Exemplo n.º 1
0
def test_sf_to_sh():
    # Subdividing a hemi_icosahedron twice produces 81 unique points, which
    # is more than enough to fit a order 8 (45 coefficients) spherical harmonic
    sphere = hemi_icosahedron.subdivide(2)

    mevals = np.array(([0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]))
    mevecs = [np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]),
              np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]])]

    odf = multi_tensor_odf(sphere.vertices, [0.5, 0.5], mevals, mevecs)

    # 1D case with the 3 bases functions
    odf_sh = sf_to_sh(odf, sphere, 8)
    odf2 = sh_to_sf(odf_sh, sphere, 8)
    assert_array_almost_equal(odf, odf2, 2)

    odf_sh = sf_to_sh(odf, sphere, 8, "mrtrix")
    odf2 = sh_to_sf(odf_sh, sphere, 8, "mrtrix")
    assert_array_almost_equal(odf, odf2, 2)

    odf_sh = sf_to_sh(odf, sphere, 8, "fibernav")
    odf2 = sh_to_sf(odf_sh, sphere, 8, "fibernav")
    assert_array_almost_equal(odf, odf2, 2)

    # 2D case
    odf2d = np.vstack((odf2, odf))
    odf2d_sh = sf_to_sh(odf2d, sphere, 8)
    odf2d_sf = sh_to_sf(odf2d_sh, sphere, 8)
    assert_array_almost_equal(odf2d, odf2d_sf, 2)
def create_anisopowermap(bvec_path, diffdata):
    import os
    import nibabel as nib
    from dipy.reconst.shm import anisotropic_power
    import numpy as np
    from dipy.core.sphere import HemiSphere
    from dipy.reconst.shm import sf_to_sh

    bvecs_xyz = np.loadtxt(bvec_path)
    bvecs_xyz_array = np.array(bvecs_xyz[:,1:]).transpose()
    gtab_hemisphere = HemiSphere(xyz=bvecs_xyz_array)

    img = nib.load(diffdata)
    diffdata = img.get_data()
    diffdatashell = diffdata[:,:,:,1:]
    aff = img.get_affine()

    myshs = sf_to_sh(diffdatashell, gtab_hemisphere, sh_order=2)
    anisomap = anisotropic_power(myshs)
    #Add in a brain masking step here, if beneficial to end result
    anisopwr_savepath = os.path.abspath('anisotropic_power_map.nii.gz')
    img = nib.Nifti1Image(anisomap, aff)
    img.to_filename(anisopwr_savepath)


    return anisopwr_savepath
Exemplo n.º 3
0
def test_r2_term_odf_sharp():
    SNR = None
    S0 = 1
    angle = 75

    _, fbvals, fbvecs = get_data('small_64D')  #get_data('small_64D')

    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)

    sphere = get_sphere('symmetric724')
    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))

    S, sticks = multi_tensor(gtab, mevals, S0, angles=[(0, 0), (angle, 0)],
                             fractions=[50, 50], snr=SNR)
    
    
    mevecs = [all_tensor_evecs(sticks[0]).T,
              all_tensor_evecs(sticks[1]).T]

    odf_gt = multi_tensor_odf(sphere.vertices, [0.5, 0.5], mevals, mevecs)
    odfs_sh = sf_to_sh(odf_gt, sphere, sh_order=8, basis_type=None)
    fodf_sh = odf_sh_to_sharp(odfs_sh, sphere, basis=None, ratio=3 / 15.,
                              sh_order=8, lambda_=1., tau=0.1, r2_term=True)
    fodf = sh_to_sf(fodf_sh, sphere, sh_order=8, basis_type=None)

    directions_gt, _, _ = peak_directions(odf_gt, sphere)
    directions, _, _ = peak_directions(fodf, sphere)

    ang_sim = angular_similarity(directions_gt, directions)
    assert_equal(ang_sim > 1.9, True)
    assert_equal(directions.shape[0], 2)
Exemplo n.º 4
0
def sh_estimate(inFile, dirsInFile, outFile, rank=4, smoothness=0.0):
    in_nifti = nib.load(inFile)    
    refaff  = in_nifti.get_affine()
    data=in_nifti.get_data()

    vertices = np.loadtxt( dirsInFile )
    sphere = Sphere( xyz=vertices )

    odf_sh = sf_to_sh( data, sphere, int(rank), "mrtrix", smoothness )
           
    sh_out = nib.Nifti1Image(odf_sh.astype('float32'), refaff)
    nib.save(sh_out, outFile)
Exemplo n.º 5
0
def gqi(training, category, snr, denoised, odeconv, tv, method, weight=0.1, sl=3.):

    data, affine, gtab, mask, evals, S0, prefix = prepare(training,
                                                          category,
                                                          snr,
                                                          denoised,
                                                          odeconv,
                                                          tv,
                                                          method)
    


    model = GeneralizedQSamplingModel(gtab,
                                      method='gqi2',
                                      sampling_length=sl,
                                      normalize_peaks=False)

    fit = model.fit(data, mask)

    sphere = get_sphere('symmetric724')   

    odf = fit.odf(sphere)

    if odeconv == True:

        odf_sh = sf_to_sh(odf, sphere, sh_order=8,
                          basis_type='mrtrix')

        # # nib.save(nib.Nifti1Image(odf_sh, affine), model_tag + 'odf_sh.nii.gz')

        reg_sphere = get_sphere('symmetric724')

        fodf_sh = odf_sh_to_sharp(odf_sh,
                                  reg_sphere, basis='mrtrix', ratio=3.8 / 16.6,
                                  sh_order=8, Lambda=1., tau=1.)

