n/2), I**n)
    assert powsimp((-1)**(n/2 - Rational(1, 2)) -
                   (-1)**(3*n/2 - Rational(1, 2))) != 2  # sympy/sympy#10195
Exemplo n.º 22
0
def test_powsimp():
    x, y, z, n = symbols('x,y,z,n')
    f = Function('f')
    assert powsimp( 4**x * 2**(-x) * 2**(-x) ) == 1
    assert powsimp( (-4)**x * (-2)**(-x) * 2**(-x) ) == 1

    assert powsimp(
        f(4**x * 2**(-x) * 2**(-x)) ) == f(4**x * 2**(-x) * 2**(-x))
    assert powsimp( f(4**x * 2**(-x) * 2**(-x)), deep=True ) == f(1)
    assert exp(x)*exp(y) == exp(x)*exp(y)
    assert powsimp(exp(x)*exp(y)) == exp(x + y)
    assert powsimp(exp(x)*exp(y)*2**x*2**y) == (2*E)**(x + y)
    assert powsimp(exp(x)*exp(y)*2**x*2**y, combine='exp') == \
        exp(x + y)*2**(x + y)
    assert powsimp(exp(x)*exp(y)*exp(2)*sin(x) + sin(y) + 2**x*2**y) == \
        exp(2 + x + y)*sin(x) + sin(y) + 2**(x + y)
    assert powsimp(sin(exp(x)*exp(y))) == sin(exp(x)*exp(y))
    assert powsimp(sin(exp(x)*exp(y)), deep=True) == sin(exp(x + y))
    assert powsimp(x**2*x**y) == x**(2 + y)
    # This should remain factored, because 'exp' with deep=True is supposed
    # to act like old automatic exponent combining.
    assert powsimp((1 + E*exp(E))*exp(-E), combine='exp', deep=True) == \
        (1 + exp(1 + E))*exp(-E)
    assert powsimp((1 + E*exp(E))*exp(-E), deep=True) == \
        (1 + exp(1 + E))*exp(-E)
    assert powsimp((1 + E*exp(E))*exp(-E)) == (1 + exp(1 + E))*exp(-E)
    assert powsimp((1 + E*exp(E))*exp(-E), combine='exp') == \
        (1 + exp(1 + E))*exp(-E)
    assert powsimp((1 + E*exp(E))*exp(-E), combine='base') == \
        (1 + E*exp(E))*exp(-E)
    x, y = symbols('x,y', nonnegative=True)
    n = Symbol('n', extended_real=True)
    assert powsimp(y**n * (y/x)**(-n)) == x**n
    assert powsimp(x**(x**(x*y)*y**(x*y))*y**(x**(x*y)*y**(x*y)), deep=True) \
        == (x*y)**(x*y)**(x*y)
    assert powsimp(2**(2**(2*x)*x), deep=False) == 2**(2**(2*x)*x)
    assert powsimp(2**(2**(2*x)*x), deep=True) == 2**(x*4**x)
    assert powsimp(
        exp(-x + exp(-x)*exp(-x*log(x))), deep=False, combine='exp') == \
        exp(-x + exp(-x)*exp(-x*log(x)))
    assert powsimp(
        exp(-x + exp(-x)*exp(-x*log(x))), deep=False, combine='exp') == \
        exp(-x + exp(-x)*exp(-x*log(x)))
    assert powsimp((x + y)/(3*z), deep=False, combine='exp') == (x + y)/(3*z)
    assert powsimp((x/3 + y/3)/z, deep=True, combine='exp') == (x/3 + y/3)/z
    assert powsimp(exp(x)/(1 + exp(x)*exp(y)), deep=True) == \
        exp(x)/(1 + exp(x + y))
    assert powsimp(x*y**(z**x*z**y), deep=True) == x*y**(z**(x + y))
    assert powsimp((z**x*z**y)**x, deep=True) == (z**(x + y))**x
    assert powsimp(x*(z**x*z**y)**x, deep=True) == x*(z**(x + y))**x
    p = symbols('p', positive=True)
    assert powsimp((1/x)**log(2)/x) == (1/x)**(1 + log(2))
    assert powsimp((1/p)**log(2)/p) == p**(-1 - log(2))

    # coefficient of exponent can only be simplified for positive bases
    assert powsimp(2**(2*x)) == 4**x
    assert powsimp((-1)**(2*x)) == (-1)**(2*x)
    i = symbols('i', integer=True)
    assert powsimp((-1)**(2*i)) == 1
    assert powsimp((-1)**(-x)) != (-1)**x  # could be 1/((-1)**x), but is not
    # force=True overrides assumptions
    assert powsimp((-1)**(2*x), force=True) == 1

