Exemplo n.º 1
0
def multi_tissue_basis(gtab, sh_order, iso_comp):
    """
    Builds a basis for multi-shell multi-tissue CSD model.

    Parameters
    ----------
    gtab : GradientTable
    sh_order : int
    iso_comp: int
        Number of tissue compartments for running the MSMT-CSD. Minimum
        number of compartments required is 2.

    Returns
    -------
    B : ndarray
        Matrix of the spherical harmonics model used to fit the data
    m : int ``|m| <= n``
        The order of the harmonic.
    n : int ``>= 0``
        The degree of the harmonic.
    """
    if iso_comp < 2:
        msg = ("Multi-tissue CSD requires at least 2 tissue compartments")
        raise ValueError(msg)
    r, theta, phi = geo.cart2sphere(*gtab.gradients.T)
    m, n = shm.sph_harm_ind_list(sh_order)
    B = shm.real_sph_harm(m, n, theta[:, None], phi[:, None])
    B[np.ix_(gtab.b0s_mask, n > 0)] = 0.

    iso = np.empty([B.shape[0], iso_comp])
    iso[:] = SH_CONST

    B = np.concatenate([iso, B], axis=1)
    return B, m, n
Exemplo n.º 2
0
def test_sph_harm_ind_list():
    m_list, n_list = sph_harm_ind_list(8)
    assert_equal(m_list.shape, n_list.shape)
    assert_equal(m_list.shape, (45,))
    assert_true(np.all(np.abs(m_list) <= n_list))
    assert_array_equal(n_list % 2, 0)
    assert_raises(ValueError, sph_harm_ind_list, 1)
Exemplo n.º 3
0
def sh_smooth(data, bvals, bvecs, sh_order=4, similarity_threshold=50, regul=0.006):
    """Smooth the raw diffusion signal with spherical harmonics.
    data : ndarray
        The diffusion data to smooth.
    gtab : gradient table object
        Corresponding gradients table object to data.
    sh_order : int, default 8
        Order of the spherical harmonics to fit.
    similarity_threshold : int, default 50
        All b-values such that |b_1 - b_2| < similarity_threshold
        will be considered as identical for smoothing purpose.
        Must be lower than 200.
    regul : float, default 0.006
        Amount of regularization to apply to sh coefficients computation.
    Return
    ---------
    pred_sig : ndarray
        The smoothed diffusion data, fitted through spherical harmonics.
    """

    if similarity_threshold > 200:
        raise ValueError("similarity_threshold = {}, which is higher than 200,"
                         " please use a lower value".format(similarity_threshold))

    m, n = sph_harm_ind_list(sh_order)
    L = -n * (n + 1)
    where_b0s = bvals == 0
    pred_sig = np.zeros_like(data, dtype=np.float32)

    # Round similar bvals together for identifying similar shells
    rounded_bvals = np.zeros_like(bvals)

    for unique_bval in np.unique(bvals):
        idx = np.abs(unique_bval - bvals) < similarity_threshold
        rounded_bvals[idx] = unique_bval

    # process each b-value separately
    for unique_bval in np.unique(rounded_bvals):
        idx = rounded_bvals == unique_bval

        # Just give back the signal for the b0s since we can't really do anything about it
        if np.all(idx == where_b0s):
            if np.sum(where_b0s) > 1:
                pred_sig[..., idx] = np.mean(data[..., idx], axis=-1, keepdims=True)
            else:
                pred_sig[..., idx] = data[..., idx]
            continue

        x, y, z = bvecs[:, idx]
        r, theta, phi = cart2sphere(x, y, z)

        # Find the sh coefficients to smooth the signal
        B_dwi = real_sph_harm(m, n, theta[:, None], phi[:, None])
        invB = smooth_pinv(B_dwi, np.sqrt(regul) * L)
        sh_coeff = np.dot(data[..., idx], invB.T)

        # Find the smoothed signal from the sh fit for the given gtab
        pred_sig[..., idx] = np.dot(sh_coeff, B_dwi.T)

    return pred_sig
Exemplo n.º 4
0
def test_sph_harm_ind_list():
    m_list, n_list = sph_harm_ind_list(8)
    assert_equal(m_list.shape, n_list.shape)
    assert_equal(m_list.shape, (45, ))
    assert_true(np.all(np.abs(m_list) <= n_list))
    assert_array_equal(n_list % 2, 0)
    assert_raises(ValueError, sph_harm_ind_list, 1)
Exemplo n.º 5
0
def main():
    parser = _build_arg_parser()
    args = parser.parse_args()

    assert_inputs_exist(parser, args.in_sh, optional=args.mask)

    # Load data
    sh_img = nib.load(args.in_sh)
    sh = sh_img.get_fdata(dtype=np.float32)
    mask = None
    if args.mask:
        mask = get_data_as_mask(nib.load(args.mask), dtype=bool)

    # Precompute output filenames to check if they exist
    sh_order = order_from_ncoef(sh.shape[-1], full_basis=args.full_basis)
    _, order_ids = sph_harm_ind_list(sh_order, full_basis=args.full_basis)
    orders = sorted(np.unique(order_ids))
    output_fnames = ["{}{}.nii.gz".format(args.out_prefix, i) for i in orders]
    assert_outputs_exist(parser, args, output_fnames)

    # Compute RISH features
    rish, final_orders = compute_rish(sh, mask, full_basis=args.full_basis)

    # Make sure the precomputed orders match the orders returned
    assert np.all(orders == np.array(final_orders))

    # Save each RISH feature as a separate file
    for i, fname in enumerate(output_fnames):
        nib.save(nib.Nifti1Image(rish[..., i], sh_img.affine), fname)
Exemplo n.º 6
0
def forward_sdeconv_mat(r_rh, sh_order):
    """ Build forward spherical deconvolution matrix

    Parameters
    ----------
    r_rh : ndarray (``(sh_order + 1)*(sh_order + 2)/2``,)
        ndarray of rotational harmonics coefficients for the single
        fiber response function
    sh_order : int
        maximal SH order

    Returns
    -------
    R : ndarray (``(sh_order + 1)*(sh_order + 2)/2``, ``(sh_order + 1)*(sh_order + 2)/2``)

    """

    m, n = sph_harm_ind_list(sh_order)

    b = np.zeros(m.shape)
    i = 0
    for l in np.arange(0, sh_order + 1, 2):
        for m in np.arange(-l, l + 1):
            b[i] = r_rh[l / 2]
            i = i + 1
    return np.diag(b)
Exemplo n.º 7
0
def test_hat_and_lcr():
    hemi = hemi_icosahedron.subdivide(3)
    m, n = sph_harm_ind_list(8)

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)

        B = real_sh_descoteaux_from_index(m, n, hemi.theta[:, None],
                                          hemi.phi[:, None])

    H = hat(B)
    B_hat = np.dot(H, B)
    assert_array_almost_equal(B, B_hat)

    R = lcr_matrix(H)
    d = np.arange(len(hemi.theta))
    r = d - np.dot(H, d)
    lev = np.sqrt(1 - H.diagonal())
    r /= lev
    r -= r.mean()

    r2 = np.dot(R, d)
    assert_array_almost_equal(r, r2)

    r3 = np.dot(d, R.T)
    assert_array_almost_equal(r, r3)
Exemplo n.º 8
0
def gen_dirac(pol, azi, sh_order):
    """ Generate Dirac delta function orientated in (theta, phi) = (azi, pol)
    on the sphere. The spherical harmonics (SH) representation of this Dirac is
    returned. 

    Parameters
    ----------
    pol : float [0, pi]
        The polar (colatitudinal) coordinate (phi)
    az : float [0, 2*pi]
        The azimuthal (longitudinal) coordinate (theta)
    sh_order : int
        maximal SH order of the SH representation

    Returns
    -------
    dirac : ndarray (``(sh_order + 1)(sh_order + 2)/2``,)
        SH coefficients representing the Dirac function
    """
    m, n = sph_harm_ind_list(sh_order)
    dirac = np.zeros(m.shape)
    i = 0
    for l in np.arange(0, sh_order + 1, 2):
        for m in np.arange(-l, l + 1):
            if m == 0:
                dirac[i] = real_sph_harm(0, l, azi, pol)

            i = i + 1

    return dirac
Exemplo n.º 9
0
def get_deconv_matrix(gtab, response, sh_order):
    """ Compute the deconvolution of the response of a single fiber
    Attributes:
        gtab (dipy GradientTable): the gradient of the dwi in wich the response
                                   is represented.
        response (float[4]): first 3 elements: eigenvalues, 4th: mean b0 value
        sh_order (int): the sh_order of the DWI used for the deconvolution

    Returns:
        R:
        r_rh:
        B_dwi (np.array(nb_sh_coeff, nb_dwi_directions)): matrix to fit DWi->SH
    """
    m, n = sph_harm_ind_list(sh_order)

    # x, y, z = gtab.gradients[~gtab.b0s_mask].T
    # r, theta, phi = cart2sphere(x, y, z)
    # # for the gradient sphere
    # B_dwi = real_sph_harm(m, n, theta[:, None], phi[:, None])
    B_dwi, _ = get_B_matrix(gtab, sh_order)

    S_r = estimate_response(gtab, response[0:3], response[3])
    r_sh = np.linalg.lstsq(B_dwi, S_r[~gtab.b0s_mask], rcond=-1)[0]
    n_response = n
    m_response = m
    r_rh = sh_to_rh(r_sh, m_response, n_response)
    R = forward_sdeconv_mat(r_rh, n)

    # X = R.diagonal() * B_dwi

    return R, r_rh, B_dwi
Exemplo n.º 10
0
def test_smooth_pinv():
    hemi = hemi_icosahedron.subdivide(2)
    m, n = sph_harm_ind_list(4)

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)

        B = real_sh_descoteaux_from_index(m, n, hemi.theta[:, None],
                                          hemi.phi[:, None])

    L = np.zeros(len(m))
    C = smooth_pinv(B, L)
    D = np.dot(npl.inv(np.dot(B.T, B)), B.T)
    assert_array_almost_equal(C, D)

    L = n * (n + 1) * .05
    C = smooth_pinv(B, L)
    L = np.diag(L)
    D = np.dot(npl.inv(np.dot(B.T, B) + L * L), B.T)

    assert_array_almost_equal(C, D)