        # # nib.save(nib.Nifti1Image(odf_sh, affine), model_tag + 'fodf_sh.nii.gz')

        fodf_sh[np.isnan(fodf_sh)]=0

        r, theta, phi = cart2sphere(sphere.x, sphere.y, sphere.z)
        B_regul, m, n = real_sph_harm_mrtrix(8, theta[:, None], phi[:, None])

        fodf = np.dot(fodf_sh, B_regul.T)

        odf = fodf

    if tv == True:

        odf = tv_denoise_4d(odf, weight=weight)

    save_odfs_peaks(training, odf, affine, sphere, dres, prefix)
Exemplo n.º 6
0
def save_odfs_peaks(training, odf, affine, sphere, dres, prefix):

    nib.save(nib.Nifti1Image(odf, affine), dres + prefix + 'odf.nii.gz')

    peaks_extract(dres + prefix + 'peaks.nii.gz',
                  odf, affine, sphere,
                  relative_peak_threshold=.3,
                  peak_normalize=1,
                  min_separation_angle=25,
                  max_peak_number=5)

    odf_sh = sf_to_sh(odf, sphere, sh_order=8, basis_type='mrtrix')

    nib.save(nib.Nifti1Image(odf_sh, affine), dres + prefix + 'odf_sh.nii.gz')

    if training == True:
        return training_check(dres, prefix)
Exemplo n.º 7
0
def test_r2_term_odf_sharp():
    SNR = None
    S0 = 1
    angle = 45 #45 degrees is a very tight angle to disentangle

    _, fbvals, fbvecs = get_data('small_64D')  #get_data('small_64D')

    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)

    sphere = get_sphere('symmetric724')
    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))

    angles = [(0, 0), (angle, 0)]

    S, sticks = multi_tensor(gtab, mevals, S0, angles=angles,
                             fractions=[50, 50], snr=SNR)    

    odf_gt = multi_tensor_odf(sphere.vertices, mevals, angles, [50, 50])
    odfs_sh = sf_to_sh(odf_gt, sphere, sh_order=8, basis_type=None)
    fodf_sh = odf_sh_to_sharp(odfs_sh, sphere, basis=None, ratio=3 / 15.,
                              sh_order=8, lambda_=1., tau=0.1, r2_term=True)
    fodf = sh_to_sf(fodf_sh, sphere, sh_order=8, basis_type=None)

    directions_gt, _, _ = peak_directions(odf_gt, sphere)
    directions, _, _ = peak_directions(fodf, sphere)

    ang_sim = angular_similarity(directions_gt, directions)
    assert_equal(ang_sim > 1.9, True)
    assert_equal(directions.shape[0], 2)

    # This should pass as well
    sdt_model = ConstrainedSDTModel(gtab, ratio=3/15., sh_order=8)
    sdt_fit = sdt_model.fit(S)
    fodf = sdt_fit.odf(sphere)
    
    directions_gt, _, _ = peak_directions(odf_gt, sphere)
    directions, _, _ = peak_directions(fodf, sphere)
    ang_sim = angular_similarity(directions_gt, directions)
    assert_equal(ang_sim > 1.9, True)
    assert_equal(directions.shape[0], 2)
Exemplo n.º 8
0
def test_odf_sh_to_sharp():

    SNR = None
    S0 = 1

    _, fbvals, fbvecs = get_data('small_64D')

    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)

    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))

    S, sticks = multi_tensor(gtab, mevals, S0, angles=[(10, 0), (100, 0)],
                             fractions=[50, 50], snr=SNR)

    sphere = get_sphere('symmetric724')

    qb = QballModel(gtab, sh_order=8, assume_normed=True)

    qbfit = qb.fit(S)
    odf_gt = qbfit.odf(sphere)

    Z = np.linalg.norm(odf_gt)

    odfs_gt = np.zeros((3, 1, 1, odf_gt.shape[0]))
    odfs_gt[:,:,:] = odf_gt[:]

    odfs_sh = sf_to_sh(odfs_gt, sphere, sh_order=8, basis_type=None)

    odfs_sh /= Z

    fodf_sh = odf_sh_to_sharp(odfs_sh, sphere, basis=None, ratio=3 / 15.,
                              sh_order=8, lambda_=1., tau=0.1)

    fodf = sh_to_sf(fodf_sh, sphere, sh_order=8, basis_type=None)

    directions2, _, _ = peak_directions(fodf[0, 0, 0], sphere)

    assert_equal(directions2.shape[0], 2)
Exemplo n.º 9
0
def test_sf_to_sh():
    # Subdividing a hemi_icosahedron twice produces 81 unique points, which
    # is more than enough to fit a order 8 (45 coefficients) spherical harmonic
    sphere = hemi_icosahedron.subdivide(2)

    mevals = np.array(([0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]))
    angles = [(0, 0), (90, 0)]

    odf = multi_tensor_odf(sphere.vertices, mevals, angles, [50, 50])