    # rational exponents allow combining of negative terms
    w, n, m = symbols('w n m', negative=True)
    e = i/a  # not a rational exponent if `a` is unknown
    ex = w**e*n**e*m**e
    assert powsimp(ex) == m**(i/a)*n**(i/a)*w**(i/a)
    e = i/3
    ex = w**e*n**e*m**e
    assert powsimp(ex) == (-1)**i*(-m*n*w)**(i/3)
    e = (3 + i)/i
    ex = w**e*n**e*m**e
    assert powsimp(ex) == (-1)**(3*e)*(-m*n*w)**e

    eq = x**(2*a/3)
    # eq != (x**a)**(2/3) (try x = -1 and a = 3 to see)
    assert powsimp(eq).exp == eq.exp == 2*a/3
    # powdenest goes the other direction
    assert powsimp(2**(2*x)) == 4**x

    assert powsimp(exp(p/2)) == exp(p/2)

    # issue sympy/sympy#6368
    eq = Mul(*[sqrt(Dummy(imaginary=True)) for i in range(3)])
    assert powsimp(eq) == eq and eq.is_Mul

    assert all(powsimp(e) == e for e in (sqrt(x**a), sqrt(x**2)))

    # issue sympy/sympy#8836
    assert str( powsimp(exp(I*pi/3)*root(-1, 3)) ) == '(-1)**(2/3)'
Exemplo n.º 23
0
def test_sympyissue_5728():
    b = x*sqrt(y)
    a = sqrt(b)
    c = sqrt(sqrt(x)*y)
    assert powsimp(a*b) == sqrt(b)**3
    assert powsimp(a*b**2*sqrt(y)) == sqrt(y)*a**5
    assert powsimp(a*x**2*c**3*y) == c**3*a**5
    assert powsimp(a*x*c**3*y**2) == c**7*a
    assert powsimp(x*c**3*y**2) == c**7
    assert powsimp(x*c**3*y) == x*y*c**3
    assert powsimp(sqrt(x)*c**3*y) == c**5
    assert powsimp(sqrt(x)*a**3*sqrt(y)) == sqrt(x)*sqrt(y)*a**3
    assert powsimp(Mul(sqrt(x)*c**3*sqrt(y), y, evaluate=False)) == \
        sqrt(x)*sqrt(y)**3*c**3
    assert powsimp(a**2*a*x**2*y) == a**7

    # symbolic powers work, too
    b = x**y*y
    a = b*sqrt(b)
    assert a.is_Mul is True
    assert powsimp(a) == sqrt(b)**3

    # as does exp
    a = x*exp(2*y/3)
    assert powsimp(a*sqrt(a)) == sqrt(a)**3
    assert powsimp(a**2*sqrt(a)) == sqrt(a)**5
    assert powsimp(a**2*sqrt(sqrt(a))) == sqrt(sqrt(a))**9
Exemplo n.º 24
0
def test_powsimp_nc():
    A, B, C = symbols('A B C', commutative=False)

    assert powsimp(A**x*A**y, combine='all') == A**(x + y)
    assert powsimp(A**x*A**y, combine='base') == A**x*A**y
    assert powsimp(A**x*A**y, combine='exp') == A**(x + y)

    assert powsimp(A**x*B**x, combine='all') == (A*B)**x
    assert powsimp(A**x*B**x, combine='base') == (A*B)**x
    assert powsimp(A**x*B**x, combine='exp') == A**x*B**x

    assert powsimp(B**x*A**x, combine='all') == (B*A)**x
    assert powsimp(B**x*A**x, combine='base') == (B*A)**x
    assert powsimp(B**x*A**x, combine='exp') == B**x*A**x

    assert powsimp(A**x*A**y*A**z, combine='all') == A**(x + y + z)
    assert powsimp(A**x*A**y*A**z, combine='base') == A**x*A**y*A**z
    assert powsimp(A**x*A**y*A**z, combine='exp') == A**(x + y + z)

    assert powsimp(A**x*B**x*C**x, combine='all') == (A*B*C)**x
    assert powsimp(A**x*B**x*C**x, combine='base') == (A*B*C)**x
    assert powsimp(A**x*B**x*C**x, combine='exp') == A**x*B**x*C**x

    assert powsimp(B**x*A**x*C**x, combine='all') == (B*A*C)**x
    assert powsimp(B**x*A**x*C**x, combine='base') == (B*A*C)**x
    assert powsimp(B**x*A**x*C**x, combine='exp') == B**x*A**x*C**x
Exemplo n.º 25
0
def test_diofantissue_124():
    n = Symbol('n', odd=True)
    assert powsimp((-1)**(n / 2)) in ((-1)**(n / 2), I**n)
    assert powsimp((-1)**(n / 2 - Rational(1, 2)) - (-1)**
                   (3 * n / 2 - Rational(1, 2))) != 2  # sympy/sympy#10195
Exemplo n.º 26
0
def test_issue_143():
    n = Symbol('n', odd=True)
    assert powsimp((-1)**(n / 2)) == (-1)**(n / 2)
    assert powsimp((-1)**(n / 2 - Rational(1, 2)) - (-1)**
                   (3 * n / 2 - Rational(1, 2))) != 2  # sympy/sympy#10195
Exemplo n.º 27
0
def test_powsimp():
    x, y, z, n = symbols('x,y,z,n')
    f = Function('f')
    assert powsimp(4**x * 2**(-x) * 2**(-x)) == 1
    assert powsimp((-4)**x * (-2)**(-x) * 2**(-x)) == 1