    L = np.arange(len(n)) * .05
    C = smooth_pinv(B, L)
    L = np.diag(L)
    D = np.dot(npl.inv(np.dot(B.T, B) + L * L), B.T)
    assert_array_almost_equal(C, D)
Exemplo n.º 11
0
def mats_odfdeconv(sphere, basis=None, ratio=3 / 15., sh_order=8, lambda_=1., tau=0.1, r2=True):
    m, n = sph_harm_ind_list(sh_order)
    r, theta, phi = cart2sphere(sphere.x, sphere.y, sphere.z)
    real_sym_sh = sph_harm_lookup[basis]
    B_reg, m, n = real_sym_sh(sh_order, theta[:, None], phi[:, None])
    R, P = forward_sdt_deconv_mat(ratio, sh_order, r2_term=r2)
    lambda_ = lambda_ * R.shape[0] * R[0, 0] / B_reg.shape[0]
    return R, B_reg
Exemplo n.º 12
0
def test_forward_sdeconv_mat():
    m, n = sph_harm_ind_list(4)
    mat = forward_sdeconv_mat(np.array([0, 2, 4]), n)
    expected = np.diag([0, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4])
    npt.assert_array_equal(mat, expected)

    sh_order = 8
    expected_size = (sh_order + 1) * (sh_order + 2) / 2
    r_rh = np.arange(0, sh_order + 1, 2)
    m, n = sph_harm_ind_list(sh_order)
    mat = forward_sdeconv_mat(r_rh, n)
    npt.assert_equal(mat.shape, (expected_size, expected_size))
    npt.assert_array_equal(mat.diagonal(), n)

    # Odd spherical harmonic degrees should raise a ValueError
    n[2] = 3
    npt.assert_raises(ValueError, forward_sdeconv_mat, r_rh, n)
Exemplo n.º 13
0
def test_forward_sdeconv_mat():
    m, n = sph_harm_ind_list(4)
    mat = forward_sdeconv_mat(np.array([0, 2, 4]), n)
    expected = np.diag([0, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4])
    npt.assert_array_equal(mat, expected)

    sh_order = 8
    expected_size = (sh_order + 1) * (sh_order + 2) / 2
    r_rh = np.arange(0, sh_order + 1, 2)
    m, n = sph_harm_ind_list(sh_order)
    mat = forward_sdeconv_mat(r_rh, n)
    npt.assert_equal(mat.shape, (expected_size, expected_size))
    npt.assert_array_equal(mat.diagonal(), n)

    # Odd spherical harmonic degrees should raise a ValueError
    n[2] = 3
    npt.assert_raises(ValueError, forward_sdeconv_mat, r_rh, n)
Exemplo n.º 14
0
def test_order_from_ncoeff():
    """

    """
    # Just try some out:
    for sh_order in [2, 4, 6, 8, 12, 24]:
        m, n = sph_harm_ind_list(sh_order)
        n_coef = m.shape[0]
        npt.assert_equal(order_from_ncoef(n_coef), sh_order)
Exemplo n.º 15
0
def test_order_from_ncoeff():
    """

    """
    # Just try some out:
    for sh_order in [2, 4, 6, 8, 12, 24]:
        m, n = sph_harm_ind_list(sh_order)
        n_coef = m.shape[0]
        assert_equal(order_from_ncoef(n_coef), sh_order)
Exemplo n.º 16
0
    def __init__(self,
                 acquisition_scheme,
                 model,
                 x0_vector=None,
                 sh_order=8,
                 unity_constraint=True,
                 lambda_lb=0.):
        self.model = model
        self.acquisition_scheme = acquisition_scheme
        self.sh_order = sh_order
        self.Ncoef = int((sh_order + 2) * (sh_order + 1) // 2)
        self.Nmodels = len(self.model.models)
        self.lambda_lb = lambda_lb
        self.unity_constraint = unity_constraint
        self.sphere_jacobian = 2 * np.sqrt(np.pi)

        sphere = get_sphere('symmetric724')
        hemisphere = HemiSphere(phi=sphere.phi, theta=sphere.theta)
        self.L_positivity = real_sym_sh_mrtrix(self.sh_order, hemisphere.theta,
                                               hemisphere.phi)[0]

        x0_single_voxel = np.reshape(x0_vector, (-1, x0_vector.shape[-1]))[0]
        if np.all(np.isnan(x0_single_voxel)):
            self.single_convolution_kernel = True
            self.A = self._construct_convolution_kernel(x0_single_voxel)
        else:
            self.single_convolution_kernel = False

        self.Ncoef_total = 0
        vf_array = []

        if self.model.volume_fractions_fixed:
            self.sh_start = 0
            self.Ncoef_total = self.Ncoef
            self.vf_indices = np.array([0])
        else:
            for model in self.model.models:
                if 'orientation' in model.parameter_types.values():
                    self.sh_start = self.Ncoef_total
                    sh_model = np.zeros(self.Ncoef)
                    sh_model[0] = 1
                    vf_array.append(sh_model)
                    self.Ncoef_total += self.Ncoef
                else:
                    vf_array.append(1)
                    self.Ncoef_total += 1
            self.vf_indices = np.where(np.hstack(vf_array))[0]

        sh_l = sph_harm_ind_list(sh_order)[1]
        lb_weights = sh_l**2 * (sh_l + 1)**2  # laplace-beltrami
        if self.model.volume_fractions_fixed:
            self.R_smoothness = np.diag(lb_weights)
        else:
            diagonal = np.zeros(self.Ncoef_total)
            diagonal[self.sh_start:self.sh_start + self.Ncoef] = lb_weights
            self.R_smoothness = np.diag(diagonal)
Exemplo n.º 17
0
def odf_sh_to_sharp(odfs_sh, sphere, basis=None, ratio=3 / 15., sh_order=8, lambda_=1., tau=0.1):
    r""" Sharpen odfs using the spherical deconvolution transform [1]_

    This function can be used to sharpen any smooth ODF spherical function. In theory, this should
    only be used to sharpen QballModel ODFs, but in practice, one can play with the deconvolution
    ratio and sharpen almost any ODF-like spherical function. The constrained-regularization is stable
    and will not only sharp the ODF peaks but also regularize the noisy peaks.

    Parameters
    ---------- 
    odfs_sh : ndarray (``(sh_order + 1)*(sh_order + 2)/2``, )
        array of odfs expressed as spherical harmonics coefficients
    sphere : Sphere
        sphere used to build the regularization matrix    
    basis : {None, 'mrtrix', 'fibernav'}
        different spherical harmonic basis. None is the fibernav basis as well.
    ratio : float, 
        ratio of the smallest vs the largest eigenvalue of the single prolate tensor response function
        (:math:`\frac{\lambda_2}{\lambda_1}`)
    sh_order : int
        maximal SH order of the SH representation
    lambda_ : float
        lambda parameter (see odfdeconv) (default 1.0)
    tau : float
        tau parameter in the L matrix construction (see odfdeconv) (default 0.1)

    Returns
    -------
    fodf_sh : ndarray
        sharpened odf expressed as spherical harmonics coefficients

    References
    ----------
    .. [1] Descoteaux, M., et al. IEEE TMI 2009. Deterministic and Probabilistic Tractography Based
           on Complex Fibre Orientation Distributions
    """
    m, n = sph_harm_ind_list(sh_order)
    r, theta, phi = cart2sphere(sphere.x, sphere.y, sphere.z)

    real_sym_sh = sph_harm_lookup[basis]

    B_reg, m, n = real_sym_sh(sh_order, theta[:, None], phi[:, None])
    
    R, P = forward_sdt_deconv_mat(ratio, sh_order)

    # scale lambda to account for differences in the number of
    # SH coefficients and number of mapped directions
    lambda_ = lambda_ * R.shape[0] * R[0, 0] / B_reg.shape[0]

    fodf_sh = np.zeros(odfs_sh.shape)

    for index in ndindex(odfs_sh.shape[:-1]):

        fodf_sh[index], num_it = odf_deconv(odfs_sh[index], sh_order, R, B_reg, lambda_=lambda_, tau=tau)

    return fodf_sh
Exemplo n.º 18
0
def compute_odd_power_map(sh_coeffs, order, mask):
    _, l_list = sph_harm_ind_list(order, full_basis=True)
    odd_l_list = (l_list % 2 == 1).reshape((1, 1, 1, -1))

    odd_order_norm = np.linalg.norm(sh_coeffs * odd_l_list, ord=2, axis=-1)

    full_order_norm = np.linalg.norm(sh_coeffs, ord=2, axis=-1)

    asym_map = np.zeros(sh_coeffs.shape[:-1])
    mask = np.logical_and(full_order_norm > 0, mask)
    asym_map[mask] = odd_order_norm[mask] / full_order_norm[mask]

    return asym_map
Exemplo n.º 19
0
def test_order_from_ncoeff():
    """

    """
    # Just try some out:
    for sh_order in [2, 4, 6, 8, 12, 24]:
        m, n = sph_harm_ind_list(sh_order)
        n_coef = m.shape[0]
        assert_equal(order_from_ncoef(n_coef), sh_order)

        # Try out full basis
        m_full, n_full = sph_harm_full_ind_list(sh_order)
        n_coef_full = m_full.shape[0]
        assert_equal(order_from_ncoef(n_coef_full, True), sh_order)
Exemplo n.º 20
0
    def __init__(self,
                 acquisition_scheme,
                 model,
                 x0_vector=None,
                 sh_order=8,
                 lambda_pos=1.,
                 lambda_lb=5e-4,
                 tau=0.1,
                 max_iter=50,
                 unity_constraint=True,
                 init_sh_order=4):
        self.model = model
        self.acquisition_scheme = acquisition_scheme
        self.sh_order = sh_order
        self.Ncoef = int((sh_order + 2) * (sh_order + 1) // 2)
        self.Ncoef4 = int((init_sh_order + 2) * (init_sh_order + 1) // 2)
        self.Nmodels = len(self.model.models)
        self.lambda_pos = lambda_pos
        self.lambda_lb = lambda_lb
        self.tau = tau
        self.max_iter = max_iter
        self.unity_constraint = unity_constraint
        self.sphere_jacobian = 1 / (2 * np.sqrt(np.pi))