    # 1D case with the 3 bases functions
    odf_sh = sf_to_sh(odf, sphere, 8)
    odf2 = sh_to_sf(odf_sh, sphere, 8)
    assert_array_almost_equal(odf, odf2, 2)

    odf_sh = sf_to_sh(odf, sphere, 8, "tournier07")
    odf2 = sh_to_sf(odf_sh, sphere, 8, "tournier07")
    assert_array_almost_equal(odf, odf2, 2)

    # Test the basis naming deprecation
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always", DeprecationWarning)
        odf_sh_mrtrix = sf_to_sh(odf, sphere, 8, "mrtrix")
        odf2_mrtrix = sh_to_sf(odf_sh_mrtrix, sphere, 8, "mrtrix")
        assert_array_almost_equal(odf, odf2_mrtrix, 2)
        assert len(w) != 0
        assert issubclass(w[-1].category, DeprecationWarning)
        warnings.simplefilter("default", DeprecationWarning)

    odf_sh = sf_to_sh(odf, sphere, 8, "descoteaux07")
    odf2 = sh_to_sf(odf_sh, sphere, 8, "descoteaux07")
    assert_array_almost_equal(odf, odf2, 2)

    # Test the basis naming deprecation
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always", DeprecationWarning)
        odf_sh_fibernav = sf_to_sh(odf, sphere, 8, "fibernav")
        odf2_fibernav = sh_to_sf(odf_sh_fibernav, sphere, 8, "fibernav")
        assert_array_almost_equal(odf, odf2_fibernav, 2)
        assert len(w) != 0
        assert issubclass(w[-1].category, DeprecationWarning)
        warnings.simplefilter("default", DeprecationWarning)

    # 2D case
    odf2d = np.vstack((odf2, odf))
    odf2d_sh = sf_to_sh(odf2d, sphere, 8)
    odf2d_sf = sh_to_sf(odf2d_sh, sphere, 8)
    assert_array_almost_equal(odf2d, odf2d_sf, 2)
Exemplo n.º 10
0
def test_normalization():
    """ Test the normalization routine applied after a convolution"""
    # create kernel
    D33 = 1.0
    D44 = 0.04
    t = 1
    num_orientations = 5
    k = EnhancementKernel(D33, D44, t, orientations=num_orientations, force_recompute=True)

    # create a constant dataset
    numorientations = k.get_orientations().shape[0]
    spike = np.ones((7, 7, 7, numorientations), dtype=np.float64)

    # convert dataset to SH
    spike_sh = sf_to_sh(spike, k.get_sphere(), sh_order=8)

    # convolve kernel with delta spike and apply normalization
    csd_enh = convolve(spike_sh, k, sh_order=8, test_mode=True, normalize=True)

    # convert dataset to DSF
    csd_enh_dsf = sh_to_sf(csd_enh, k.get_sphere(), sh_order=8, basis_type=None)

    # test if the normalization is performed correctly
    npt.assert_almost_equal(np.amax(csd_enh_dsf), np.amax(spike))
Exemplo n.º 11
0
We can now express this signal as a series of SH coefficients using
``sf_to_sh``. This function converts a series of SF coefficients in a series of
SH coefficients. For more information on SH basis, see :ref:`sh-basis`. For
this example, we will use the ``descoteaux07`` basis up to a maximum SH order
of 8.
"""

from dipy.reconst.shm import sf_to_sh

# Change this value to try out other bases
sh_basis = 'descoteaux07'
# Change this value to try other maximum orders
sh_order = 8

sh_coeffs = sf_to_sh(odf, sph, sh_order, sh_basis)
"""
``sh_coeffs`` is an array containing the SH coefficients multiplying the SH
functions of the chosen basis. We can use it as input of ``sh_to_sf`` to
reconstruct our original signal. We will now reproject our signal on a high
resolution sphere using ``sh_to_sf``.
"""

from dipy.data import get_sphere
from dipy.reconst.shm import sh_to_sf

high_res_sph = get_sphere('symmetric724').subdivide(2)
reconst = sh_to_sf(sh_coeffs, high_res_sph, sh_order, sh_basis)

scene.clear()
odf_actor = actor.odf_slicer(reconst[None, None, None, :], sphere=high_res_sph)
Exemplo n.º 12
0
sphere = get_sphere('symmetric724')

for NC in [1, 2, 3]:
    for iso in [0, 1]:
        for fr in [0, 1]:
            for snr in [30, 10]:
                for typ in [1]:
                    for ang_t in [23,33,25,35]:#[0, 10, 20, 30]:
                        for category in ['dti', 'hardi']:

							filename = '{}_pso_odf_sf_sel={}_NC={}_iso={}_fr={}_Np={}_Ni={}_snr={}_type={}'.format(category, ang_t, NC, iso, fr, Np, Ni, snr, typ)
							filepath = '/media/Data/work/isbi2013/pso_odf_sf/' + filename + '.nii.gz'

							if os.path.exists(filepath):
								odf = nib.load(filepath)
								affine = odf.get_affine()
								odf = odf.get_data()

								print(filename)

								odf_sh = sf_to_sh(odf, sphere, sh_order=8,basis_type='mrtrix')

								filename2 = '{}_pso_odf_sh_sel={}_NC={}_iso={}_fr={}_Np={}_Ni={}_snr={}_type={}'.format(category, ang_t, NC, iso, fr, Np, Ni, snr, typ)

								nib.save(nib.Nifti1Image(odf_sh, affine), '/media/Data/work/isbi2013/pso_odf_sh/' + filename2 + '.nii.gz')




Exemplo n.º 13
0
def compute_sh_coefficients(dwi,
                            gradient_table,
                            sh_order=4,
                            basis_type='descoteaux07',
                            smooth=0.006,
                            use_attenuation=False,
                            force_b0_threshold=False,
                            mask=None,
                            sphere=None):
    """Fit a diffusion signal with spherical harmonics coefficients.