    assert powsimp(f(4**x * 2**(-x) * 2**(-x))) == f(4**x * 2**(-x) * 2**(-x))
    assert powsimp(f(4**x * 2**(-x) * 2**(-x)), deep=True) == f(1)
    assert exp(x) * exp(y) == exp(x) * exp(y)
    assert powsimp(exp(x) * exp(y)) == exp(x + y)
    assert powsimp(exp(x) * exp(y) * 2**x * 2**y) == (2 * E)**(x + y)
    assert powsimp(exp(x)*exp(y)*2**x*2**y, combine='exp') == \
        exp(x + y)*2**(x + y)
    assert powsimp(exp(x)*exp(y)*exp(2)*sin(x) + sin(y) + 2**x*2**y) == \
        exp(2 + x + y)*sin(x) + sin(y) + 2**(x + y)
    assert powsimp(sin(exp(x) * exp(y))) == sin(exp(x) * exp(y))
    assert powsimp(sin(exp(x) * exp(y)), deep=True) == sin(exp(x + y))
    assert powsimp(x**2 * x**y) == x**(2 + y)
    # This should remain factored, because 'exp' with deep=True is supposed
    # to act like old automatic exponent combining.
    assert powsimp((1 + E*exp(E))*exp(-E), combine='exp', deep=True) == \
        (1 + exp(1 + E))*exp(-E)
    assert powsimp((1 + E*exp(E))*exp(-E), deep=True) == \
        (1 + exp(1 + E))*exp(-E)
    assert powsimp((1 + E * exp(E)) * exp(-E)) == (1 + exp(1 + E)) * exp(-E)
    assert powsimp((1 + E*exp(E))*exp(-E), combine='exp') == \
        (1 + exp(1 + E))*exp(-E)
    assert powsimp((1 + E*exp(E))*exp(-E), combine='base') == \
        (1 + E*exp(E))*exp(-E)
    x, y = symbols('x,y', nonnegative=True)
    n = Symbol('n', extended_real=True)
    assert powsimp(y**n * (y / x)**(-n)) == x**n
    assert powsimp(x**(x**(x*y)*y**(x*y))*y**(x**(x*y)*y**(x*y)), deep=True) \
        == (x*y)**(x*y)**(x*y)
    assert powsimp(2**(2**(2 * x) * x), deep=False) == 2**(2**(2 * x) * x)
    assert powsimp(2**(2**(2 * x) * x), deep=True) == 2**(x * 4**x)
    assert powsimp(
        exp(-x + exp(-x)*exp(-x*log(x))), deep=False, combine='exp') == \
        exp(-x + exp(-x)*exp(-x*log(x)))
    assert powsimp(
        exp(-x + exp(-x)*exp(-x*log(x))), deep=False, combine='exp') == \
        exp(-x + exp(-x)*exp(-x*log(x)))
    assert powsimp((x + y) / (3 * z), deep=False,
                   combine='exp') == (x + y) / (3 * z)
    assert powsimp((x / 3 + y / 3) / z, deep=True,
                   combine='exp') == (x / 3 + y / 3) / z
    assert powsimp(exp(x)/(1 + exp(x)*exp(y)), deep=True) == \
        exp(x)/(1 + exp(x + y))
    assert powsimp(x * y**(z**x * z**y), deep=True) == x * y**(z**(x + y))
    assert powsimp((z**x * z**y)**x, deep=True) == (z**(x + y))**x
    assert powsimp(x * (z**x * z**y)**x, deep=True) == x * (z**(x + y))**x
    p = symbols('p', positive=True)
    assert powsimp((1 / x)**log(2) / x) == (1 / x)**(1 + log(2))
    assert powsimp((1 / p)**log(2) / p) == p**(-1 - log(2))

    # coefficient of exponent can only be simplified for positive bases
    assert powsimp(2**(2 * x)) == 4**x
    assert powsimp((-1)**(2 * x)) == (-1)**(2 * x)
    i = symbols('i', integer=True)
    assert powsimp((-1)**(2 * i)) == 1
    assert powsimp((-1)**(-x)) != (-1)**x  # could be 1/((-1)**x), but is not
    # force=True overrides assumptions
    assert powsimp((-1)**(2 * x), force=True) == 1

    # rational exponents allow combining of negative terms
    w, n, m = symbols('w n m', negative=True)
    e = i / a  # not a rational exponent if `a` is unknown
    ex = w**e * n**e * m**e
    assert powsimp(ex) == m**(i / a) * n**(i / a) * w**(i / a)
    e = i / 3
    ex = w**e * n**e * m**e
    assert powsimp(ex) == (-1)**i * (-m * n * w)**(i / 3)
    e = (3 + i) / i
    ex = w**e * n**e * m**e
    assert powsimp(ex) == (-1)**(3 * e) * (-m * n * w)**e

    eq = x**(2 * a / 3)
    # eq != (x**a)**(2/3) (try x = -1 and a = 3 to see)
    assert powsimp(eq).exp == eq.exp == 2 * a / 3
    # powdenest goes the other direction
    assert powsimp(2**(2 * x)) == 4**x

    assert powsimp(exp(p / 2)) == exp(p / 2)

    # issue 6368
    eq = Mul(*[sqrt(Dummy(imaginary=True)) for i in range(3)])
    assert powsimp(eq) == eq and eq.is_Mul

    assert all(powsimp(e) == e for e in (sqrt(x**a), sqrt(x**2)))

    # issue 8836
    assert str(powsimp(exp(I * pi / 3) * root(-1, 3))) == '(-1)**(2/3)'
Exemplo n.º 28
0
def test_sympyissue_11981():
    x, y = symbols('x y', commutative=False)
    assert powsimp((x * y)**2 * (y * x)**2) == (x * y)**2 * (y * x)**2
Exemplo n.º 29
0
    def contains(self, expr):
        """Membership test.