        # step 1: prepare positivity grid on sphere
        sphere = get_sphere('symmetric724')
        hemisphere = HemiSphere(phi=sphere.phi, theta=sphere.theta)
        self.L_positivity = real_sym_sh_mrtrix(self.sh_order, hemisphere.theta,
                                               hemisphere.phi)[0]

        sh_l = sph_harm_ind_list(sh_order)[1]
        self.R_smoothness = np.diag(sh_l**2 * (sh_l + 1)**2)

        # check if there is only one model. If so, precompute rh array.
        if self.model.volume_fractions_fixed:
            x0_single_voxel = np.reshape(x0_vector,
                                         (-1, x0_vector.shape[-1]))[0]
            if np.all(np.isnan(x0_single_voxel)):
                self.single_convolution_kernel = True
                parameters_dict = self.model.parameter_vector_to_parameters(
                    x0_single_voxel)
                self.A = self.model._construct_convolution_kernel(
                    **parameters_dict)
                self.AT_A = np.dot(self.A.T, self.A)
            else:
                self.single_convolution_kernel = False
        else:
            msg = "This CSD optimizer cannot estimate volume fractions."
            raise ValueError(msg)
Exemplo n.º 21
0
def compute_cos_asym_map(sh_coeffs, order, mask):
    _, l_list = sph_harm_ind_list(order, full_basis=True)

    sign = np.power(-1.0, l_list)
    sign = np.reshape(sign, (1, 1, 1, len(l_list)))
    sh_squared = sh_coeffs**2
    mask = np.logical_and(sh_squared.sum(axis=-1) > 0., mask)

    cos_asym_map = np.zeros(sh_coeffs.shape[:-1])
    cos_asym_map[mask] = np.sum(sh_squared * sign, axis=-1)[mask] / \
        np.sum(sh_squared, axis=-1)[mask]

    cos_asym_map = np.sqrt(1 - cos_asym_map**2) * mask

    return cos_asym_map
Exemplo n.º 22
0
def compute_asymmetry_map(sh_coeffs):
    order = order_from_ncoef(sh_coeffs.shape[-1], full_basis=True)
    _, l_list = sph_harm_ind_list(order, full_basis=True)

    sign = np.power(-1.0, l_list)
    sign = np.reshape(sign, (1, 1, 1, len(l_list)))
    sh_squared = sh_coeffs**2
    mask = sh_squared.sum(axis=-1) > 0.

    asym_map = np.zeros(sh_coeffs.shape[:-1])
    asym_map[mask] = np.sum(sh_squared * sign, axis=-1)[mask] / \
        np.sum(sh_squared, axis=-1)[mask]

    asym_map = np.sqrt(1 - asym_map**2) * mask

    return asym_map
Exemplo n.º 23
0
def test_faster_sph_harm():

    sh_order = 8
    m, n = sph_harm_ind_list(sh_order)
    theta = np.array([1.61491146,  0.76661665,  0.11976141,  1.20198246,
                      1.74066314, 1.5925956,  2.13022055,  0.50332859,
                      1.19868988,  0.78440679, 0.50686938,  0.51739718,
                      1.80342999,  0.73778957,  2.28559395, 1.29569064,
                      1.86877091,  0.39239191,  0.54043037,  1.61263047,
                      0.72695314,  1.90527318,  1.58186125,  0.23130073,
                      2.51695237, 0.99835604,  1.2883426,  0.48114057,
                      1.50079318,  1.07978624, 1.9798903,  2.36616966,
                      2.49233299,  2.13116602,  1.36801518, 1.32932608,
                      0.95926683,  1.070349,  0.76355762, 2.07148422,
                      1.50113501,  1.49823314,  0.89248164,  0.22187079,
                      1.53805373, 1.9765295,  1.13361568,  1.04908355,
                      1.68737368,  1.91732452, 1.01937457,  1.45839,
                      0.49641525,  0.29087155,  0.52824641, 1.29875871,
                      1.81023541,  1.17030475,  2.24953206,  1.20280498,
                      0.76399964,  2.16109722,  0.79780421,  0.87154509])

    phi = np.array([-1.5889514, -3.11092733, -0.61328674, -2.4485381,
                    2.88058822, 2.02165946, -1.99783366,  2.71235211,
                    1.41577992, -2.29413676, -2.24565773, -1.55548635,
                    2.59318232, -1.84672472, -2.33710739, 2.12111948,
                    1.87523722, -1.05206575, -2.85381987,
                    -2.22808984, 2.3202034, -2.19004474, -1.90358372,
                    2.14818373,  3.1030696, -2.86620183, -2.19860123,
                    -0.45468447, -3.0034923,  1.73345011, -2.51716288,
                    2.49961525, -2.68782986,  2.69699056,  1.78566133,
                    -1.59119705, -2.53378963, -2.02476738,  1.36924987,
                    2.17600517, 2.38117241,  2.99021511, -1.4218007,
                    -2.44016802, -2.52868164, 3.01531658,  2.50093627,
                    -1.70745826, -2.7863931, -2.97359741, 2.17039906,
                    2.68424643,  1.77896086,  0.45476215,  0.99734418,
                    -2.73107896,  2.28815009,  2.86276506,  3.09450274,
                    -3.09857384, -1.06955885, -2.83826831,  1.81932195,
                    2.81296654])

    sh = spherical_harmonics(m, n, theta[:, None], phi[:, None])
    sh2 = sph_harm_sp(m, n, theta[:, None], phi[:, None])

    assert_array_almost_equal(sh, sh2, 8)
    sh = spherical_harmonics(m, n, theta[:, None], phi[:, None],
                             use_scipy=False)
    assert_array_almost_equal(sh, sh2, 8)
Exemplo n.º 24
0
    def __init__(self,
                 gtab,
                 response,
                 sh_order,
                 lambda_=1,
                 tau=0.1,
                 size=3,
                 method='center'):
        """
        Attributes:
            gtab (dipy GradientTable): the gradient of the dwi in wich the
                                       response is represented.
            response (float[4]): first 3 elements: eigenvalues
                                 4th one: mean b0 value
            sh_order (int): the sh_order of the DWI used for the deconvolution
            lambda_ (float): the coefficient to rescale the loss
                             better to keep to 1. and change the 'coeff' param
                             when defining the loss
            tau (float): the coefficient to rescale the threshold used
            size (int): the size of the subsample taken to compute the loss
                        take size**3 voxels
            method (str): the method to take the subsample (random or center)
        """
        super(NegativefODFLoss, self).__init__()
        m, n = sph_harm_ind_list(sh_order)

        self.sphere = get_sphere('symmetric362')
        r, theta, phi = cart2sphere(self.sphere.x, self.sphere.y,
                                    self.sphere.z)
        # B_reg = real_sph_harm(m, n, theta[:, None], phi[:, None])
        B_reg = shm.get_B_matrix(theta=theta, phi=phi, sh_order=sh_order)

        R, r_rh, B_dwi = shm.get_deconv_matrix(gtab, response, sh_order)

        # scale lambda_ to account for differences in the number of
        # SH coefficients and number of mapped directions
        # This is exactly what is done in [4]_
        lambda_ = (lambda_ * R.shape[0] * r_rh[0] /
                   (np.sqrt(B_reg.shape[0]) * np.sqrt(362.)))
        B_reg = torch.FloatTensor(B_reg * lambda_)
        self.B_reg = nn.Parameter(B_reg, requires_grad=False)
        self.tau = tau

        self.size = size
        self.method = method
Exemplo n.º 25
0
def sh_smooth(data, gtab, sh_order=4):
    """Smooth the raw diffusion signal with spherical harmonics

    data : ndarray
        The diffusion data to smooth.

    gtab : gradient table object
        Corresponding gradients table object to data.

    sh_order : int, default 4
        Order of the spherical harmonics to fit.

    Return
    ---------
    pred_sig : ndarray
        The smoothed diffusion data, fitted through spherical harmonics.
    """

    m, n = sph_harm_ind_list(sh_order)
    where_b0s = lazy_index(gtab.b0s_mask)
    where_dwi = lazy_index(~gtab.b0s_mask)

    x, y, z = gtab.gradients[where_dwi].T
    r, theta, phi = cart2sphere(x, y, z)

    # Find the sh coefficients to smooth the signal
    B_dwi = real_sph_harm(m, n, theta[:, None], phi[:, None])
    sh_shape = (np.prod(data.shape[:-1]), -1)
    sh_coeff = np.linalg.lstsq(B_dwi, data[...,
                                           where_dwi].reshape(sh_shape).T)[0]

    # Find the smoothed signal from the sh fit for the given gtab
    smoothed_signal = np.dot(B_dwi,
                             sh_coeff).T.reshape(data.shape[:-1] + (-1, ))
    pred_sig = np.zeros(smoothed_signal.shape[:-1] + (gtab.bvals.shape[0], ))
    pred_sig[..., ~gtab.b0s_mask] = smoothed_signal

    # Just give back the signal for the b0s since we can't really do anything about it
    if np.sum(gtab.b0s_mask) > 1:
        pred_sig[..., where_b0s] = np.mean(data[..., where_b0s], axis=-1)
    else:
        pred_sig[..., where_b0s] = data[..., where_b0s]

    return pred_sig
Exemplo n.º 26
0
def main():
    parser = _build_arg_parser()
    args = parser.parse_args()
    if args.verbose:
        logging.basicConfig(level=logging.INFO)

    # Checking args
    outputs = [args.out_sh]
    if args.out_sym:
        outputs.append(args.out_sym)
    assert_outputs_exist(parser, args, outputs)
    assert_inputs_exist(parser, args.in_sh)

    nbr_processes = validate_nbr_processes(parser, args)