    Parameters
    ----------
    dwi : nib.Nifti1Image object
        Diffusion signal as weighted images (4D).
    gradient_table : GradientTable
        Dipy object that contains all bvals and bvecs.
    sh_order : int, optional
        SH order to fit, by default 4.
    smooth : float, optional
        Lambda-regularization coefficient in the SH fit, by default 0.006.
    basis_type: str
        Either 'tournier07' or 'descoteaux07'
    use_attenuation: bool, optional
        If true, we will use DWI attenuation. [False]
    force_b0_threshold : bool, optional
        If set, will continue even if the minimum bvalue is suspiciously high.
    mask: nib.Nifti1Image object, optional
        Binary mask. Only data inside the mask will be used for computations
        and reconstruction.
    sphere: Sphere
        Dipy object. If not provided, will use Sphere(xyz=bvecs).

    Returns
    -------
    sh_coeffs : np.ndarray with shape (X, Y, Z, #coeffs)
        Spherical harmonics coefficients at every voxel. The actual number
        of coefficients depends on `sh_order`.
    """

    # Extracting infos
    b0_mask = gradient_table.b0s_mask
    bvecs = gradient_table.bvecs
    bvals = gradient_table.bvals

    # Checks
    if not is_normalized_bvecs(bvecs):
        logging.warning("Your b-vectors do not seem normalized...")
        bvecs = normalize_bvecs(bvecs)
    check_b0_threshold(force_b0_threshold, bvals.min())

    # Ensure that this is on a single shell.
    shell_values, _ = identify_shells(bvals)
    shell_values.sort()
    if force_b0_threshold:
        b0_threshold = bvals.min()
    else:
        b0_threshold = DEFAULT_B0_THRESHOLD
    if shell_values.shape[0] != 2 or shell_values[0] > b0_threshold:
        raise ValueError("Can only work on single shell signals.")

    # Keeping b0-based infos
    bvecs = bvecs[np.logical_not(b0_mask)]
    weights = dwi[..., np.logical_not(b0_mask)]

    # Compute attenuation using the b0.
    if use_attenuation:
        b0 = dwi[..., b0_mask].mean(axis=3)
        weights = compute_dwi_attenuation(weights, b0)

    # Get cartesian coords from bvecs
    if sphere is None:
        sphere = Sphere(xyz=bvecs)

    # Fit SH
    sh = sf_to_sh(weights, sphere, sh_order, basis_type, smooth=smooth)

    # Apply mask
    if mask is not None:
        sh *= mask[..., None]

    return sh
Exemplo n.º 14
0
def test_sf_to_sh():
    # Subdividing a hemi_icosahedron twice produces 81 unique points, which
    # is more than enough to fit a order 8 (45 coefficients) spherical harmonic
    hemisphere = hemi_icosahedron.subdivide(2)
    mevals = np.array([[0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]])
    angles = [(0, 0), (60, 0)]
    odf = multi_tensor_odf(hemisphere.vertices, mevals, angles, [50, 50])

    # 1D case with the 2 symmetric bases functions
    # Tournier basis
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=tournier07_legacy_msg,
                                category=PendingDeprecationWarning)

        odf_sh = sf_to_sh(odf, hemisphere, 8, "tournier07")
        odf_reconst = sh_to_sf(odf_sh, hemisphere, 8, "tournier07")

    assert_array_almost_equal(odf, odf_reconst, 2)

    # Legacy definition
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=tournier07_legacy_msg,
                                category=PendingDeprecationWarning)

        odf_sh = sf_to_sh(odf, hemisphere, 8, "tournier07", legacy=True)
        odf_reconst = sh_to_sf(odf_sh,
                               hemisphere,
                               8,
                               "tournier07",
                               legacy=True)

    assert_array_almost_equal(odf, odf_reconst, 2)

    # Descoteaux basis
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)

        odf_sh = sf_to_sh(odf, hemisphere, 8, "descoteaux07")
        odf_reconst = sh_to_sf(odf_sh, hemisphere, 8, "descoteaux07")

    assert_array_almost_equal(odf, odf_reconst, 2)

    # Legacy definition
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)

        odf_sh = sf_to_sh(odf, hemisphere, 8, "descoteaux07", legacy=True)
        odf_reconst = sh_to_sf(odf_sh,
                               hemisphere,
                               8,
                               "descoteaux07",
                               legacy=True)

    assert_array_almost_equal(odf, odf_reconst, 2)

    # We now create an asymmetric signal
    # to try out our full SH basis
    mevals = np.array([[0.0015, 0.0003, 0.0003]])
    angles = [(0, 0)]
    odf2 = multi_tensor_odf(hemisphere.vertices, mevals, angles, [100])

    # We simulate our asymmetric signal by using a different ODF
    # per hemisphere. The sphere used is a concatenation of the
    # vertices of our hemisphere, for a total of 162 vertices.
    sphere = Sphere(xyz=np.vstack((hemisphere.vertices, -hemisphere.vertices)))
    asym_odf = np.append(odf, odf2)