        Returns
        =======

        Boolean or None
            Return True if ``expr`` belongs to ``self``.  Return False if
            ``self`` belongs to ``expr``.  Return None if the inclusion
            relation cannot be determined.
        """
        from diofant import powsimp
        from diofant.series.limits import Limit
        if expr is S.Zero:
            return True
        if expr is S.NaN:
            return False
        if expr.is_Order:
            if (not all(p == expr.point[0] for p in expr.point) and
                   not all(p == self.point[0] for p in self.point)):  # pragma: no cover
                raise NotImplementedError('Order at points other than 0 '
                    'or oo not supported, got %s as a point.' % point)
            else:
                # self and/or expr is O(1):
                if any(not p for p in [expr.point, self.point]):
                    point = self.point + expr.point
                    if point:
                        point = point[0]
                    else:
                        point = S.Zero
                else:
                    point = self.point[0]
            if expr.expr == self.expr:
                # O(1) + O(1), O(1) + O(1, x), etc.
                return all([x in self.args[1:] for x in expr.args[1:]])
            if expr.expr.is_Add:
                return all([self.contains(x) for x in expr.expr.args])
            if self.expr.is_Add and point == S.Zero:
                return any([self.func(x, *self.args[1:]).contains(expr)
                            for x in self.expr.args])
            if self.variables and expr.variables:
                common_symbols = tuple(
                    [s for s in self.variables if s in expr.variables])
            elif self.variables:
                common_symbols = self.variables
            else:
                common_symbols = expr.variables
            if not common_symbols:
                return
            r = None
            ratio = self.expr/expr.expr
            ratio = powsimp(ratio, deep=True, combine='exp')
            for s in common_symbols:
                l = Limit(ratio, s, point).doit(heuristics=False)
                if not isinstance(l, Limit):
                    l = l != 0
                else:
                    l = None
                if r is None:
                    r = l
                else:
                    if r != l:
                        return
            return r
        obj = self.func(expr, *self.args[1:])
        return self.contains(obj)
Exemplo n.º 30
0
def test_probability():
    # various integrals from probability theory
    mu1, mu2 = symbols('mu1 mu2', real=True, nonzero=True)
    sigma1, sigma2 = symbols('sigma1 sigma2', real=True,
                             nonzero=True, positive=True)
    rate = Symbol('lambda', real=True, positive=True)

    def normal(x, mu, sigma):
        return 1/sqrt(2*pi*sigma**2)*exp(-(x - mu)**2/2/sigma**2)

    def exponential(x, rate):
        return rate*exp(-rate*x)

    assert integrate(normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == 1
    assert integrate(x*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == \
        mu1
    assert integrate(x**2*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
        == mu1**2 + sigma1**2
    assert integrate(x**3*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
        == mu1**3 + 3*mu1*sigma1**2
    assert integrate(normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == 1
    assert integrate(x*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu1
    assert integrate(y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu2
    assert integrate(x*y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu1*mu2
    assert integrate((x + y + 1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == 1 + mu1 + mu2
    assert integrate((x + y - 1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == \
        -1 + mu1 + mu2

    i = integrate(x**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                  (x, -oo, oo), (y, -oo, oo), meijerg=True)
    assert not i.has(Abs)
    assert simplify(i) == mu1**2 + sigma1**2
    assert integrate(y**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == \
        sigma2**2 + mu2**2

    assert integrate(exponential(x, rate), (x, 0, oo), meijerg=True) == 1
    assert integrate(x*exponential(x, rate), (x, 0, oo), meijerg=True) == \
        1/rate
    assert integrate(x**2*exponential(x, rate), (x, 0, oo), meijerg=True) == \
        2/rate**2

    def E(expr):
        res1 = integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1),
                         (x, 0, oo), (y, -oo, oo), meijerg=True)
        res2 = integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1),
                         (y, -oo, oo), (x, 0, oo), meijerg=True)
        assert expand_mul(res1) == expand_mul(res2)
        return res1

    assert E(1) == 1
    assert E(x*y) == mu1/rate
    assert E(x*y**2) == mu1**2/rate + sigma1**2/rate
    ans = sigma1**2 + 1/rate**2
    assert simplify(E((x + y + 1)**2) - E(x + y + 1)**2) == ans
    assert simplify(E((x + y - 1)**2) - E(x + y - 1)**2) == ans
    assert simplify(E((x + y)**2) - E(x + y)**2) == ans