    # Prepare data
    sh_img = nib.load(args.in_sh)
    data = sh_img.get_fdata(dtype=np.float32)

    sh_order, full_basis = get_sh_order_and_fullness(data.shape[-1])

    t0 = time.perf_counter()
    logging.info('Executing angle-aware bilateral filtering.')
    asym_sh = angle_aware_bilateral_filtering(
        data, sh_order=sh_order,
        sh_basis=args.sh_basis,
        in_full_basis=full_basis,
        sphere_str=args.sphere,
        sigma_spatial=args.sigma_spatial,
        sigma_angular=args.sigma_angular,
        sigma_range=args.sigma_range,
        use_gpu=args.use_gpu,
        nbr_processes=nbr_processes)
    t1 = time.perf_counter()
    logging.info('Elapsed time (s): {0}'.format(t1 - t0))

    logging.info('Saving filtered SH to file {0}.'.format(args.out_sh))
    nib.save(nib.Nifti1Image(asym_sh, sh_img.affine), args.out_sh)

    if args.out_sym:
        _, orders = sph_harm_ind_list(sh_order, full_basis=True)
        logging.info('Saving symmetric SH to file {0}.'.format(args.out_sym))
        nib.save(nib.Nifti1Image(asym_sh[..., orders % 2 == 0], sh_img.affine),
                 args.out_sym)
Exemplo n.º 27
0
def test_faster_sph_harm():

    sh_order = 8
    m, n = sph_harm_ind_list(sh_order)
    theta = np.array([1.61491146,  0.76661665,  0.11976141,  1.20198246,
                      1.74066314, 1.5925956,  2.13022055,  0.50332859,
                      1.19868988,  0.78440679, 0.50686938,  0.51739718,
                      1.80342999,  0.73778957,  2.28559395, 1.29569064,
                      1.86877091,  0.39239191,  0.54043037,  1.61263047,
                      0.72695314,  1.90527318,  1.58186125,  0.23130073,
                      2.51695237, 0.99835604,  1.2883426,  0.48114057,
                      1.50079318,  1.07978624, 1.9798903,  2.36616966,
                      2.49233299,  2.13116602,  1.36801518, 1.32932608,
                      0.95926683,  1.070349,  0.76355762, 2.07148422,
                      1.50113501,  1.49823314,  0.89248164,  0.22187079,
                      1.53805373, 1.9765295,  1.13361568,  1.04908355,
                      1.68737368,  1.91732452, 1.01937457,  1.45839,
                      0.49641525,  0.29087155,  0.52824641, 1.29875871,
                      1.81023541,  1.17030475,  2.24953206,  1.20280498,
                      0.76399964,  2.16109722,  0.79780421,  0.87154509])

    phi = np.array([-1.5889514, -3.11092733, -0.61328674, -2.4485381,
                    2.88058822, 2.02165946, -1.99783366,  2.71235211,
                    1.41577992, -2.29413676, -2.24565773, -1.55548635,
                    2.59318232, -1.84672472, -2.33710739, 2.12111948,
                    1.87523722, -1.05206575, -2.85381987,
                    -2.22808984, 2.3202034, -2.19004474, -1.90358372,
                    2.14818373,  3.1030696, -2.86620183, -2.19860123,
                    -0.45468447, -3.0034923,  1.73345011, -2.51716288,
                    2.49961525, -2.68782986,  2.69699056,  1.78566133,
                    -1.59119705, -2.53378963, -2.02476738,  1.36924987,
                    2.17600517, 2.38117241,  2.99021511, -1.4218007,
                    -2.44016802, -2.52868164, 3.01531658,  2.50093627,
                    -1.70745826, -2.7863931, -2.97359741, 2.17039906,
                    2.68424643,  1.77896086,  0.45476215,  0.99734418,
                    -2.73107896,  2.28815009,  2.86276506,  3.09450274,
                    -3.09857384, -1.06955885, -2.83826831,  1.81932195,
                    2.81296654])

    sh = spherical_harmonics(m, n, theta[:, None], phi[:, None])
    sh2 = sph_harm_sp(m, n, theta[:, None], phi[:, None])

    assert_array_almost_equal(sh, sh2, 8)
Exemplo n.º 28
0
def forward_sdt_deconv_mat(ratio, sh_order):
    """ Build forward sharpening deconvolution transform (SDT) matrix

    Parameters
    ----------
    ratio : float
        ratio = $\frac{\lambda_2}{\lambda_1}$ of the single fiber response function
    sh_order : int
        spherical harmonic order

    Returns
    -------
    R : ndarray (``(sh_order + 1)*(sh_order + 2)/2``, ``(sh_order + 1)*(sh_order + 2)/2``)
        SDT deconvolution matrix
    P : ndarray (``(sh_order + 1)*(sh_order + 2)/2``, ``(sh_order + 1)*(sh_order + 2)/2``)
        Funk-Radon Transform (FRT) matrix
    """
    m, n = sph_harm_ind_list(sh_order)

    sdt = np.zeros(m.shape)  # SDT matrix
    frt = np.zeros(m.shape)  # FRT (Funk-Radon transform) q-ball matrix
    b = np.zeros(m.shape)
    bb = np.zeros(m.shape)

    for l in np.arange(0, sh_order + 1, 2):
        from scipy.integrate import quad
        sharp = quad(
            lambda z: lpn(l, z)[0][-1] * np.sqrt(1 / (1 -
                                                      (1 - ratio) * z * z)),
            -1., 1.)

        sdt[l / 2] = sharp[0]
        frt[l / 2] = 2 * np.pi * lpn(l, 0)[0][-1]

    i = 0
    for l in np.arange(0, sh_order + 1, 2):
        for m in np.arange(-l, l + 1):
            b[i] = sdt[l / 2]
            bb[i] = frt[l / 2]
            i = i + 1

    return np.diag(b), np.diag(bb)
Exemplo n.º 29
0
    def norm_of_laplacian_fod(self):
        """
        Estimates the squared norm of the Laplacian of the FOD. Similar to
        the anisotropy index, a higher norm means there are larger higher-order
        coefficients in the FOD spherical harmonics expansion. This indicates
        the FOD is more anisotropic overall. This kind of measure was explored
        in e.g. [1]_.

        References
        ----------
        .. [1] Descoteaux, Maxime, et al. "Regularized, fast, and robust
            analytical Q-ball imaging." Magnetic Resonance in Medicine: An
            Official Journal of the International Society for Magnetic
            Resonance in Medicine 58.3 (2007): 497-510.
        """
        sh_coef = self.fitted_parameters['sh_coeff']
        sh_l = sph_harm_ind_list(self.model.sh_order)[1]
        lb_weights = sh_l**2 * (sh_l + 1)**2  # laplace-beltrami
        norm_laplacian = np.sum(sh_coef**2 * lb_weights, axis=-1)
        return norm_laplacian
Exemplo n.º 30
0
def test_hat_and_lcr():
    hemi = hemi_icosahedron.subdivide(3)
    m, n = sph_harm_ind_list(8)
    B = real_sph_harm(m, n, hemi.theta[:, None], hemi.phi[:, None])
    H = hat(B)
    B_hat = np.dot(H, B)
    assert_array_almost_equal(B, B_hat)

    R = lcr_matrix(H)
    d = np.arange(len(hemi.theta))
    r = d - np.dot(H, d)
    lev = np.sqrt(1 - H.diagonal())
    r /= lev
    r -= r.mean()

    r2 = np.dot(R, d)
    assert_array_almost_equal(r, r2)

    r3 = np.dot(d, R.T)
    assert_array_almost_equal(r, r3)
Exemplo n.º 31
0
def test_hat_and_lcr():
    hemi = hemi_icosahedron.subdivide(3)
    m, n = sph_harm_ind_list(8)
    B = real_sph_harm(m, n, hemi.theta[:, None], hemi.phi[:, None])
    H = hat(B)
    B_hat = np.dot(H, B)
    assert_array_almost_equal(B, B_hat)

    R = lcr_matrix(H)
    d = np.arange(len(hemi.theta))
    r = d - np.dot(H, d)
    lev = np.sqrt(1 - H.diagonal())
    r /= lev
    r -= r.mean()

    r2 = np.dot(R, d)
    assert_array_almost_equal(r, r2)

    r3 = np.dot(d, R.T)
    assert_array_almost_equal(r, r3)
Exemplo n.º 32
0
def test_hat_and_lcr():
    v, e, f = create_half_unit_sphere(6)
    m, n = sph_harm_ind_list(8)
    r, pol, azi = cart2sphere(*v.T)
    B = real_sph_harm(m, n, azi[:, None], pol[:, None])
    H = hat(B)
    B_hat = np.dot(H, B)
    assert_array_almost_equal(B, B_hat)

    R = lcr_matrix(H)
    d = np.arange(len(azi))
    r = d - np.dot(H, d)
    lev = np.sqrt(1 - H.diagonal())
    r /= lev
    r -= r.mean()

    r2 = np.dot(R, d)
    assert_array_almost_equal(r, r2)

    r3 = np.dot(d, R.T)
    assert_array_almost_equal(r, r3)
Exemplo n.º 33
0
def test_hat_and_lcr():
    v, e, f = create_half_unit_sphere(6)
    m, n = sph_harm_ind_list(8)
    r, pol, azi = cart2sphere(*v.T)
    B = real_sph_harm(m, n, azi[:, None], pol[:, None])
    H = hat(B)
    B_hat = np.dot(H, B)
    assert_array_almost_equal(B, B_hat)

    R = lcr_matrix(H)
    d = np.arange(len(azi))
    r = d - np.dot(H, d)
    lev = np.sqrt(1 - H.diagonal())
    r /= lev
    r -= r.mean()

    r2 = np.dot(R, d)
    assert_array_almost_equal(r, r2)

    r3 = np.dot(d, R.T)
    assert_array_almost_equal(r, r3)
Exemplo n.º 34
0
def forward_sdt_deconv_mat(ratio, sh_order):
    """ Build forward sharpening deconvolution transform (SDT) matrix

    Parameters
    ----------
    ratio : float
        ratio = $\frac{\lambda_2}{\lambda_1}$ of the single fiber response function
    sh_order : int
        spherical harmonic order

    Returns
    -------
    R : ndarray (``(sh_order + 1)*(sh_order + 2)/2``, ``(sh_order + 1)*(sh_order + 2)/2``)
        SDT deconvolution matrix
    P : ndarray (``(sh_order + 1)*(sh_order + 2)/2``, ``(sh_order + 1)*(sh_order + 2)/2``)
        Funk-Radon Transform (FRT) matrix
    """
    m, n = sph_harm_ind_list(sh_order)

    sdt = np.zeros(m.shape) # SDT matrix
    frt = np.zeros(m.shape) # FRT (Funk-Radon transform) q-ball matrix
    b = np.zeros(m.shape)
    bb = np.zeros(m.shape)

    for l in np.arange(0, sh_order + 1, 2):
        from scipy.integrate import quad
        sharp = quad(lambda z: lpn(l, z)[0][-1] * np.sqrt(1 / (1 - (1 - ratio) * z * z)), -1., 1.)

