Exemplo n.º 1
0
def show_tract(segmented_tract, color):
    ren = fvtk.ren()
    fvtk.add(
        ren,
        fvtk.line(segmented_tract.tolist(),
                  colors=color,
                  linewidth=2,
                  opacity=0.3))
    fvtk.show(ren)
    fvtk.clear(ren)
def show_tract(segmented_tract, color):
    """Visualization of the segmented tract.
    """
    ren = fvtk.ren()
    fvtk.add(ren, fvtk.line(segmented_tract.tolist(),
                            colors=color,
                            linewidth=2,
                            opacity=0.3))
    fvtk.show(ren)
    fvtk.clear(ren)
Exemplo n.º 3
0
def test_fvtk_functions():
    # This tests will fail if any of the given actors changed inputs or do
    # not exist

    # Create a renderer
    r = fvtk.ren()

    # Create 2 lines with 2 different colors
    lines = [np.random.rand(10, 3), np.random.rand(20, 3)]
    colors = np.random.rand(2, 3)
    c = fvtk.line(lines, colors)
    fvtk.add(r, c)

    # create streamtubes of the same lines and shift them a bit
    c2 = fvtk.streamtube(lines, colors)
    c2.SetPosition(2, 0, 0)
    fvtk.add(r, c2)

    # Create a volume and return a volumetric actor using volumetric rendering
    vol = 100 * np.random.rand(100, 100, 100)
    vol = vol.astype('uint8')
    r = fvtk.ren()
    v = fvtk.volume(vol)
    fvtk.add(r, v)

    # Remove all objects
    fvtk.rm_all(r)

    # Put some text
    l = fvtk.label(r, text='Yes Men')
    fvtk.add(r, l)

    # Slice the volume
    slicer = fvtk.slicer(vol)
    slicer.display(50, None, None)
    fvtk.add(r, slicer)

    # Change the position of the active camera
    fvtk.camera(r, pos=(0.6, 0, 0), verbose=False)

    fvtk.clear(r)

    # Peak directions
    p = fvtk.peaks(np.random.rand(3, 3, 3, 5, 3))
    fvtk.add(r, p)

    p2 = fvtk.peaks(np.random.rand(3, 3, 3, 5, 3),
                    np.random.rand(3, 3, 3, 5),
                    colors=(0, 1, 0))
    fvtk.add(r, p2)
Exemplo n.º 4
0
def show_odfs(fpng, odf_sh, invB, sphere):
    ren = fvtk.ren()
    ren.SetBackground(1, 1, 1.0)
    odf = np.dot(odf_sh, invB)
    print(odf.shape)
    odf = odf[14:24, 22, 23:33]
    # odf = odf[:, 22, :]
    # odf = odf[:, 0, :]
    sfu = fvtk.sphere_funcs(odf[:, None, :], sphere, norm=True)
    sfu.RotateX(-90)
    fvtk.add(ren, sfu)
    fvtk.show(ren)
    fvtk.record(ren, n_frames=1, out_path=fpng, size=(900, 900))
    fvtk.clear(ren)
Exemplo n.º 5
0
def test_fvtk_functions():
    # This tests will fail if any of the given actors changed inputs or do
    # not exist

    # Create a renderer
    r = fvtk.ren()

    # Create 2 lines with 2 different colors
    lines = [np.random.rand(10, 3), np.random.rand(20, 3)]
    colors = np.random.rand(2, 3)
    c = fvtk.line(lines, colors)
    fvtk.add(r, c)

    # create streamtubes of the same lines and shift them a bit
    c2 = fvtk.streamtube(lines, colors)
    c2.SetPosition(2, 0, 0)
    fvtk.add(r, c2)

    # Create a volume and return a volumetric actor using volumetric rendering
    vol = 100 * np.random.rand(100, 100, 100)
    vol = vol.astype('uint8')
    r = fvtk.ren()
    v = fvtk.volume(vol)
    fvtk.add(r, v)

    # Remove all objects
    fvtk.rm_all(r)

    # Put some text
    l = fvtk.label(r, text='Yes Men')
    fvtk.add(r, l)

    # Slice the volume
    slicer = fvtk.slicer(vol)
    slicer.display(50, None, None)
    fvtk.add(r, slicer)

    # Change the position of the active camera
    fvtk.camera(r, pos=(0.6, 0, 0), verbose=False)

    fvtk.clear(r)

