Exemplo n.º 1
0
def test_feature_resample():
    from dipy.tracking.streamline import set_number_of_points

    # Test subclassing Feature
    class ResampleFeature(dipymetric.Feature):
        def __init__(self, nb_points):
            super(ResampleFeature, self).__init__(is_order_invariant=False)
            self.nb_points = nb_points
            if nb_points <= 0:
                raise ValueError(
                    "ResampleFeature: `nb_points` must be strictly positive: {0}"
                    .format(nb_points))

        def infer_shape(self, streamline):
            return (self.nb_points, streamline.shape[1])

        def extract(self, streamline):
            return set_number_of_points(streamline, self.nb_points)

    assert_raises(ValueError, dipymetric.ResampleFeature, nb_points=0)
    assert_raises(ValueError, ResampleFeature, nb_points=0)

    max_points = max(map(len, [s1, s2, s3, s4]))
    for nb_points in [1, 5, 2 * max_points]:
        for feature in [
                dipymetric.ResampleFeature(nb_points),
                ResampleFeature(nb_points)
        ]:
            for s in [s1, s2, s3, s4]:
                # Test method infer_shape
                assert_equal(feature.infer_shape(s), (nb_points, s.shape[1]))

                # Test method extract
                features = feature.extract(s)
                assert_equal(features.shape, (nb_points, s.shape[1]))
                assert_array_almost_equal(features,
                                          set_number_of_points(s, nb_points))

            # This feature type is not order invariant
            assert_false(feature.is_order_invariant)
            for s in [s1, s2, s3, s4]:
                features = feature.extract(s)
                features_flip = feature.extract(s[::-1])
                assert_array_equal(features_flip,
                                   set_number_of_points(s[::-1], nb_points))
                assert_true(np.any(np.not_equal(features, features_flip)))
Exemplo n.º 2
0
def test_quickbundles_shape_uncompatibility():
    # QuickBundles' old default metric (AveragePointwiseEuclideanMetric,
    #  aka MDF) requires that all streamlines have the same number of points.
    metric = dipymetric.AveragePointwiseEuclideanMetric()
    qb = QuickBundles(threshold=20., metric=metric)
    assert_raises(ValueError, qb.cluster, data)

    # QuickBundles' new default metric (AveragePointwiseEuclideanMetric,
    # aka MDF combined with ResampleFeature) will automatically resample
    # streamlines so they all have 18 points.
    qb = QuickBundles(threshold=20.)
    clusters1 = qb.cluster(data)

    feature = dipymetric.ResampleFeature(nb_points=18)
    metric = dipymetric.AveragePointwiseEuclideanMetric(feature)
    qb = QuickBundles(threshold=20., metric=metric)
    clusters2 = qb.cluster(data)

    assert_array_equal(list(itertools.chain(*clusters1)),
                       list(itertools.chain(*clusters2)))