        sdt[l / 2] = sharp[0]
        frt[l / 2] = 2 * np.pi * lpn(l, 0)[0][-1]

    i = 0
    for l in np.arange(0, sh_order + 1, 2):
        for m in np.arange(-l, l + 1):
            b[i] = sdt[l / 2]
            bb[i] = frt[l / 2]
            i = i + 1

    return np.diag(b), np.diag(bb)
Exemplo n.º 35
0
def test_smooth_pinv():
    hemi = hemi_icosahedron.subdivide(2)
    m, n = sph_harm_ind_list(4)
    B = real_sph_harm(m, n, hemi.theta[:, None], hemi.phi[:, None])

    L = np.zeros(len(m))
    C = smooth_pinv(B, L)
    D = np.dot(npl.inv(np.dot(B.T, B)), B.T)
    assert_array_almost_equal(C, D)

    L = n * (n + 1) * .05
    C = smooth_pinv(B, L)
    L = np.diag(L)
    D = np.dot(npl.inv(np.dot(B.T, B) + L * L), B.T)

    assert_array_almost_equal(C, D)

    L = np.arange(len(n)) * .05
    C = smooth_pinv(B, L)
    L = np.diag(L)
    D = np.dot(npl.inv(np.dot(B.T, B) + L * L), B.T)
    assert_array_almost_equal(C, D)
Exemplo n.º 36
0
def test_smooth_pinv():
    hemi = hemi_icosahedron.subdivide(2)
    m, n = sph_harm_ind_list(4)
    B = real_sph_harm(m, n, hemi.theta[:, None], hemi.phi[:, None])

    L = np.zeros(len(m))
    C = smooth_pinv(B, L)
    D = np.dot(npl.inv(np.dot(B.T, B)), B.T)
    assert_array_almost_equal(C, D)

    L = n * (n + 1) * .05
    C = smooth_pinv(B, L)
    L = np.diag(L)
    D = np.dot(npl.inv(np.dot(B.T, B) + L * L), B.T)

    assert_array_almost_equal(C, D)

    L = np.arange(len(n)) * .05
    C = smooth_pinv(B, L)
    L = np.diag(L)
    D = np.dot(npl.inv(np.dot(B.T, B) + L * L), B.T)
    assert_array_almost_equal(C, D)
Exemplo n.º 37
0
def test_smooth_pinv():
    v, e, f = create_half_unit_sphere(3)
    m, n = sph_harm_ind_list(4)
    r, pol, azi = cart2sphere(*v.T)
    B = real_sph_harm(m, n, azi[:, None], pol[:, None])

    L = np.zeros(len(m))
    C = smooth_pinv(B, L)
    D = np.dot(npl.inv(np.dot(B.T, B)), B.T)
    assert_array_almost_equal(C, D)

    L = n * (n + 1) * 0.05
    C = smooth_pinv(B, L)
    L = np.diag(L)
    D = np.dot(npl.inv(np.dot(B.T, B) + L * L), B.T)

    assert_array_almost_equal(C, D)

    L = np.arange(len(n)) * 0.05
    C = smooth_pinv(B, L)
    L = np.diag(L)
    D = np.dot(npl.inv(np.dot(B.T, B) + L * L), B.T)
    assert_array_almost_equal(C, D)
Exemplo n.º 38
0
def test_smooth_pinv():
    v, e, f = create_half_unit_sphere(3)
    m, n = sph_harm_ind_list(4)
    r, pol, azi = cart2sphere(*v.T)
    B = real_sph_harm(m, n, azi[:, None], pol[:, None])

    L = np.zeros(len(m))
    C = smooth_pinv(B, L)
    D = np.dot(npl.inv(np.dot(B.T, B)), B.T)
    assert_array_almost_equal(C, D)

    L = n * (n + 1) * .05
    C = smooth_pinv(B, L)
    L = np.diag(L)
    D = np.dot(npl.inv(np.dot(B.T, B) + L * L), B.T)

    assert_array_almost_equal(C, D)

    L = np.arange(len(n)) * .05
    C = smooth_pinv(B, L)
    L = np.diag(L)
    D = np.dot(npl.inv(np.dot(B.T, B) + L * L), B.T)
    assert_array_almost_equal(C, D)
Exemplo n.º 39
0
def reconst_flow_core(flow):
    with TemporaryDirectory() as out_dir:
        data_path, bval_path, bvec_path = get_fnames('small_64D')
        volume, affine = load_nifti(data_path)
        mask = np.ones_like(volume[:, :, :, 0])
        mask_path = pjoin(out_dir, 'tmp_mask.nii.gz')
        save_nifti(mask_path, mask.astype(np.uint8), affine)

        reconst_flow = flow()
        for sh_order in [4, 6, 8]:
            if flow.get_short_name() == 'csd':

                reconst_flow.run(data_path,
                                 bval_path,
                                 bvec_path,
                                 mask_path,
                                 sh_order=sh_order,
                                 out_dir=out_dir,
                                 extract_pam_values=True)

            elif flow.get_short_name() == 'csa':

                reconst_flow.run(data_path,
                                 bval_path,
                                 bvec_path,
                                 mask_path,
                                 sh_order=sh_order,
                                 odf_to_sh_order=sh_order,
                                 out_dir=out_dir,
                                 extract_pam_values=True)

            gfa_path = reconst_flow.last_generated_outputs['out_gfa']
            gfa_data = load_nifti_data(gfa_path)
            npt.assert_equal(gfa_data.shape, volume.shape[:-1])

            peaks_dir_path =\
                reconst_flow.last_generated_outputs['out_peaks_dir']
            peaks_dir_data = load_nifti_data(peaks_dir_path)
            npt.assert_equal(peaks_dir_data.shape[-1], 15)
            npt.assert_equal(peaks_dir_data.shape[:-1], volume.shape[:-1])

            peaks_idx_path = \
                reconst_flow.last_generated_outputs['out_peaks_indices']
            peaks_idx_data = load_nifti_data(peaks_idx_path)
            npt.assert_equal(peaks_idx_data.shape[-1], 5)
            npt.assert_equal(peaks_idx_data.shape[:-1], volume.shape[:-1])

            peaks_vals_path = \
                reconst_flow.last_generated_outputs['out_peaks_values']
            peaks_vals_data = load_nifti_data(peaks_vals_path)
            npt.assert_equal(peaks_vals_data.shape[-1], 5)
            npt.assert_equal(peaks_vals_data.shape[:-1], volume.shape[:-1])

            shm_path = reconst_flow.last_generated_outputs['out_shm']
            shm_data = load_nifti_data(shm_path)
            # Test that the number of coefficients is what you would expect
            # given the order of the sh basis:
            npt.assert_equal(shm_data.shape[-1],
                             sph_harm_ind_list(sh_order)[0].shape[0])
            npt.assert_equal(shm_data.shape[:-1], volume.shape[:-1])

            pam = load_peaks(reconst_flow.last_generated_outputs['out_pam'])
            npt.assert_allclose(pam.peak_dirs.reshape(peaks_dir_data.shape),
                                peaks_dir_data)
            npt.assert_allclose(pam.peak_values, peaks_vals_data)
            npt.assert_allclose(pam.peak_indices, peaks_idx_data)
            npt.assert_allclose(pam.shm_coeff, shm_data)
            npt.assert_allclose(pam.gfa, gfa_data)

            bvals, bvecs = read_bvals_bvecs(bval_path, bvec_path)
            bvals[0] = 5.
            bvecs = generate_bvecs(len(bvals))

            tmp_bval_path = pjoin(out_dir, "tmp.bval")
            tmp_bvec_path = pjoin(out_dir, "tmp.bvec")
            np.savetxt(tmp_bval_path, bvals)
            np.savetxt(tmp_bvec_path, bvecs.T)
            reconst_flow._force_overwrite = True

            if flow.get_short_name() == 'csd':

                reconst_flow = flow()
                reconst_flow._force_overwrite = True
                reconst_flow.run(data_path,
                                 bval_path,
                                 bvec_path,
                                 mask_path,
                                 out_dir=out_dir,
                                 frf=[15, 5, 5])
                reconst_flow = flow()
                reconst_flow._force_overwrite = True
                reconst_flow.run(data_path,
                                 bval_path,
                                 bvec_path,
                                 mask_path,
                                 out_dir=out_dir,
                                 frf='15, 5, 5')
                reconst_flow = flow()
                reconst_flow._force_overwrite = True
                reconst_flow.run(data_path,
                                 bval_path,
                                 bvec_path,
                                 mask_path,
                                 out_dir=out_dir,
                                 frf=None)
                reconst_flow2 = flow()
                reconst_flow2._force_overwrite = True
                reconst_flow2.run(data_path,
                                  bval_path,
                                  bvec_path,
                                  mask_path,
                                  out_dir=out_dir,
                                  frf=None,
                                  roi_center=[5, 5, 5])
            else:
                with npt.assert_raises(BaseException):
                    npt.assert_warns(UserWarning,
                                     reconst_flow.run,
                                     data_path,
                                     tmp_bval_path,
                                     tmp_bvec_path,
                                     mask_path,
                                     out_dir=out_dir,
                                     extract_pam_values=True)

            # test parallel implementation
            reconst_flow = flow()
            reconst_flow._force_overwrite = True
            reconst_flow.run(data_path,
                             bval_path,
                             bvec_path,
                             mask_path,
                             out_dir=out_dir,
                             parallel=True,
                             nbr_processes=None)
            reconst_flow = flow()
            reconst_flow._force_overwrite = True
            reconst_flow.run(data_path,
                             bval_path,
                             bvec_path,
                             mask_path,
                             out_dir=out_dir,
                             parallel=True,
                             nbr_processes=2)
Exemplo n.º 40
0
    def __init__(self,
                 gtab,
                 response,
                 reg_sphere=None,
                 sh_order=8,
                 lambda_=1,
                 tau=0.1,
                 convergence=50):
        r""" Constrained Spherical Deconvolution (CSD) [1]_.