    # Try out full bases with order 10 (121 coefficients)
    # Tournier basis
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=tournier07_legacy_msg,
                                category=PendingDeprecationWarning)

        odf_sh = sf_to_sh(asym_odf, sphere, 10, 'tournier07', full_basis=True)
        odf_reconst = sh_to_sf(odf_sh,
                               sphere,
                               10,
                               'tournier07',
                               full_basis=True)

    assert_array_almost_equal(odf_reconst, asym_odf, 2)

    # Legacy definition
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=tournier07_legacy_msg,
                                category=PendingDeprecationWarning)

        odf_sh = sf_to_sh(asym_odf,
                          sphere,
                          10,
                          'tournier07',
                          full_basis=True,
                          legacy=True)
        odf_reconst = sh_to_sf(odf_sh,
                               sphere,
                               10,
                               'tournier07',
                               full_basis=True,
                               legacy=True)

    assert_array_almost_equal(odf_reconst, asym_odf, 2)

    # Descoteaux basis
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)

        odf_sh = sf_to_sh(asym_odf,
                          sphere,
                          10,
                          'descoteaux07',
                          full_basis=True)
        odf_reconst = sh_to_sf(odf_sh,
                               sphere,
                               10,
                               'descoteaux07',
                               full_basis=True)

    assert_array_almost_equal(odf_reconst, asym_odf, 2)

    # Legacy definition
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)

        odf_sh = sf_to_sh(asym_odf,
                          sphere,
                          10,
                          'descoteaux07',
                          full_basis=True,
                          legacy=True)
        odf_reconst = sh_to_sf(odf_sh,
                               sphere,
                               10,
                               'descoteaux07',
                               full_basis=True,
                               legacy=True)

    assert_array_almost_equal(odf_reconst, asym_odf, 2)

    # An invalid basis name should raise an error
    assert_raises(ValueError, sh_to_sf, odf, hemisphere, basis_type="")
    assert_raises(ValueError, sf_to_sh, odf_sh, hemisphere, basis_type="")

    # 2D case
    odf2d = np.vstack((odf, odf))

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)

        odf2d_sh = sf_to_sh(odf2d, hemisphere, 8)
        odf2d_sf = sh_to_sf(odf2d_sh, hemisphere, 8)

    assert_array_almost_equal(odf2d, odf2d_sf, 2)
Exemplo n.º 15
0
We can now express this signal as a series of SH coefficients using
``sf_to_sh``. This function converts a series of SF coefficients in a series of
SH coefficients. For more information on SH basis, see :ref:`sh-basis`. For
this example, we will use the ``descoteaux07`` basis up to a maximum SH order
of 8.
"""

from dipy.reconst.shm import sf_to_sh

# Change this value to try out other bases
sh_basis = 'descoteaux07'
# Change this value to try other maximum orders
sh_order = 8

sh_coeffs = sf_to_sh(odf, sph, sh_order, sh_basis)
"""
``sh_coeffs`` is an array containing the SH coefficients multiplying the SH
functions of the chosen basis. We can use it as input of ``sh_to_sf`` to
reconstruct our original signal. We will now reproject our signal on a high
resolution sphere using ``sh_to_sf``.
"""

from dipy.data import get_sphere
from dipy.reconst.shm import sh_to_sf

high_res_sph = get_sphere('symmetric724').subdivide(2)
reconst = sh_to_sf(sh_coeffs, high_res_sph, sh_order, sh_basis)

window.rm_all(ren)
odf_actor = actor.odf_slicer(reconst[None, None, None, :], sphere=high_res_sph)
Exemplo n.º 16
0
def test_convert_sh_to_legacy():
    hemisphere = hemi_icosahedron.subdivide(2)
    mevals = np.array([[0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]])
    angles = [(0, 0), (60, 0)]
    odf = multi_tensor_odf(hemisphere.vertices, mevals, angles, [50, 50])

    sh_coeffs = sf_to_sh(odf, hemisphere, 8, legacy=False)
    converted_coeffs = convert_sh_to_legacy(sh_coeffs, 'descoteaux07')

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)

        expected_coeffs = sf_to_sh(odf, hemisphere, 8, legacy=True)

    assert_array_almost_equal(converted_coeffs, expected_coeffs, 2)

    sh_coeffs = sf_to_sh(odf,
                         hemisphere,
                         8,
                         basis_type='tournier07',
                         legacy=False)
    converted_coeffs = convert_sh_to_legacy(sh_coeffs, 'tournier07')

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=tournier07_legacy_msg,
                                category=PendingDeprecationWarning)

        expected_coeffs = sf_to_sh(odf,
                                   hemisphere,
                                   8,
                                   basis_type='tournier07',
                                   legacy=True)

    assert_array_almost_equal(converted_coeffs, expected_coeffs, 2)