    # Beta' distribution
    alpha, beta = symbols('alpha beta', positive=True)
    betadist = x**(alpha - 1)*(1 + x)**(-alpha - beta)*gamma(alpha + beta) \
        / gamma(alpha)/gamma(beta)
    assert integrate(betadist, (x, 0, oo), meijerg=True) == 1
    i = integrate(x*betadist, (x, 0, oo), meijerg=True, conds='separate')
    assert (combsimp(i[0]), i[1]) == (alpha/(beta - 1), 1 < beta)
    j = integrate(x**2*betadist, (x, 0, oo), meijerg=True, conds='separate')
    assert j[1] == (1 < beta - 1)
    assert combsimp(j[0] - i[0]**2) == (alpha + beta - 1)*alpha \
        / (beta - 2)/(beta - 1)**2

    # Beta distribution
    # NOTE: this is evaluated using antiderivatives. It also tests that
    #       meijerint_indefinite returns the simplest possible answer.
    a, b = symbols('a b', positive=True)
    betadist = x**(a - 1)*(-x + 1)**(b - 1)*gamma(a + b)/(gamma(a)*gamma(b))
    assert simplify(integrate(betadist, (x, 0, 1), meijerg=True)) == 1
    assert simplify(integrate(x*betadist, (x, 0, 1), meijerg=True)) == \
        a/(a + b)
    assert simplify(integrate(x**2*betadist, (x, 0, 1), meijerg=True)) == \
        a*(a + 1)/(a + b)/(a + b + 1)
    assert simplify(integrate(x**y*betadist, (x, 0, 1), meijerg=True)) == \
        gamma(a + b)*gamma(a + y)/gamma(a)/gamma(a + b + y)

    # Chi distribution
    k = Symbol('k', integer=True, positive=True)
    chi = 2**(1 - k/2)*x**(k - 1)*exp(-x**2/2)/gamma(k/2)
    assert powsimp(integrate(chi, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x*chi, (x, 0, oo), meijerg=True)) == \
        sqrt(2)*gamma((k + 1)/2)/gamma(k/2)
    assert simplify(integrate(x**2*chi, (x, 0, oo), meijerg=True)) == k

    # Chi^2 distribution
    chisquared = 2**(-k/2)/gamma(k/2)*x**(k/2 - 1)*exp(-x/2)
    assert powsimp(integrate(chisquared, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x*chisquared, (x, 0, oo), meijerg=True)) == k
    assert simplify(integrate(x**2*chisquared, (x, 0, oo), meijerg=True)) == \
        k*(k + 2)
    assert combsimp(integrate(((x - k)/sqrt(2*k))**3*chisquared, (x, 0, oo),
                              meijerg=True)) == 2*sqrt(2)/sqrt(k)

    # Dagum distribution
    a, b, p = symbols('a b p', positive=True)
    # XXX (x/b)**a does not work
    dagum = a*p/x*(x/b)**(a*p)/(1 + x**a/b**a)**(p + 1)
    assert simplify(integrate(dagum, (x, 0, oo), meijerg=True)) == 1
    # XXX conditions are a mess
    arg = x*dagum
    assert simplify(integrate(arg, (x, 0, oo), meijerg=True, conds='none')
                    ) == a*b*gamma(1 - 1/a)*gamma(p + 1 + 1/a)/(
        (a*p + 1)*gamma(p))
    assert simplify(integrate(x*arg, (x, 0, oo), meijerg=True, conds='none')
                    ) == a*b**2*gamma(1 - 2/a)*gamma(p + 1 + 2/a)/(
        (a*p + 2)*gamma(p))

    # F-distribution
    d1, d2 = symbols('d1 d2', positive=True)
    f = sqrt(((d1*x)**d1 * d2**d2)/(d1*x + d2)**(d1 + d2))/x \
        / gamma(d1/2)/gamma(d2/2)*gamma((d1 + d2)/2)
    assert simplify(integrate(f, (x, 0, oo), meijerg=True)) == 1
    # TODO conditions are a mess
    assert simplify(integrate(x*f, (x, 0, oo), meijerg=True, conds='none')
                    ) == d2/(d2 - 2)
    assert simplify(integrate(x**2*f, (x, 0, oo), meijerg=True, conds='none')
                    ) == d2**2*(d1 + 2)/d1/(d2 - 4)/(d2 - 2)

    # TODO gamma, rayleigh

    # inverse gaussian
    lamda, mu = symbols('lamda mu', positive=True)
    dist = sqrt(lamda/2/pi)*x**(-Rational(3, 2))*exp(-lamda*(x - mu)**2/x/2/mu**2)

    def mysimp(expr):
        return simplify(expr.rewrite(exp))

    assert mysimp(integrate(dist, (x, 0, oo))) == 1
    assert mysimp(integrate(x*dist, (x, 0, oo))) == mu
    assert mysimp(integrate((x - mu)**2*dist, (x, 0, oo))) == mu**3/lamda
    assert mysimp(integrate((x - mu)**3*dist, (x, 0, oo))) == 3*mu**5/lamda**2