        Spherical deconvolution computes a fiber orientation distribution
        (FOD), also called fiber ODF (fODF) [2]_, as opposed to a diffusion ODF
        as the QballModel or the CsaOdfModel. This results in a sharper angular
        profile with better angular resolution that is the best object to be
        used for later deterministic and probabilistic tractography [3]_.

        A sharp fODF is obtained because a single fiber *response* function is
        injected as *a priori* knowledge. The response function is often
        data-driven and is thus provided as input to the
        ConstrainedSphericalDeconvModel. It will be used as deconvolution
        kernel, as described in [1]_.

        Parameters
        ----------
        gtab : GradientTable
        response : tuple or AxSymShResponse object
            A tuple with two elements. The first is the eigen-values as an (3,)
            ndarray and the second is the signal value for the response
            function without diffusion weighting.  This is to be able to
            generate a single fiber synthetic signal. The response function
            will be used as deconvolution kernel ([1]_)
        reg_sphere : Sphere (optional)
            sphere used to build the regularization B matrix.
            Default: 'symmetric362'.
        sh_order : int (optional)
            maximal spherical harmonics order. Default: 8
        lambda_ : float (optional)
            weight given to the constrained-positivity regularization part of
            the deconvolution equation (see [1]_). Default: 1
        tau : float (optional)
            threshold controlling the amplitude below which the corresponding
            fODF is assumed to be zero.  Ideally, tau should be set to
            zero. However, to improve the stability of the algorithm, tau is
            set to tau*100 % of the mean fODF amplitude (here, 10% by default)
            (see [1]_). Default: 0.1
        convergence : int
            Maximum number of iterations to allow the deconvolution to converge.

        References
        ----------
        .. [1] Tournier, J.D., et al. NeuroImage 2007. Robust determination of
               the fibre orientation distribution in diffusion MRI:
               Non-negativity constrained super-resolved spherical
               deconvolution
        .. [2] Descoteaux, M., et al. IEEE TMI 2009. Deterministic and
               Probabilistic Tractography Based on Complex Fibre Orientation
               Distributions
        .. [3] Côté, M-A., et al. Medical Image Analysis 2013. Tractometer:
               Towards validation of tractography pipelines
        .. [4] Tournier, J.D, et al. Imaging Systems and Technology
               2012. MRtrix: Diffusion Tractography in Crossing Fiber Regions
        """
        # Initialize the parent class:
        SphHarmModel.__init__(self, gtab)
        m, n = sph_harm_ind_list(sh_order)
        self.m, self.n = m, n
        self._where_b0s = lazy_index(gtab.b0s_mask)
        self._where_dwi = lazy_index(~gtab.b0s_mask)

        no_params = ((sh_order + 1) * (sh_order + 2)) / 2

        if no_params > np.sum(~gtab.b0s_mask):
            msg = "Number of parameters required for the fit are more "
            msg += "than the actual data points"
            warnings.warn(msg, UserWarning)

        x, y, z = gtab.gradients[self._where_dwi].T
        r, theta, phi = cart2sphere(x, y, z)
        # for the gradient sphere
        self.B_dwi = real_sph_harm(m, n, theta[:, None], phi[:, None])

        # for the sphere used in the regularization positivity constraint
        if reg_sphere is None:
            self.sphere = small_sphere
        else:
            self.sphere = reg_sphere

        r, theta, phi = cart2sphere(self.sphere.x, self.sphere.y,
                                    self.sphere.z)
        self.B_reg = real_sph_harm(m, n, theta[:, None], phi[:, None])

        if response is None:
            response = (np.array([0.0015, 0.0003, 0.0003]), 1)

        self.response = response
        if isinstance(response, AxSymShResponse):
            r_sh = response.dwi_response
            self.response_scaling = response.S0
            n_response = response.n
            m_response = response.m
        else:
            self.S_r = estimate_response(gtab, self.response[0],
                                         self.response[1])
            r_sh = np.linalg.lstsq(self.B_dwi,
                                   self.S_r[self._where_dwi],
                                   rcond=-1)[0]
            n_response = n
            m_response = m
            self.response_scaling = response[1]
        r_rh = sh_to_rh(r_sh, m_response, n_response)
        self.R = forward_sdeconv_mat(r_rh, n)

        # scale lambda_ to account for differences in the number of
        # SH coefficients and number of mapped directions
        # This is exactly what is done in [4]_
        lambda_ = (lambda_ * self.R.shape[0] * r_rh[0] /
                   (np.sqrt(self.B_reg.shape[0]) * np.sqrt(362.)))
        self.B_reg *= lambda_
        self.sh_order = sh_order
        self.tau = tau
        self.convergence = convergence
        self._X = X = self.R.diagonal() * self.B_dwi
        self._P = np.dot(X.T, X)
Exemplo n.º 41
0
    def __init__(self,
                 gtab,
                 ratio,
                 reg_sphere=None,
                 sh_order=8,
                 lambda_=1.,
                 tau=0.1):
        r""" Spherical Deconvolution Transform (SDT) [1]_.

        The SDT computes a fiber orientation distribution (FOD) as opposed to a
        diffusion ODF as the QballModel or the CsaOdfModel. This results in a
        sharper angular profile with better angular resolution. The Constrained
        SDTModel is similar to the Constrained CSDModel but mathematically it
        deconvolves the q-ball ODF as oppposed to the HARDI signal (see [1]_
        for a comparison and a through discussion).

        A sharp fODF is obtained because a single fiber *response* function is
        injected as *a priori* knowledge. In the SDTModel, this response is a
        single fiber q-ball ODF as opposed to a single fiber signal function
        for the CSDModel. The response function will be used as deconvolution
        kernel.

        Parameters
        ----------
        gtab : GradientTable
        ratio : float
            ratio of the smallest vs the largest eigenvalue of the single
            prolate tensor response function
        reg_sphere : Sphere
            sphere used to build the regularization B matrix
        sh_order : int
            maximal spherical harmonics order
        lambda_ : float
            weight given to the constrained-positivity regularization part of
            the deconvolution equation
        tau : float
            threshold (tau *mean(fODF)) controlling the amplitude below
            which the corresponding fODF is assumed to be zero.

        References
        ----------
        .. [1] Descoteaux, M., et al. IEEE TMI 2009. Deterministic and
               Probabilistic Tractography Based on Complex Fibre Orientation
               Distributions.

        """
        SphHarmModel.__init__(self, gtab)
        m, n = sph_harm_ind_list(sh_order)
        self.m, self.n = m, n
        self._where_b0s = lazy_index(gtab.b0s_mask)
        self._where_dwi = lazy_index(~gtab.b0s_mask)

        no_params = ((sh_order + 1) * (sh_order + 2)) / 2

        if no_params > np.sum(~gtab.b0s_mask):
            msg = "Number of parameters required for the fit are more "
            msg += "than the actual data points"
            warnings.warn(msg, UserWarning)

        x, y, z = gtab.gradients[self._where_dwi].T
        r, theta, phi = cart2sphere(x, y, z)
        # for the gradient sphere
        self.B_dwi = real_sph_harm(m, n, theta[:, None], phi[:, None])

        # for the odf sphere
        if reg_sphere is None:
            self.sphere = get_sphere('symmetric362')
        else:
            self.sphere = reg_sphere

        r, theta, phi = cart2sphere(self.sphere.x, self.sphere.y,
                                    self.sphere.z)
        self.B_reg = real_sph_harm(m, n, theta[:, None], phi[:, None])

        self.R, self.P = forward_sdt_deconv_mat(ratio, n)

        # scale lambda_ to account for differences in the number of
        # SH coefficients and number of mapped directions
        self.lambda_ = (lambda_ * self.R.shape[0] * self.R[0, 0] /
                        self.B_reg.shape[0])
        self.tau = tau
        self.sh_order = sh_order
Exemplo n.º 42
0
def reconst_flow_core(flow):
    with TemporaryDirectory() as out_dir:
        data_path, bval_path, bvec_path = get_fnames('small_64D')
        vol_img = nib.load(data_path)
        volume = vol_img.get_data()
        mask = np.ones_like(volume[:, :, :, 0])
        mask_img = nib.Nifti1Image(mask.astype(np.uint8), vol_img.affine)
        mask_path = pjoin(out_dir, 'tmp_mask.nii.gz')
        nib.save(mask_img, mask_path)

        reconst_flow = flow()
        for sh_order in [4, 6, 8]:
            if flow.get_short_name() == 'csd':

                reconst_flow.run(data_path, bval_path, bvec_path, mask_path,
                                 sh_order=sh_order,
                                 out_dir=out_dir, extract_pam_values=True)

            elif flow.get_short_name() == 'csa':

                reconst_flow.run(data_path, bval_path, bvec_path, mask_path,
                                 sh_order=sh_order,
                                 odf_to_sh_order=sh_order,
                                 out_dir=out_dir, extract_pam_values=True)

            gfa_path = reconst_flow.last_generated_outputs['out_gfa']
            gfa_data = nib.load(gfa_path).get_data()
            npt.assert_equal(gfa_data.shape, volume.shape[:-1])

            peaks_dir_path =\
                reconst_flow.last_generated_outputs['out_peaks_dir']
            peaks_dir_data = nib.load(peaks_dir_path).get_data()
            npt.assert_equal(peaks_dir_data.shape[-1], 15)
            npt.assert_equal(peaks_dir_data.shape[:-1], volume.shape[:-1])

            peaks_idx_path = \
                reconst_flow.last_generated_outputs['out_peaks_indices']
            peaks_idx_data = nib.load(peaks_idx_path).get_data()
            npt.assert_equal(peaks_idx_data.shape[-1], 5)
            npt.assert_equal(peaks_idx_data.shape[:-1], volume.shape[:-1])

            peaks_vals_path = \
                reconst_flow.last_generated_outputs['out_peaks_values']
            peaks_vals_data = nib.load(peaks_vals_path).get_data()
            npt.assert_equal(peaks_vals_data.shape[-1], 5)
            npt.assert_equal(peaks_vals_data.shape[:-1], volume.shape[:-1])

            shm_path = reconst_flow.last_generated_outputs['out_shm']
            shm_data = nib.load(shm_path).get_data()
            # Test that the number of coefficients is what you would expect
            # given the order of the sh basis:
            npt.assert_equal(shm_data.shape[-1],
                             sph_harm_ind_list(sh_order)[0].shape[0])
            npt.assert_equal(shm_data.shape[:-1], volume.shape[:-1])