    # 2D case
    odfs = np.array([odf, odf])
    sh_coeffs = sf_to_sh(odfs,
                         hemisphere,
                         8,
                         basis_type='tournier07',
                         full_basis=True,
                         legacy=False)
    converted_coeffs = convert_sh_to_legacy(sh_coeffs,
                                            'tournier07',
                                            full_basis=True)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=tournier07_legacy_msg,
                                category=PendingDeprecationWarning)

        expected_coeffs = sf_to_sh(odfs,
                                   hemisphere,
                                   8,
                                   basis_type='tournier07',
                                   legacy=True,
                                   full_basis=True)

    assert_array_almost_equal(converted_coeffs, expected_coeffs, 2)
    assert_raises(ValueError, convert_sh_to_legacy, sh_coeffs, '', True)
def main():
    logging.basicConfig(level=logging.INFO)
    parser = _build_arg_parser()
    args = parser.parse_args()

    required = [args.in_bundle, args.in_fodf, args.in_mask]
    assert_inputs_exist(parser, required)

    out_efod = os.path.join(args.out_dir,
                            '{0}efod.nii.gz'.format(args.out_prefix))
    out_priors = os.path.join(args.out_dir,
                              '{0}priors.nii.gz'.format(args.out_prefix))
    out_todi_mask = os.path.join(args.out_dir,
                                 '{0}todi_mask.nii.gz'.format(args.out_prefix))
    out_endpoints_mask = os.path.join(args.out_dir,
                                      '{0}endpoints_mask.nii.gz'.format(
                                          args.out_prefix))

    if args.out_dir and not os.path.isdir(args.out_dir):
        os.mkdir(args.out_dir)

    required = [out_efod, out_priors, out_todi_mask, out_endpoints_mask]
    assert_outputs_exist(parser, args, required)

    img_sh = nib.load(args.in_fodf)
    sh_shape = img_sh.shape
    sh_order = find_order_from_nb_coeff(sh_shape)
    img_mask = nib.load(args.in_mask)

    sft = load_tractogram(args.in_bundle, args.in_fodf,
                          trk_header_check=True)
    sft.to_vox()
    streamlines = sft.streamlines
    if len(streamlines) < 1:
        raise ValueError('The input bundle contains no streamline.')

    # Compute TODI from streamlines
    with TrackOrientationDensityImaging(img_mask.shape,
                                        'repulsion724') as todi_obj:
        todi_obj.compute_todi(streamlines, length_weights=True)
        todi_obj.smooth_todi_dir()
        todi_obj.smooth_todi_spatial(sigma=args.todi_sigma)

        # Fancy masking of 1d indices to limit spatial dilation to WM
        sub_mask_3d = np.logical_and(get_data_as_mask(img_mask),
                                     todi_obj.reshape_to_3d(todi_obj.get_mask()))
        sub_mask_1d = sub_mask_3d.flatten()[todi_obj.get_mask()]
        todi_sf = todi_obj.get_todi()[sub_mask_1d] ** 2

    # The priors should always be between 0 and 1
    # A minimum threshold is set to prevent misaligned FOD from disappearing
    todi_sf /= np.max(todi_sf, axis=-1, keepdims=True)
    todi_sf[todi_sf < args.sf_threshold] = args.sf_threshold

    # Memory friendly saving, as soon as possible saving then delete
    priors_3d = np.zeros(sh_shape)
    sphere = get_sphere('repulsion724')
    priors_3d[sub_mask_3d] = sf_to_sh(todi_sf, sphere,
                                      sh_order=sh_order,
                                      basis_type=args.sh_basis)
    nib.save(nib.Nifti1Image(priors_3d, img_mask.affine), out_priors)
    del priors_3d

    input_sh_3d = img_sh.get_fdata(dtype=np.float32)
    input_sf_1d = sh_to_sf(input_sh_3d[sub_mask_3d],
                           sphere, sh_order=sh_order, basis_type=args.sh_basis)

    # Creation of the enhanced-FOD (direction-wise multiplication)
    mult_sf_1d = input_sf_1d * todi_sf
    del todi_sf

    input_max_value = np.max(input_sf_1d, axis=-1, keepdims=True)
    mult_max_value = np.max(mult_sf_1d, axis=-1, keepdims=True)
    mult_positive_mask = np.squeeze(mult_max_value) > 0.0
    mult_sf_1d[mult_positive_mask] = mult_sf_1d[mult_positive_mask] * \
        input_max_value[mult_positive_mask] / \
        mult_max_value[mult_positive_mask]

    # Memory friendly saving
    input_sh_3d[sub_mask_3d] = sf_to_sh(mult_sf_1d, sphere,
                                        sh_order=sh_order,
                                        basis_type=args.sh_basis)
    nib.save(nib.Nifti1Image(input_sh_3d, img_mask.affine), out_efod)
    del input_sh_3d

    nib.save(nib.Nifti1Image(sub_mask_3d.astype(
        np.int16), img_mask.affine), out_todi_mask)

    endpoints_mask = np.zeros(img_mask.shape, dtype=np.int16)
    for streamline in streamlines:
        if get_data_as_mask(img_mask)[tuple(streamline[0].astype(np.int16))]:
            endpoints_mask[tuple(streamline[0].astype(np.int16))] = 1
            endpoints_mask[tuple(streamline[-1].astype(np.int16))] = 1
    nib.save(nib.Nifti1Image(endpoints_mask,
                             img_mask.affine), out_endpoints_mask)
Exemplo n.º 18
0
def create_anisopowermap(gtab_file, dwi_file, B0_mask):
    '''
    Estimate an anisotropic power map image to use for registrations.

    Parameters
    ----------
    gtab_file : str
        File path to pickled DiPy gradient table object.
    dwi_file : str
        File path to diffusion weighted image.
    B0_mask : str
        File path to B0 brain mask.