    # Levi
    c = Symbol('c', positive=True)
    assert integrate(sqrt(c/2/pi)*exp(-c/2/(x - mu))/(x - mu)**Rational(3, 2),
                     (x, mu, oo)) == 1
    # higher moments oo

    # log-logistic
    distn = (beta/alpha)*x**(beta - 1)/alpha**(beta - 1) / \
        (1 + x**beta/alpha**beta)**2
    assert simplify(integrate(distn, (x, 0, oo))) == 1
    # NOTE the conditions are a mess, but correctly state beta > 1
    assert simplify(integrate(x*distn, (x, 0, oo), conds='none')) == \
        pi*alpha/beta/sin(pi/beta)
    # (similar comment for conditions applies)
    assert simplify(integrate(x**y*distn, (x, 0, oo), conds='none')) == \
        pi*alpha**y*y/beta/sin(pi*y/beta)

    # weibull
    k = Symbol('k', positive=True)
    n = Symbol('n', positive=True)
    distn = k/lamda*(x/lamda)**(k - 1)*exp(-(x/lamda)**k)
    assert simplify(integrate(distn, (x, 0, oo))) == 1
    assert simplify(integrate(x**n*distn, (x, 0, oo))) == \
        lamda**n*gamma(1 + n/k)

    # rice distribution
    nu, sigma = symbols('nu sigma', positive=True)
    rice = x/sigma**2*exp(-(x**2 + nu**2)/2/sigma**2)*besseli(0, x*nu/sigma**2)
    assert integrate(rice, (x, 0, oo), meijerg=True) == 1
    # can someone verify higher moments?

    # Laplace distribution
    mu = Symbol('mu', extended_real=True)
    b = Symbol('b', positive=True)
    laplace = exp(-abs(x - mu)/b)/2/b
    assert integrate(laplace, (x, -oo, oo), meijerg=True) == 1
    assert integrate(x*laplace, (x, -oo, oo), meijerg=True) == mu
    assert integrate(x**2*laplace, (x, -oo, oo), meijerg=True) == \
        2*b**2 + mu**2

    # TODO are there other distributions supported on (-oo, oo) that we can do?

    # misc tests
    k = Symbol('k', positive=True)
    assert combsimp(expand_mul(integrate(log(x)*x**(k - 1)*exp(-x)/gamma(k),
                                         (x, 0, oo)))) == polygamma(0, k)
Exemplo n.º 31
0
def test_probability():
    # various integrals from probability theory
    mu1, mu2 = symbols('mu1 mu2', real=True, nonzero=True)
    sigma1, sigma2 = symbols('sigma1 sigma2',
                             real=True,
                             nonzero=True,
                             positive=True)
    rate = Symbol('lambda', real=True, positive=True)

    def normal(x, mu, sigma):
        return 1 / sqrt(2 * pi * sigma**2) * exp(-(x - mu)**2 / 2 / sigma**2)

    def exponential(x, rate):
        return rate * exp(-rate * x)

    assert integrate(normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == 1
    assert integrate(x*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == \
        mu1
    assert integrate(x**2*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
        == mu1**2 + sigma1**2
    assert integrate(x**3*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
        == mu1**3 + 3*mu1*sigma1**2
    assert integrate(normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo),
                     meijerg=True) == 1
    assert integrate(x * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo),
                     meijerg=True) == mu1
    assert integrate(y * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo),
                     meijerg=True) == mu2
    assert integrate(x * y * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo),
                     meijerg=True) == mu1 * mu2
    assert integrate(
        (x + y + 1) * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
        (x, -oo, oo), (y, -oo, oo),
        meijerg=True) == 1 + mu1 + mu2
    assert integrate((x + y - 1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == \
        -1 + mu1 + mu2

    i = integrate(x**2 * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                  (x, -oo, oo), (y, -oo, oo),
                  meijerg=True)
    assert not i.has(Abs)
    assert simplify(i) == mu1**2 + sigma1**2
    assert integrate(y**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == \
        sigma2**2 + mu2**2

    assert integrate(exponential(x, rate), (x, 0, oo), meijerg=True) == 1
    assert integrate(x*exponential(x, rate), (x, 0, oo), meijerg=True) == \
        1/rate
    assert integrate(x**2*exponential(x, rate), (x, 0, oo), meijerg=True) == \
        2/rate**2

    def E(expr):
        res1 = integrate(expr * exponential(x, rate) * normal(y, mu1, sigma1),
                         (x, 0, oo), (y, -oo, oo),
                         meijerg=True)
        res2 = integrate(expr * exponential(x, rate) * normal(y, mu1, sigma1),
                         (y, -oo, oo), (x, 0, oo),
                         meijerg=True)
        assert expand_mul(res1) == expand_mul(res2)
        return res1

    assert E(1) == 1
    assert E(x * y) == mu1 / rate
    assert E(x * y**2) == mu1**2 / rate + sigma1**2 / rate
    ans = sigma1**2 + 1 / rate**2
    assert simplify(E((x + y + 1)**2) - E(x + y + 1)**2) == ans
    assert simplify(E((x + y - 1)**2) - E(x + y - 1)**2) == ans
    assert simplify(E((x + y)**2) - E(x + y)**2) == ans