            pam = load_peaks(reconst_flow.last_generated_outputs['out_pam'])
            npt.assert_allclose(pam.peak_dirs.reshape(peaks_dir_data.shape),
                                peaks_dir_data)
            npt.assert_allclose(pam.peak_values, peaks_vals_data)
            npt.assert_allclose(pam.peak_indices, peaks_idx_data)
            npt.assert_allclose(pam.shm_coeff, shm_data)
            npt.assert_allclose(pam.gfa, gfa_data)

            bvals, bvecs = read_bvals_bvecs(bval_path, bvec_path)
            bvals[0] = 5.
            bvecs = generate_bvecs(len(bvals))

            tmp_bval_path = pjoin(out_dir, "tmp.bval")
            tmp_bvec_path = pjoin(out_dir, "tmp.bvec")
            np.savetxt(tmp_bval_path, bvals)
            np.savetxt(tmp_bvec_path, bvecs.T)
            reconst_flow._force_overwrite = True
            with npt.assert_raises(BaseException):
                npt.assert_warns(UserWarning, reconst_flow.run, data_path,
                                 tmp_bval_path, tmp_bvec_path, mask_path,
                                 out_dir=out_dir, extract_pam_values=True)

            if flow.get_short_name() == 'csd':

                reconst_flow = flow()
                reconst_flow._force_overwrite = True
                reconst_flow.run(data_path, bval_path, bvec_path, mask_path,
                                 out_dir=out_dir, frf=[15, 5, 5])
                reconst_flow = flow()
                reconst_flow._force_overwrite = True
                reconst_flow.run(data_path, bval_path, bvec_path, mask_path,
                                 out_dir=out_dir, frf='15, 5, 5')
                reconst_flow = flow()
                reconst_flow._force_overwrite = True
                reconst_flow.run(data_path, bval_path, bvec_path, mask_path,
                                 out_dir=out_dir, frf=None)
                reconst_flow2 = flow()
                reconst_flow2._force_overwrite = True
                reconst_flow2.run(data_path, bval_path, bvec_path, mask_path,
                                  out_dir=out_dir, frf=None,
                                  roi_center=[10, 10, 10])
Exemplo n.º 43
0
def sh_smooth(data,
              bvals,
              bvecs,
              sh_order=4,
              similarity_threshold=50,
              regul=0.006):
    """Smooth the raw diffusion signal with spherical harmonics.
    data : ndarray
        The diffusion data to smooth.
    gtab : gradient table object
        Corresponding gradients table object to data.
    sh_order : int, default 8
        Order of the spherical harmonics to fit.
    similarity_threshold : int, default 50
        All b-values such that |b_1 - b_2| < similarity_threshold
        will be considered as identical for smoothing purpose.
        Must be lower than 200.
    regul : float, default 0.006
        Amount of regularization to apply to sh coefficients computation.
    Return
    ---------
    pred_sig : ndarray
        The smoothed diffusion data, fitted through spherical harmonics.
    """

    if similarity_threshold > 200:
        raise ValueError(
            "similarity_threshold = {}, which is higher than 200,"
            " please use a lower value".format(similarity_threshold))

    m, n = sph_harm_ind_list(sh_order)
    L = -n * (n + 1)
    where_b0s = bvals == 0
    pred_sig = np.zeros_like(data, dtype=np.float32)

    # Round similar bvals together for identifying similar shells
    rounded_bvals = np.zeros_like(bvals)

    for unique_bval in np.unique(bvals):
        idx = np.abs(unique_bval - bvals) < similarity_threshold
        rounded_bvals[idx] = unique_bval

    # process each b-value separately
    for unique_bval in np.unique(rounded_bvals):
        idx = rounded_bvals == unique_bval

        # Just give back the signal for the b0s since we can't really do anything about it
        if np.all(idx == where_b0s):
            if np.sum(where_b0s) > 1:
                pred_sig[..., idx] = np.mean(data[..., idx],
                                             axis=-1,
                                             keepdims=True)
            else:
                pred_sig[..., idx] = data[..., idx]
            continue

        x, y, z = bvecs[:, idx]
        r, theta, phi = cart2sphere(x, y, z)

        # Find the sh coefficients to smooth the signal
        B_dwi = real_sph_harm(m, n, theta[:, None], phi[:, None])
        invB = smooth_pinv(B_dwi, np.sqrt(regul) * L)
        sh_coeff = np.dot(data[..., idx], invB.T)

        # Find the smoothed signal from the sh fit for the given gtab
        pred_sig[..., idx] = np.dot(sh_coeff, B_dwi.T)

    return pred_sig
Exemplo n.º 44
0
    def __init__(self, gtab, ratio, reg_sphere=None, sh_order=8, lambda_=1., tau=0.1):
        r""" Spherical Deconvolution Transform (SDT) [1]_.
        
        The SDT computes a fiber orientation distribution (FOD) as opposed to a diffusion
        ODF as the QballModel or the CsaOdfModel. This results in a sharper angular
        profile with better angular resolution. The Contrained SDTModel is similar
        to the Constrained CSDModel but mathematically it deconvolves the q-ball ODF
        as oppposed to the HARDI signal (see [1]_ for a comparison and a through discussion).
        
        A sharp fODF is obtained because a single fiber *response* function is injected
        as *a priori* knowledge. In the SDTModel, this response is a single fiber q-ball
        ODF as opposed to a single fiber signal function for the CSDModel. The response function
        will be used as deconvolution kernel.

        Parameters
        ----------
        gtab : GradientTable
        ratio : float
            ratio of the smallest vs the largest eigenvalue of the single prolate tensor response function
        reg_sphere : Sphere
            sphere used to build the regularization B matrix
        sh_order : int
            maximal spherical harmonics order
        lambda_ : float
            weight given to the constrained-positivity regularization part of the
            deconvolution equation 
        tau : float
            threshold (tau *mean(fODF)) controlling the amplitude below
            which the corresponding fODF is assumed to be zero.

        References
        ----------
        .. [1] Descoteaux, M., et al. IEEE TMI 2009. Deterministic and Probabilistic Tractography Based
               on Complex Fibre Orientation Distributions.
        """

        m, n = sph_harm_ind_list(sh_order)
        self.m, self.n = m, n
        self._where_b0s = lazy_index(gtab.b0s_mask)
        self._where_dwi = lazy_index(~gtab.b0s_mask)

        no_params = ((sh_order + 1) * (sh_order + 2)) / 2

        if no_params > np.sum(gtab.b0s_mask == False):
            msg = "Number of parameters required for the fit are more "
            msg += "than the actual data points"
            warnings.warn(msg, UserWarning)

        x, y, z = gtab.gradients[self._where_dwi].T
        r, theta, phi = cart2sphere(x, y, z)
        # for the gradient sphere
        self.B_dwi = real_sph_harm(m, n, theta[:, None], phi[:, None])

        # for the odf sphere
        if reg_sphere is None:
            self.sphere = get_sphere('symmetric362')
        else:
            self.sphere = reg_sphere

        r, theta, phi = cart2sphere(self.sphere.x, self.sphere.y, self.sphere.z)
        self.B_reg = real_sph_harm(m, n, theta[:, None], phi[:, None])

        self.R, self.P = forward_sdt_deconv_mat(ratio, sh_order)

        # scale lambda_ to account for differences in the number of
        # SH coefficients and number of mapped directions
        self.lambda_ = lambda_ * self.R.shape[0] * self.R[0, 0] / self.B_reg.shape[0]
        self.tau = tau
        self.sh_order = sh_order
Exemplo n.º 45
0
def odf_deconv(odf_sh, sh_order, R, B_reg, lambda_=1., tau=0.1):
    r""" ODF constrained-regularized sherical deconvolution using
    the Sharpening Deconvolution Transform (SDT) [1]_, [2]_.

    Parameters
    ----------
    odf_sh : ndarray (``(sh_order + 1)*(sh_order + 2)/2``,)
         ndarray of SH coefficients for the ODF spherical function to be deconvolved
    sh_order : int
         maximal SH order of the SH representation
    R : ndarray (``(sh_order + 1)(sh_order + 2)/2``, ``(sh_order + 1)(sh_order + 2)/2``)
         SDT matrix in SH basis
    B_reg : ndarray (``(sh_order + 1)(sh_order + 2)/2``, ``(sh_order + 1)(sh_order + 2)/2``)
         SH basis matrix used for deconvolution
    lambda_ : float
         lambda parameter in minimization equation (default 1.0)
    tau : float
         threshold (tau *max(fODF)) controlling the amplitude below
         which the corresponding fODF is assumed to be zero.

    Returns
    -------
    fodf_sh : ndarray (``(sh_order + 1)(sh_order + 2)/2``,)
         Spherical harmonics coefficients of the constrained-regularized fiber ODF
    num_it : int
         Number of iterations in the constrained-regularization used for convergence

    References
    ----------
    .. [1] Descoteaux, M., et al. IEEE TMI 2009. Deterministic and Probabilistic Tractography Based
           on Complex Fibre Orientation Distributions
    .. [2] Descoteaux, M, PhD thesis, INRIA Sophia-Antipolis, 2008.
    """
    m, n = sph_harm_ind_list(sh_order)

    # Generate initial fODF estimate, which is the ODF truncated at SH order 4
    fodf_sh = np.linalg.lstsq(R, odf_sh)[0]
    fodf_sh[15:] = 0

    fodf = np.dot(B_reg, fodf_sh)

    Z = np.linalg.norm(fodf)
    fodf_sh /= Z

    fodf = np.dot(B_reg, fodf_sh)
    threshold = tau * np.max(np.dot(B_reg, fodf_sh))
    #print(np.min(fodf), np.max(fodf), np.mean(fodf), threshold, tau)

    k = []
    convergence = 50
    for num_it in range(1, convergence + 1):
        A = np.dot(B_reg, fodf_sh)
        k2 = np.nonzero(A < threshold)[0]

        if (k2.shape[0] + R.shape[0]) < B_reg.shape[1]:
            warnings.warn(
                'too few negative directions identified - failed to converge')
            return fodf_sh, num_it

        if num_it > 1 and k.shape[0] == k2.shape[0]:
            if (k == k2).all():
                return fodf_sh, num_it

        k = k2
        M = np.concatenate((R, lambda_ * B_reg[k, :]))
        ODF = np.concatenate((odf_sh, np.zeros(k.shape)))
        fodf_sh = np.linalg.lstsq(M, ODF)[0]

    warnings.warn('maximum number of iterations exceeded - failed to converge')
    return fodf_sh, num_it
Exemplo n.º 46
0
    def __init__(self, gtab, response, reg_sphere=None, sh_order=8, lambda_=1, tau=0.1):
        r""" Constrained Spherical Deconvolution (CSD) [1]_.

