Exemplo n.º 1
0
def is_voxel_order_valid(voxel_order):
    return is_reference_info_valid(np.eye(4), [1, 1, 1], [1.0, 1.0, 1.0],
                                   voxel_order)
Exemplo n.º 2
0
def is_voxel_sizes_valid(voxel_sizes):
    return is_reference_info_valid(np.eye(4), [1, 1, 1], voxel_sizes,
                                   'RAS')
Exemplo n.º 3
0
def is_affine_valid(affine):
    return is_reference_info_valid(affine, [1, 1, 1], [1.0, 1.0, 1.0],
                                   'RAS')
Exemplo n.º 4
0
def is_dimensions_valid(dimensions):
    return is_reference_info_valid(np.eye(4), dimensions, [1.0, 1.0, 1.0],
                                   'RAS')
Exemplo n.º 5
0
    def __init__(self, streamlines, reference, space,
                 origin=Origin.NIFTI,
                 data_per_point=None, data_per_streamline=None):
        """ Create a strict, state-aware, robust tractogram

        Parameters
        ----------
        streamlines : list or ArraySequence
            Streamlines of the tractogram
        reference : Nifti or Trk filename, Nifti1Image or TrkFile,
            Nifti1Header, trk.header (dict) or another Stateful Tractogram
            Reference that provides the spatial attributes.
            Typically a nifti-related object from the native diffusion used for
            streamlines generation
        space : Enum (dipy.io.stateful_tractogram.Space)
            Current space in which the streamlines are (vox, voxmm or rasmm)
            After tracking the space is VOX, after loading with nibabel
            the space is RASMM
        origin : Enum (dipy.io.stateful_tractogram.Origin), optional
            Current origin in which the streamlines are (center or corner)
            After loading with nibabel the origin is CENTER
        data_per_point : dict, optional
            Dictionary in which each key has X items, each items has Y_i items
            X being the number of streamlines
            Y_i being the number of points on streamlines #i
        data_per_streamline : dict, optional
            Dictionary in which each key has X items
            X being the number of streamlines

        Notes
        -----
        Very important to respect the convention, verify that streamlines
        match the reference and are effectively in the right space.

        Any change to the number of streamlines, data_per_point or
        data_per_streamline requires particular verification.

        In a case of manipulation not allowed by this object, use Nibabel
        directly and be careful.
        """
        if data_per_point is None:
            data_per_point = {}

        if data_per_streamline is None:
            data_per_streamline = {}

        if isinstance(streamlines, Streamlines):
            streamlines = streamlines.copy()
        self._tractogram = Tractogram(streamlines,
                                      data_per_point=data_per_point,
                                      data_per_streamline=data_per_streamline)

        if isinstance(reference, type(self)):
            logger.warning('Using a StatefulTractogram as reference, this '
                           'will copy only the space_attributes, not '
                           'the state. The variables space and origin '
                           'must be specified separately.')
            logger.warning('To copy the state from another StatefulTractogram '
                           'you may want to use the function from_sft '
                           '(static function of the StatefulTractogram).')

        if isinstance(reference, tuple) and len(reference) == 4:
            if is_reference_info_valid(*reference):
                space_attributes = reference
            else:
                raise TypeError('The provided space attributes are not '
                                'considered valid, please correct before '
                                'using them with StatefulTractogram.')
        else:
            space_attributes = get_reference_info(reference)
            if space_attributes is None:
                raise TypeError('Reference MUST be one of the following:\n'
                                'Nifti or Trk filename, Nifti1Image or '
                                'TrkFile, Nifti1Header or trk.header (dict).')

        (self._affine, self._dimensions,
         self._voxel_sizes, self._voxel_order) = space_attributes
        self._inv_affine = np.linalg.inv(self._affine)

        if space not in Space:
            raise ValueError('Space MUST be from Space enum, e.g Space.VOX.')
        self._space = space

        if origin not in Origin:
            raise ValueError('Origin MUST be from Origin enum, '
                             'e.g Origin.NIFTI.')
        self._origin = origin
        logger.debug(self)