    # Beta' distribution
    alpha, beta = symbols('alpha beta', positive=True, real=True)
    betadist = x**(alpha - 1)*(1 + x)**(-alpha - beta)*gamma(alpha + beta) \
        / gamma(alpha)/gamma(beta)
    assert integrate(betadist, (x, 0, oo), meijerg=True) == 1
    i = integrate(x * betadist, (x, 0, oo), meijerg=True, conds='separate')
    assert (combsimp(i[0]), i[1]) == (alpha / (beta - 1), 1 < beta)
    j = integrate(x**2 * betadist, (x, 0, oo), meijerg=True, conds='separate')
    assert j[1] == (1 < beta - 1)
    assert combsimp(j[0] - i[0]**2) == (alpha + beta - 1)*alpha \
        / (beta - 2)/(beta - 1)**2

    # Beta distribution
    # NOTE: this is evaluated using antiderivatives. It also tests that
    #       meijerint_indefinite returns the simplest possible answer.
    a, b = symbols('a b', positive=True)
    betadist = x**(a - 1) * (-x + 1)**(b - 1) * gamma(a + b) / (gamma(a) *
                                                                gamma(b))
    assert simplify(integrate(betadist, (x, 0, 1), meijerg=True)) == 1
    assert simplify(integrate(x*betadist, (x, 0, 1), meijerg=True)) == \
        a/(a + b)
    assert simplify(integrate(x**2*betadist, (x, 0, 1), meijerg=True)) == \
        a*(a + 1)/(a + b)/(a + b + 1)
    assert simplify(integrate(x**y*betadist, (x, 0, 1), meijerg=True)) == \
        Piecewise((gamma(a + b)*gamma(a + y)/(gamma(a)*gamma(a + b + y)),
                   -a - re(y) + 1 < 1),
                  (Integral(x**(a + y - 1)*(-x + 1)**(b - 1)*gamma(a + b)/(gamma(a)*gamma(b)),
                            (x, 0, 1)), True))

    # Chi distribution
    k = Symbol('k', integer=True, positive=True)
    chi = 2**(1 - k / 2) * x**(k - 1) * exp(-x**2 / 2) / gamma(k / 2)
    assert powsimp(integrate(chi, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x*chi, (x, 0, oo), meijerg=True)) == \
        sqrt(2)*gamma((k + 1)/2)/gamma(k/2)
    assert simplify(integrate(x**2 * chi, (x, 0, oo), meijerg=True)) == k

    # Chi^2 distribution
    chisquared = 2**(-k / 2) / gamma(k / 2) * x**(k / 2 - 1) * exp(-x / 2)
    assert powsimp(integrate(chisquared, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x * chisquared, (x, 0, oo), meijerg=True)) == k
    assert simplify(integrate(x**2*chisquared, (x, 0, oo), meijerg=True)) == \
        k*(k + 2)
    assert combsimp(
        integrate(((x - k) / sqrt(2 * k))**3 * chisquared, (x, 0, oo),
                  meijerg=True)) == 2 * sqrt(2) / sqrt(k)

    # Dagum distribution
    a, b, p = symbols('a b p', positive=True, real=True)
    # XXX (x/b)**a does not work
    dagum = a * p / x * (x / b)**(a * p) / (1 + x**a / b**a)**(p + 1)
    assert simplify(integrate(dagum, (x, 0, oo), meijerg=True)) == 1
    # XXX conditions are a mess
    arg = x * dagum
    assert simplify(integrate(
        arg, (x, 0, oo), meijerg=True,
        conds='none')) == a * b * gamma(1 - 1 / a) * gamma(p + 1 + 1 / a) / (
            (a * p + 1) * gamma(p))
    assert simplify(integrate(
        x * arg, (x, 0, oo), meijerg=True,
        conds='none')) == a * b**2 * gamma(1 -
                                           2 / a) * gamma(p + 1 + 2 / a) / (
                                               (a * p + 2) * gamma(p))

    # F-distribution
    d1, d2 = symbols('d1 d2', positive=True)
    f = sqrt(((d1*x)**d1 * d2**d2)/(d1*x + d2)**(d1 + d2))/x \
        / gamma(d1/2)/gamma(d2/2)*gamma((d1 + d2)/2)
    assert simplify(integrate(f, (x, 0, oo), meijerg=True)) == 1
    # TODO conditions are a mess
    assert simplify(integrate(x * f, (x, 0, oo), meijerg=True,
                              conds='none')) == d2 / (d2 - 2)
    assert simplify(
        integrate(x**2 * f, (x, 0, oo), meijerg=True,
                  conds='none')) == d2**2 * (d1 + 2) / d1 / (d2 - 4) / (d2 - 2)

