Exemplo n.º 1
0
def test_compose_transformations():

    A = np.eye(4)
    A[0, -1] = 10

    B = np.eye(4)
    B[0, -1] = -20

    C = np.eye(4)
    C[0, -1] = 10

    CBA = compose_transformations(A, B, C)

    assert_array_equal(CBA, np.eye(4))

    assert_raises(ValueError, compose_transformations, A)
Exemplo n.º 2
0
    def optimize(self, static, moving, mat=None):
        """ Find the minimum of the provided metric.

        Parameters
        ----------
        static : streamlines
            Reference or fixed set of streamlines.
        moving : streamlines
            Moving set of streamlines.
        mat : array
            Transformation (4, 4) matrix to start the registration. ``mat``
            is applied to moving. Default value None which means that initial
            transformation will be generated by shifting the centers of moving
            and static sets of streamlines to the origin.

        Returns
        -------
        map : StreamlineRegistrationMap

        """

        msg = 'need to have the same number of points. Use '
        msg += 'set_number_of_points from dipy.tracking.streamline'

        if not np.all(np.array(list(map(len, static))) == static[0].shape[0]):
            raise ValueError('Static streamlines ' + msg)

        if not np.all(np.array(list(map(len, moving))) == moving[0].shape[0]):
            raise ValueError('Moving streamlines ' + msg)

        if not np.all(np.array(list(map(len, moving))) == static[0].shape[0]):
            raise ValueError('Static and moving streamlines ' + msg)

        if mat is None:
            static_centered, static_shift = center_streamlines(static)
            moving_centered, moving_shift = center_streamlines(moving)
            static_mat = compose_matrix44([static_shift[0], static_shift[1],
                                           static_shift[2], 0, 0, 0])

            moving_mat = compose_matrix44([-moving_shift[0], -moving_shift[1],
                                           -moving_shift[2], 0, 0, 0])
        else:
            static_centered = static
            moving_centered = transform_streamlines(moving, mat)
            static_mat = np.eye(4)
            moving_mat = mat

        self.metric.setup(static_centered, moving_centered)

        distance = self.metric.distance

        if self.method == 'Powell':

            if self.options is None:
                self.options = {'xtol': 1e-6, 'ftol': 1e-6, 'maxiter': 1e6}

            opt = Optimizer(distance, self.x0.tolist(),
                            method=self.method, options=self.options,
                            evolution=self.evolution)

        if self.method == 'L-BFGS-B':

            if self.options is None:
                self.options = {'maxcor': 10, 'ftol': 1e-7,
                                'gtol': 1e-5, 'eps': 1e-8,
                                'maxiter': 100}

            opt = Optimizer(distance, self.x0.tolist(),
                            method=self.method,
                            bounds=self.bounds, options=self.options,
                            evolution=self.evolution)

        if self.verbose:
            opt.print_summary()

        opt_mat = compose_matrix44(opt.xopt)

        mat = compose_transformations(moving_mat, opt_mat, static_mat)

        mat_history = []

        if opt.evolution is not None:
            for vecs in opt.evolution:
                mat_history.append(
                    compose_transformations(moving_mat,
                                            compose_matrix44(vecs),
                                            static_mat))

        srm = StreamlineRegistrationMap(mat, opt.xopt, opt.fopt,
                                        mat_history, opt.nfev, opt.nit)
        del opt
        return srm
Exemplo n.º 3
0
    def optimize(self, static, moving, mat=None):
        """ Find the minimum of the provided metric.

        Parameters
        ----------
        static : streamlines
            Reference or fixed set of streamlines.
        moving : streamlines
            Moving set of streamlines.
        mat : array
            Transformation (4, 4) matrix to start the registration. ``mat``
            is applied to moving. Default value None which means that initial
            transformation will be generated by shifting the centers of moving
            and static sets of streamlines to the origin.

        Returns
        -------
        map : StreamlineRegistrationMap

        """

        msg = 'need to have the same number of points. Use '
        msg += 'set_number_of_points from dipy.tracking.streamline'

        if not np.all(np.array(list(map(len, static))) == static[0].shape[0]):
            raise ValueError('Static streamlines ' + msg)

        if not np.all(np.array(list(map(len, moving))) == moving[0].shape[0]):
            raise ValueError('Moving streamlines ' + msg)

        if not np.all(np.array(list(map(len, moving))) == static[0].shape[0]):
            raise ValueError('Static and moving streamlines ' + msg)

        if mat is None:
            static_centered, static_shift = center_streamlines(static)
            moving_centered, moving_shift = center_streamlines(moving)
            static_mat = compose_matrix44(
                [static_shift[0], static_shift[1], static_shift[2], 0, 0, 0])

            moving_mat = compose_matrix44([
                -moving_shift[0], -moving_shift[1], -moving_shift[2], 0, 0, 0
            ])
        else:
            static_centered = static
            moving_centered = transform_streamlines(moving, mat)
            static_mat = np.eye(4)
            moving_mat = mat

        self.metric.setup(static_centered, moving_centered)

        distance = self.metric.distance

        if self.method == 'Powell':

            if self.options is None:
                self.options = {'xtol': 1e-6, 'ftol': 1e-6, 'maxiter': 1e6}

            opt = Optimizer(distance,
                            self.x0.tolist(),
                            method=self.method,
                            options=self.options,
                            evolution=self.evolution)

        if self.method == 'L-BFGS-B':

            if self.options is None:
                self.options = {
                    'maxcor': 10,
                    'ftol': 1e-7,
                    'gtol': 1e-5,
                    'eps': 1e-8,
                    'maxiter': 100
                }

            opt = Optimizer(distance,
                            self.x0.tolist(),
                            method=self.method,
                            bounds=self.bounds,
                            options=self.options,
                            evolution=self.evolution)
        if self.verbose:
            opt.print_summary()

        opt_mat = compose_matrix44(opt.xopt)

        mat = compose_transformations(moving_mat, opt_mat, static_mat)

        mat_history = []

        if opt.evolution is not None:
            for vecs in opt.evolution:
                mat_history.append(
                    compose_transformations(moving_mat, compose_matrix44(vecs),
                                            static_mat))

        srm = StreamlineRegistrationMap(mat, opt.xopt, opt.fopt, mat_history,
                                        opt.nfev, opt.nit)
        del opt
        return srm