        Spherical deconvolution computes a fiber orientation distribution (FOD), also
        called fiber ODF (fODF) [2]_, as opposed to a diffusion ODF as the QballModel
        or the CsaOdfModel. This results in a sharper angular profile with better
        angular resolution that is the best object to be used for later deterministic
        and probabilistic tractography [3]_.

        A sharp fODF is obtained because a single fiber *response* function is injected
        as *a priori* knowledge. The response function is often data-driven and thus,
        comes as input to the ConstrainedSphericalDeconvModel. It will be used as deconvolution
        kernel, as described in [1]_.
    
        Parameters
        ----------
        gtab : GradientTable
        response : tuple or callable
            If tuple, then it should have two elements. The first is the eigen-values as an (3,) ndarray
            and the second is the signal value for the response function without diffusion weighting.
            This is to be able to generate a single fiber synthetic signal. If callable then the function
            should return an ndarray with the all the signal values for the response function. The response
            function will be used as deconvolution kernel ([1]_)
        reg_sphere : Sphere
            sphere used to build the regularization B matrix
        sh_order : int
            maximal spherical harmonics order
        lambda_ : float
            weight given to the constrained-positivity regularization part of the
            deconvolution equation (see [1]_)
        tau : float
            threshold controlling the amplitude below which the corresponding fODF is assumed to be zero.
            Ideally, tau should be set to zero. However, to improve the stability of the algorithm, tau
            is set to tau*100 % of the mean fODF amplitude (here, 10% by default) (see [1]_)

        References
        ----------
        .. [1] Tournier, J.D., et al. NeuroImage 2007. Robust determination of the fibre orientation
               distribution in diffusion MRI: Non-negativity constrained super-resolved spherical
               deconvolution
        .. [2] Descoteaux, M., et al. IEEE TMI 2009. Deterministic and Probabilistic Tractography Based
               on Complex Fibre Orientation Distributions
        .. [3] C\^ot\'e, M-A., et al. Medical Image Analysis 2013. Tractometer: Towards validation
               of tractography pipelines
        .. [4] Tournier, J.D, et al. Imaging Systems and Technology 2012. MRtrix: Diffusion
               Tractography in Crossing Fiber Regions
        """

        m, n = sph_harm_ind_list(sh_order)
        self.m, self.n = m, n
        self._where_b0s = lazy_index(gtab.b0s_mask)
        self._where_dwi = lazy_index(~gtab.b0s_mask)

        no_params = ((sh_order + 1) * (sh_order + 2)) / 2

        if no_params > np.sum(gtab.b0s_mask == False):
            msg = "Number of parameters required for the fit are more "
            msg += "than the actual data points"
            warnings.warn(msg, UserWarning)

        x, y, z = gtab.gradients[self._where_dwi].T
        r, theta, phi = cart2sphere(x, y, z)
        # for the gradient sphere
        self.B_dwi = real_sph_harm(m, n, theta[:, None], phi[:, None])

        # for the sphere used in the regularization positivity constraint
        if reg_sphere is None:
            self.sphere = get_sphere('symmetric362')
        else:
            self.sphere = reg_sphere

        r, theta, phi = cart2sphere(self.sphere.x, self.sphere.y, self.sphere.z)
        self.B_reg = real_sph_harm(m, n, theta[:, None], phi[:, None])

        if callable(response):
            S_r = response
        else:
            if response is None:
                S_r = estimate_response(gtab, np.array([0.0015, 0.0003, 0.0003]), 1)
            else:
                S_r = estimate_response(gtab, response[0], response[1])

        r_sh = np.linalg.lstsq(self.B_dwi, S_r[self._where_dwi])[0]
        r_rh = sh_to_rh(r_sh, sh_order)

        self.R = forward_sdeconv_mat(r_rh, sh_order)

        # scale lambda_ to account for differences in the number of
        # SH coefficients and number of mapped directions
        # This is exactly what is done in [4]_ 
        self.lambda_ = lambda_ * self.R.shape[0] * r_rh[0] / self.B_reg.shape[0]
        self.sh_order = sh_order
        self.tau = tau
Exemplo n.º 47
0
def odf_deconv(odf_sh, sh_order, R, B_reg, lambda_=1., tau=0.1):
    r""" ODF constrained-regularized sherical deconvolution using
    the Sharpening Deconvolution Transform (SDT) [1]_, [2]_.

    Parameters
    ----------
    odf_sh : ndarray (``(sh_order + 1)*(sh_order + 2)/2``,)
         ndarray of SH coefficients for the ODF spherical function to be deconvolved
    sh_order : int
         maximal SH order of the SH representation
    R : ndarray (``(sh_order + 1)(sh_order + 2)/2``, ``(sh_order + 1)(sh_order + 2)/2``)
         SDT matrix in SH basis
    B_reg : ndarray (``(sh_order + 1)(sh_order + 2)/2``, ``(sh_order + 1)(sh_order + 2)/2``)
         SH basis matrix used for deconvolution
    lambda_ : float
         lambda parameter in minimization equation (default 1.0)
    tau : float
         threshold (tau *max(fODF)) controlling the amplitude below
         which the corresponding fODF is assumed to be zero.

    Returns
    -------
    fodf_sh : ndarray (``(sh_order + 1)(sh_order + 2)/2``,)
         Spherical harmonics coefficients of the constrained-regularized fiber ODF
    num_it : int
         Number of iterations in the constrained-regularization used for convergence

    References
    ----------
    .. [1] Descoteaux, M., et al. IEEE TMI 2009. Deterministic and Probabilistic Tractography Based
           on Complex Fibre Orientation Distributions
    .. [2] Descoteaux, M, PhD thesis, INRIA Sophia-Antipolis, 2008.
    """
    m, n = sph_harm_ind_list(sh_order)

    # Generate initial fODF estimate, which is the ODF truncated at SH order 4
    fodf_sh = np.linalg.lstsq(R, odf_sh)[0]
    fodf_sh[15:] = 0

    fodf = np.dot(B_reg, fodf_sh)

    Z = np.linalg.norm(fodf)
    fodf_sh /= Z

    fodf = np.dot(B_reg, fodf_sh)
    threshold = tau * np.max(np.dot(B_reg, fodf_sh))
    #print(np.min(fodf), np.max(fodf), np.mean(fodf), threshold, tau)

    k = []
    convergence = 50
    for num_it in range(1, convergence + 1):
        A = np.dot(B_reg, fodf_sh)
        k2 = np.nonzero(A < threshold)[0]

        if (k2.shape[0] + R.shape[0]) < B_reg.shape[1]:
            warnings.warn('too few negative directions identified - failed to converge')
            return fodf_sh, num_it

        if num_it > 1 and k.shape[0] == k2.shape[0]:
            if (k == k2).all():
                return fodf_sh, num_it

        k = k2
        M = np.concatenate((R, lambda_ * B_reg[k, :]))
        ODF = np.concatenate((odf_sh, np.zeros(k.shape)))
        fodf_sh = np.linalg.lstsq(M, ODF)[0]  

    warnings.warn('maximum number of iterations exceeded - failed to converge')
    return fodf_sh, num_it
Exemplo n.º 48
0
def odf_sh_to_sharp(odfs_sh,
                    sphere,
                    basis=None,
                    ratio=3 / 15.,
                    sh_order=8,
                    lambda_=1.,
                    tau=0.1):
    r""" Sharpen odfs using the spherical deconvolution transform [1]_

    This function can be used to sharpen any smooth ODF spherical function. In theory, this should
    only be used to sharpen QballModel ODFs, but in practice, one can play with the deconvolution
    ratio and sharpen almost any ODF-like spherical function. The constrained-regularization is stable
    and will not only sharp the ODF peaks but also regularize the noisy peaks.

    Parameters
    ---------- 
    odfs_sh : ndarray (``(sh_order + 1)*(sh_order + 2)/2``, )
        array of odfs expressed as spherical harmonics coefficients
    sphere : Sphere
        sphere used to build the regularization matrix    
    basis : {None, 'mrtrix', 'fibernav'}
        different spherical harmonic basis. None is the fibernav basis as well.
    ratio : float, 
        ratio of the smallest vs the largest eigenvalue of the single prolate tensor response function
        (:math:`\frac{\lambda_2}{\lambda_1}`)
    sh_order : int
        maximal SH order of the SH representation
    lambda_ : float
        lambda parameter (see odfdeconv) (default 1.0)
    tau : float
        tau parameter in the L matrix construction (see odfdeconv) (default 0.1)

    Returns
    -------
    fodf_sh : ndarray
        sharpened odf expressed as spherical harmonics coefficients

    References
    ----------
    .. [1] Descoteaux, M., et al. IEEE TMI 2009. Deterministic and Probabilistic Tractography Based
           on Complex Fibre Orientation Distributions
    """
    m, n = sph_harm_ind_list(sh_order)
    r, theta, phi = cart2sphere(sphere.x, sphere.y, sphere.z)

    real_sym_sh = sph_harm_lookup[basis]

    B_reg, m, n = real_sym_sh(sh_order, theta[:, None], phi[:, None])

    R, P = forward_sdt_deconv_mat(ratio, sh_order)

    # scale lambda to account for differences in the number of
    # SH coefficients and number of mapped directions
    lambda_ = lambda_ * R.shape[0] * R[0, 0] / B_reg.shape[0]

    fodf_sh = np.zeros(odfs_sh.shape)

    for index in ndindex(odfs_sh.shape[:-1]):

        fodf_sh[index], num_it = odf_deconv(odfs_sh[index],
                                            sh_order,
                                            R,
                                            B_reg,
                                            lambda_=lambda_,
                                            tau=tau)

    return fodf_sh