    # TODO gamma, rayleigh

    # inverse gaussian
    lamda, mu = symbols('lamda mu', positive=True)
    dist = sqrt(lamda / 2 / pi) * x**(-Rational(3, 2)) * exp(
        -lamda * (x - mu)**2 / x / 2 / mu**2)

    def mysimp(expr):
        return simplify(expr.rewrite(exp))

    assert mysimp(integrate(dist, (x, 0, oo))) == 1
    assert mysimp(integrate(x * dist, (x, 0, oo))) == mu
    assert mysimp(integrate((x - mu)**2 * dist, (x, 0, oo))) == mu**3 / lamda
    assert mysimp(integrate((x - mu)**3 * dist,
                            (x, 0, oo))) == 3 * mu**5 / lamda**2

    # Levi
    c = Symbol('c', positive=True)
    assert integrate(
        sqrt(c / 2 / pi) * exp(-c / 2 / (x - mu)) / (x - mu)**Rational(3, 2),
        (x, mu, oo)) == 1
    # higher moments oo

    # log-logistic
    distn = (beta/alpha)*x**(beta - 1)/alpha**(beta - 1) / \
        (1 + x**beta/alpha**beta)**2
    assert simplify(integrate(distn, (x, 0, oo))) == 1
    # NOTE the conditions are a mess, but correctly state beta > 1
    assert simplify(integrate(x*distn, (x, 0, oo), conds='none')) == \
        pi*alpha/beta/sin(pi/beta)
    # (similar comment for conditions applies)
    assert simplify(integrate(x**y*distn, (x, 0, oo), conds='none')) == \
        pi*alpha**y*y/beta/sin(pi*y/beta)

    # weibull
    k = Symbol('k', positive=True, real=True)
    n = Symbol('n', positive=True)
    distn = k / lamda * (x / lamda)**(k - 1) * exp(-(x / lamda)**k)
    assert simplify(integrate(distn, (x, 0, oo))) == 1
    assert simplify(integrate(x**n*distn, (x, 0, oo))) == \
        lamda**n*gamma(1 + n/k)

    # rice distribution
    nu, sigma = symbols('nu sigma', positive=True)
    rice = x / sigma**2 * exp(-(x**2 + nu**2) / 2 / sigma**2) * besseli(
        0, x * nu / sigma**2)
    assert integrate(rice, (x, 0, oo), meijerg=True) == 1
    # can someone verify higher moments?

    # Laplace distribution
    mu = Symbol('mu', extended_real=True)
    b = Symbol('b', positive=True)
    laplace = exp(-abs(x - mu) / b) / 2 / b
    assert integrate(laplace, (x, -oo, oo), meijerg=True) == 1
    assert integrate(x * laplace, (x, -oo, oo), meijerg=True) == mu
    assert integrate(x**2*laplace, (x, -oo, oo), meijerg=True) == \
        2*b**2 + mu**2

    # TODO are there other distributions supported on (-oo, oo) that we can do?

    # misc tests
    k = Symbol('k', positive=True)
    assert combsimp(
        expand_mul(
            integrate(log(x) * x**(k - 1) * exp(-x) / gamma(k),
                      (x, 0, oo)))) == polygamma(0, k)
Exemplo n.º 32
0
def test_powsimp_nc():
    A, B, C = symbols('A B C', commutative=False)

    assert powsimp(A**x * A**y, combine='all') == A**(x + y)
    assert powsimp(A**x * A**y, combine='base') == A**x * A**y
    assert powsimp(A**x * A**y, combine='exp') == A**(x + y)

    assert powsimp(A**x * B**x, combine='all') == (A * B)**x
    assert powsimp(A**x * B**x, combine='base') == (A * B)**x
    assert powsimp(A**x * B**x, combine='exp') == A**x * B**x

    assert powsimp(B**x * A**x, combine='all') == (B * A)**x
    assert powsimp(B**x * A**x, combine='base') == (B * A)**x
    assert powsimp(B**x * A**x, combine='exp') == B**x * A**x

    assert powsimp(A**x * A**y * A**z, combine='all') == A**(x + y + z)
    assert powsimp(A**x * A**y * A**z, combine='base') == A**x * A**y * A**z
    assert powsimp(A**x * A**y * A**z, combine='exp') == A**(x + y + z)

    assert powsimp(A**x * B**x * C**x, combine='all') == (A * B * C)**x
    assert powsimp(A**x * B**x * C**x, combine='base') == (A * B * C)**x
    assert powsimp(A**x * B**x * C**x, combine='exp') == A**x * B**x * C**x

    assert powsimp(B**x * A**x * C**x, combine='all') == (B * A * C)**x
    assert powsimp(B**x * A**x * C**x, combine='base') == (B * A * C)**x
    assert powsimp(B**x * A**x * C**x, combine='exp') == B**x * A**x * C**x
Exemplo n.º 33
0
 def simp_pows(expr):
     return simplify(powsimp(expand_mul(expr, deep=False),
                             force=True)).replace(exp_polar, exp)
Exemplo n.º 34
0
def test_sympyissue_6440():
    assert powsimp(16*2**a*8**b) == 2**(a + 3*b + 4)
Exemplo n.º 35
0
def diop_simplify(eq):
    return _mexpand(powsimp(_mexpand(eq)))
Exemplo n.º 36
0
 def simp_pows(expr):
     return simplify(powsimp(expand_mul(expr, deep=False), force=True)).replace(exp_polar, exp)