    # Peak directions
    p = fvtk.peaks(np.random.rand(3, 3, 3, 5, 3))
    fvtk.add(r, p)

    p2 = fvtk.peaks(np.random.rand(3, 3, 3, 5, 3),
                    np.random.rand(3, 3, 3, 5),
                    colors=(0, 1, 0))
    fvtk.add(r, p2)
def show_tracts(estimated_target_tract, target_tract):
    """Visualization of the tracts.
	"""
    ren = fvtk.ren()
    fvtk.add(
        ren,
        fvtk.line(estimated_target_tract,
                  fvtk.colors.green,
                  linewidth=1,
                  opacity=0.3))
    fvtk.add(
        ren,
        fvtk.line(target_tract, fvtk.colors.white, linewidth=2, opacity=0.3))
    fvtk.show(ren)
    fvtk.clear(ren)
def show_tract(segmented_tract_positive, color_positive, color_negative,
               segmented_tract_negative):
    """Visualization of the segmented tract.
   """
    ren = fvtk.ren()
    fvtk.add(
        ren,
        fvtk.line(segmented_tract_positive.tolist(),
                  colors=color_positive,
                  linewidth=2,
                  opacity=0.3))
    #   fvtk.add(ren, fvtk.line(segmented_tract_negative.tolist(),
    #                           colors=color_negative,
    #                           linewidth=2,
    #                           opacity=0.3))
    fvtk.show(ren)
    fvtk.clear(ren)
Exemplo n.º 8
0
def renderCentroids(streamlines, clusters):
    from dipy.viz import fvtk
    import numpy as np
    
    ren = fvtk.ren()
    ren.SetBackground(0, 0, 0)
    colormap = fvtk.create_colormap(np.arange(len(clusters)))

    colormap_full = np.ones((len(streamlines), 3))
    for cluster in clusters:
        colormap_full[cluster.indices] = np.random.rand(3)

    #fvtk.add(ren, fvtk.streamtube(streamlines, fvtk.colors.white, opacity=0.05))
    fvtk.add(ren, fvtk.line(clusters.centroids, linewidth=0.4, opacity=1))
    #fvtk.record(ren, n_frames=1, out_path='fornix_centroids.png', size=(600, 600))
    fvtk.show(ren)
    fvtk.clear(ren)
Exemplo n.º 9
0
def renderBundles(streamlines, clusters):
    from dipy.viz import fvtk
    import numpy as np
    
    ren = fvtk.ren()
    ren.SetBackground(0, 0, 0)

    colormap = fvtk.create_colormap(np.arange(len(clusters)))

    colormap_full = np.ones((len(streamlines), 3))
    for cluster in clusters:
        colormap_full[cluster.indices] = np.random.rand(3)

    fvtk.add(ren, fvtk.line(streamlines, colormap_full))
    #fvtk.record(ren, n_frames=1, out_path='fornix_clusters.png', size=(600, 600))
    fvtk.show(ren)
    fvtk.clear(ren)
Exemplo n.º 10
0
def renderCentroids(clusters):
    from dipy.viz import fvtk
    import numpy as np

    ren = fvtk.ren()
    ren.SetBackground(0, 0, 0)
    colormap = fvtk.create_colormap(np.arange(len(clusters)))

    colormap_full = np.ones((len(streamlines), 3))
    for cluster in clusters:
        colormap_full[cluster.indices] = np.random.rand(3)

    #fvtk.add(ren, fvtk.streamtube(streamlines, fvtk.colors.white, opacity=0.05))
    fvtk.add(ren, fvtk.line(clusters.centroids, linewidth=0.4, opacity=1))
    #fvtk.record(ren, n_frames=1, out_path='fornix_centroids.png', size=(600, 600))
    fvtk.show(ren)
    fvtk.clear(ren)
Exemplo n.º 11
0
def renderBundles(clusters):
    from dipy.viz import fvtk
    import numpy as np

    ren = fvtk.ren()
    ren.SetBackground(0, 0, 0)

    colormap = fvtk.create_colormap(np.arange(len(clusters)))

    colormap_full = np.ones((len(streamlines), 3))
    for cluster in clusters:
        colormap_full[cluster.indices] = np.random.rand(3)

    fvtk.add(ren, fvtk.line(streamlines, colormap_full))
    #fvtk.record(ren, n_frames=1, out_path='fornix_clusters.png', size=(600, 600))
    fvtk.show(ren)
    fvtk.clear(ren)
Exemplo n.º 12
0
def show_peak_directions(fpng, peaks, scale=0.3, x=10, y=0, z=10):
    r = fvtk.ren()

    for index in ndindex(peaks.shape[:-1]):
        peak = peaks[index]
        directions = peak.reshape(peak.shape[0] / 3, 3)

        # pos = np.array(index)
        for i in xrange(directions.shape[0]):
            if norm(directions[i]) != 0:
                line_actor = fvtk.line(
                    index + scale * np.vstack((-directions[i], directions[i])), abs(directions[i] / norm(directions[i]))
                )
                line_actor.RotateX(-90)
                fvtk.add(r, line_actor)

    fvtk.show(r)
    fvtk.record(r, out_path=fpng, size=(900, 900))
    fvtk.clear(r)
Exemplo n.º 13
0
def show(T,A,IND,VERTS,scale):
    
    r=fvtk.ren()
    fvtk.clear(r)
    fvtk.add(r,fvtk.line(T,fvtk.red))
    fvtk.show(r)
    