    Returns
    -------
    anisopwr_path : str
        File path to the anisotropic power Nifti1Image.
    B0_mask : str
        File path to B0 brain mask Nifti1Image.
    gtab_file : str
        File path to pickled DiPy gradient table object.
    dwi_file : str
        File path to diffusion weighted Nifti1Image.
    '''
    import os
    from dipy.io import load_pickle
    from dipy.reconst.shm import anisotropic_power
    from dipy.core.sphere import HemiSphere
    from dipy.reconst.shm import sf_to_sh

    gtab = load_pickle(gtab_file)
    gtab_hemisphere = HemiSphere(xyz=gtab.bvecs[np.where(
        gtab.b0s_mask == False)])

    img = nib.load(dwi_file)
    aff = img.affine

    anisopwr_path = "%s%s" % (os.path.dirname(B0_mask), '/aniso_power.nii.gz')

    if os.path.isfile(anisopwr_path):
        pass
    else:
        print('Generating anisotropic power map to use for registrations...')
        nodif_B0_img = nib.load(B0_mask)

        dwi_data = np.asarray(img.dataobj)
        for b0 in sorted(list(np.where(gtab.b0s_mask == True)[0]),
                         reverse=True):
            dwi_data = np.delete(dwi_data, b0, 3)

        anisomap = anisotropic_power(
            sf_to_sh(dwi_data, gtab_hemisphere, sh_order=2))
        anisomap[np.isnan(anisomap)] = 0
        masked_data = anisomap * np.asarray(
            nodif_B0_img.dataobj).astype('bool')
        img = nib.Nifti1Image(masked_data.astype(np.float32), aff)
        img.to_filename(anisopwr_path)
        nodif_B0_img.uncache()
        del anisomap

    return anisopwr_path, B0_mask, gtab_file, dwi_file
Exemplo n.º 19
0
def main():

    parser = buildArgsParser()
    args = parser.parse_args()
    logging.basicConfig(level=logging.INFO)

    if not args.not_all:
        if not args.odf:
            args.odf = 'shore_dodf.nii.gz'
        if not args.rtop:
            args.rtop = 'rtop.nii.gz'
        if not args.msd:
            args.msd = 'msd.nii.gz'
        if not args.pa:
            args.pa = 'pa.nii.gz'

    arglist = [args.odf, args.rtop, args.msd, args.pa]

    if args.not_all and not any(arglist):
        parser.error('When using --not_all, you need to specify at least ' +
                     'one file to output.')

    for out in arglist:
        if os.path.isfile(out):
            if args.overwrite:
                logging.info('Overwriting "{0}".'.format(out))
            else:
                parser.error(
                    '"{0}" already exists! Use -f to overwrite it.'.format(
                        out))

    vol = nib.load(args.input)
    data = vol.get_data()
    affine = vol.get_affine()

    bvals, bvecs = read_bvals_bvecs(args.bvals, args.bvecs)
    if bvals.min() != 0:
        if bvals.min() > 20:
            raise ValueError('The minimal bvalue is greater than 20. ' +
                             'This is highly suspicious. Please check ' +
                             'your data to ensure everything is correct.\n' +
                             'Value found: {0}'.format(bvals.min()))
        else:
            logging.warning('Warning: no b=0 image. Setting b0_threshold to ' +
                            'bvals.min() = {0}'.format(bvals.min()))
            gtab = gradient_table(bvals, bvecs, b0_threshold=bvals.min())
    else:
        gtab = gradient_table(bvals, bvecs)

    if args.mask is None:
        mask = None
    else:
        mask = nib.load(args.mask).get_data().astype(np.bool)
        voxels_with_values_mask = data[:, :, :, 0] > 0
        mask = voxels_with_values_mask * mask

    sphere = get_sphere('repulsion100')

    if args.regul_weighting <= 0:
        logging.info('Now computing SHORE ODF of radial order {0}'.format(
            args.radial_order) + ' and Laplacian generalized cross-validation')

        shore_model = ShoreOzarslanModel(gtab,
                                         radial_order=args.radial_order,
                                         laplacian_regularization=True,
                                         laplacian_weighting='GCV')
    else:
        logging.info('Now computing SHORE ODF of radial order {0}'.format(
            args.radial_order) +
                     ' and Laplacian regularization weight of {0}'.format(
                         args.regul_weighting))

        shore_model = ShoreOzarslanModel(
            gtab,
            radial_order=args.radial_order,
            laplacian_regularization=True,
            laplacian_weighting=args.regul_weighting)

    smfit = shore_model.fit(data, mask)
    odf = smfit.odf(sphere, radial_moment=args.radial_moment)
    odf_sh = sf_to_sh(odf,
                      sphere,
                      sh_order=8,
                      basis_type=args.basis,
                      smooth=0.0)

    rtop = smfit.rtop()
    msd = smfit.msd()
    pa = smfit.propagator_anisotropy()

    if args.odf:
        nib.save(nib.Nifti1Image(odf_sh.astype(np.float32), affine), args.odf)

    if args.rtop:
        nib.save(nib.Nifti1Image(rtop.astype(np.float32), affine), args.rtop)

    if args.msd:
        nib.save(nib.Nifti1Image(msd.astype(np.float32), affine), args.msd)

    if args.pa:
        nib.save(nib.Nifti1Image(pa.astype(np.float32), affine), args.pa)
Exemplo n.º 20
0
t = 1
k = EnhancementKernel(D33, D44, t)