    Td=[downsample(t,20) for t in T]
    C=local_skeleton_clustering(Td,3)
    fvtk.clear(r)
    lent=float(len(T))
    
    for c in C:
        color=np.random.rand(3)
        virtual=C[c]['hidden']/float(C[c]['N'])
        if length(virtual)> virtual_thr: 
            linewidth=100*len(C[c]['indices'])/lent
            if linewidth<1.:
                linewidth=1
            #fvtk.add(r,fvtk.line(virtual,color,linewidth=linewidth))
            #fvtk.add(r,fvtk.label(r,str(len(C[c]['indices'])),pos=virtual[0],scale=3,color=color ))
        #print C[c]['hidden'].shape
    
    print A.shape
    print IND.shape
    print VERTS.shape
    
    all,allo=fvtk.crossing(A,IND,VERTS,scale,True)
    colors=np.zeros((len(all),3))
    for (i,a) in enumerate(all):
        if allo[i][0]==0 and allo[i][1]==0 and allo[i][2]==1:
            pass
        else:            
            colors[i]=cm.boys2rgb(allo[i])
    
    fvtk.add(r,fvtk.line(all,colors))    
    fvtk.show(r)
Exemplo n.º 14
0
   **CSD ODFs**.

In Dipy we also provide tools for finding the peak directions (maxima) of the
ODFs. For this purpose we recommend using ``peaks_from_model``.
"""

from dipy.direction import peaks_from_model

csd_peaks = peaks_from_model(model=csd_model,
                             data=data_small,
                             sphere=sphere,
                             relative_peak_threshold=.5,
                             min_separation_angle=25,
                             parallel=True)

fvtk.clear(ren)
fodf_peaks = fvtk.peaks(csd_peaks.peak_dirs, csd_peaks.peak_values, scale=1.3)
fvtk.add(ren, fodf_peaks)

print('Saving illustration as csd_peaks.png')
fvtk.record(ren, out_path='csd_peaks.png', size=(600, 600))

"""
.. figure:: csd_peaks.png
   :align: center

   **CSD Peaks**.

We can finally visualize both the ODFs and peaks in the same space.
"""
Exemplo n.º 15
0
all_streamlines_threshold_classifier = LocalTracking(dg,
                                                     threshold_classifier,
                                                     seeds,
                                                     affine,
                                                     step_size=.5,
                                                     return_all=True)

save_trk("deterministic_threshold_classifier_all.trk",
         all_streamlines_threshold_classifier,
         affine,
         labels.shape)

streamlines = [sl for sl in all_streamlines_threshold_classifier]

fvtk.clear(ren)
fvtk.add(ren, fvtk.line(streamlines, line_colors(streamlines)))
fvtk.record(ren, out_path='all_streamlines_threshold_classifier.png',
            size=(600, 600))

"""
.. figure:: all_streamlines_threshold_classifier.png
 :align: center

 **Deterministic tractography using a thresholded fractional anisotropy.**
"""


"""
Binary Tissue Classifier
------------------------
Exemplo n.º 16
0
   **Deterministic streamlines with EuDX on ODF peaks field modulated by GFA**.

It is also possible to use EuDX with multiple ODF peaks, which is very helpful when
tracking in crossing areas.
"""

eu = EuDX(csapeaks.peak_values,
          csapeaks.peak_indices,
          seeds=10000,
          odf_vertices=sphere.vertices,
          ang_thr=20.,
          a_low=0.6)

csa_streamlines_mult_peaks = [streamline for streamline in eu]

fvtk.clear(r)

fvtk.add(
    r,
    fvtk.line(csa_streamlines_mult_peaks,
              line_colors(csa_streamlines_mult_peaks)))

print('Saving illustration as csa_tracking_mpeaks.png')

fvtk.record(r, n_frames=1, out_path='csa_tracking_mpeaks.png', size=(600, 600))
"""
.. figure:: csa_tracking_mpeaks.png
   :align: center

   **Deterministic streamlines with EuDX on multiple ODF peaks**.
Exemplo n.º 17
0
fvtk.add(r,fvtk.line(T,fvtk.white,opacity=1))
#fvtk.show(r)
fvtk.record(r,n_frames=1,out_path='fornix_initial',size=(600,600))

"""
.. figure:: fornix_initial1000000.png
   :align: center

   **Initial Fornix dataset**.
"""

"""
Show the *Fornix* after clustering (with random bundle colors):
"""

fvtk.clear(r)
colors=np.zeros((len(T),3))
for c in C:
    color=np.random.rand(1,3)
    for i in C[c]['indices']:
        colors[i]=color
fvtk.add(r,fvtk.line(T,colors,opacity=1))
#fvtk.show(r)
fvtk.record(r,n_frames=1,out_path='fornix_clust',size=(600,600))

"""
.. figure:: fornix_clust1000000.png
   :align: center

   **Showing the different clusters with random colors**.