"""
Visualize the kernel
"""

from dipy.viz import fvtk
from dipy.data import get_sphere
from dipy.reconst.shm import sf_to_sh, sh_to_sf
ren = fvtk.ren()

# convolve kernel with delta spike
spike = np.zeros((7, 7, 7, k.get_orientations().shape[0]), dtype=np.float64)
spike[3, 3, 3, 0] = 1
spike_shm_conv = convolve(sf_to_sh(spike, k.get_sphere(), sh_order=8), k,
                          sh_order=8, test_mode=True)

sphere = get_sphere('symmetric724')
spike_sf_conv = sh_to_sf(spike_shm_conv, sphere, sh_order=8)
model_kernel = fvtk.sphere_funcs((spike_sf_conv * 6)[3,:,:,:],
                                  sphere,
                                  norm=False,
                                  radial_scale=True)
fvtk.add(ren, model_kernel)
fvtk.camera(ren, pos=(30, 0, 0), focal=(0, 0, 0), viewup=(0, 0, 1), verbose=False)
fvtk.record(ren, out_path='kernel.png', size=(900, 900))

"""
.. figure:: kernel.png
   :align: center
Exemplo n.º 21
0
def create_anisopowermap(gtab_file, dwi_file, B0_mask):
    """
    Estimate an anisotropic power map image to use for registrations.

    Parameters
    ----------
    gtab_file : str
        File path to pickled DiPy gradient table object.
    dwi_file : str
        File path to diffusion weighted image.
    B0_mask : str
        File path to B0 brain mask.

    Returns
    -------
    anisopwr_path : str
        File path to the anisotropic power Nifti1Image.
    B0_mask : str
        File path to B0 brain mask Nifti1Image.
    gtab_file : str
        File path to pickled DiPy gradient table object.
    dwi_file : str
        File path to diffusion weighted Nifti1Image.

    References
    ----------
    .. [1] Chen, D. Q., Dell’Acqua, F., Rokem, A., Garyfallidis, E., Hayes, D.,
      Zhong, J., & Hodaie, M. (2018). Diffusion Weighted Image Co-registration:
      Investigation of Best Practices. PLoS ONE.

    """
    import os
    from dipy.io import load_pickle
    from dipy.reconst.shm import anisotropic_power
    from dipy.core.sphere import HemiSphere, Sphere
    from dipy.reconst.shm import sf_to_sh

    gtab = load_pickle(gtab_file)

    dwi_vertices = gtab.bvecs[np.where(gtab.b0s_mask == False)]

    gtab_hemisphere = HemiSphere(xyz=gtab.bvecs[np.where(
        gtab.b0s_mask == False)])

    try:
        assert len(gtab_hemisphere.vertices) == len(dwi_vertices)
    except BaseException:
        gtab_hemisphere = Sphere(xyz=gtab.bvecs[np.where(
            gtab.b0s_mask == False)])

    img = nib.load(dwi_file)
    aff = img.affine

    anisopwr_path = f"{os.path.dirname(B0_mask)}{'/aniso_power.nii.gz'}"

    if os.path.isfile(anisopwr_path):
        pass
    else:
        print("Generating anisotropic power map to use for registrations...")
        nodif_B0_img = nib.load(B0_mask)
        dwi_data = img.get_fdata(dtype=np.float32)
        for b0 in sorted(list(np.where(gtab.b0s_mask)[0]), reverse=True):
            dwi_data = np.delete(dwi_data, b0, 3)

        anisomap = anisotropic_power(
            sf_to_sh(dwi_data, gtab_hemisphere, sh_order=2))
        anisomap[np.isnan(anisomap)] = 0
        masked_data = anisomap * \
            np.asarray(nodif_B0_img.dataobj).astype("bool")
        img = nib.Nifti1Image(masked_data.astype(np.float32), aff)
        img.to_filename(anisopwr_path)
        nodif_B0_img.uncache()
        del anisomap
        img.uncache()

    return anisopwr_path, B0_mask, gtab_file, dwi_file
Exemplo n.º 22
0
t = 1
k = EnhancementKernel(D33, D44, t)
"""
Visualize the kernel
"""

from dipy.viz import window, actor
from dipy.data import get_sphere
from dipy.reconst.shm import sf_to_sh, sh_to_sf

ren = window.Renderer()

# convolve kernel with delta spike
spike = np.zeros((7, 7, 7, k.get_orientations().shape[0]), dtype=np.float64)
spike[3, 3, 3, 0] = 1
spike_shm_conv = convolve(sf_to_sh(spike, k.get_sphere(), sh_order=8),
                          k,
                          sh_order=8,
                          test_mode=True)

sphere = get_sphere('symmetric724')
spike_sf_conv = sh_to_sf(spike_shm_conv, sphere, sh_order=8)
model_kernel = actor.odf_slicer(spike_sf_conv * 6,
                                sphere=sphere,
                                norm=False,
                                scale=0.4)
model_kernel.display(x=3)
ren.add(model_kernel)
ren.set_camera(position=(30, 0, 0), focal_point=(0, 0, 0), view_up=(0, 0, 1))
window.record(ren, out_path='kernel.png', size=(900, 900))
if interactive: