Exemplo n.º 1
0
 def test_group_dots_ver_lines(self):
     dot_dist = prep.calc_size_distance(self.mat_dots, ratio=0.9)[1]
     ver_slope = prep.calc_ver_slope(self.mat_dots, ratio=1.0)
     list_lines = prep.group_dots_ver_lines(self.mat_dots, ver_slope,
                                            dot_dist, ratio=0.1,
                                            num_dot_miss=3,
                                            accepted_ratio=0.9)
     num = np.sum(np.asarray([len(line) for line in list_lines]))
     self.assertTrue(num == self.num_dots)
Exemplo n.º 2
0
def calc_distor_coef(mat, num_coef, perspective=False):
    # Pre-processing
    mat1 = prep.binarization(mat)
    (dot_size, dot_dist) = prep.calc_size_distance(mat1)
    mat1 = prep.select_dots_based_size(mat1, dot_size)
    mat1 = prep.select_dots_based_ratio(mat1)
    hor_slope = prep.calc_hor_slope(mat1)
    ver_slope = prep.calc_ver_slope(mat1)
    list_hor_lines = prep.group_dots_hor_lines(mat1, hor_slope, dot_dist)
    list_ver_lines = prep.group_dots_ver_lines(mat1, ver_slope, dot_dist)
    list_hor_lines = prep.remove_residual_dots_hor(list_hor_lines, hor_slope)
    list_ver_lines = prep.remove_residual_dots_ver(list_ver_lines, ver_slope)
    if perspective is True:
        try:
            list_hor_lines, list_ver_lines = proc.regenerate_grid_points_parabola(
                list_hor_lines, list_ver_lines, perspective=perspective)
        except AttributeError:
            raise ValueError("Perspective correction only available "
                             "from Discorpy 1.4!!!")
    # Processing
    (xcenter, ycenter) = proc.find_cod_coarse(list_hor_lines, list_ver_lines)
    list_fact = proc.calc_coef_backward(list_hor_lines, list_ver_lines,
                                        xcenter, ycenter, num_coef)
    return xcenter, ycenter, list_fact
Exemplo n.º 3
0
output_base = "./output_demo_01/"
num_coef = 5  # Number of polynomial coefficients
mat0 = io.load_image(file_path) # Load image
(height, width) = mat0.shape
# Segment dots
mat1 = prep.binarization(mat0)
# Calculate the median dot size and distance between them.
(dot_size, dot_dist) = prep.calc_size_distance(mat1)
# Remove non-dot objects
mat1 = prep.select_dots_based_size(mat1, dot_size)
# Remove non-elliptical objects
mat1 = prep.select_dots_based_ratio(mat1)
io.save_image(output_base + "/segmented_dots.jpg", mat1)
# Calculate the slopes of horizontal lines and vertical lines.
hor_slope = prep.calc_hor_slope(mat1)
ver_slope = prep.calc_ver_slope(mat1)
print("Horizontal slope: {0}. Vertical slope: {1}".format(hor_slope, ver_slope))

# Group points to horizontal lines
list_hor_lines = prep.group_dots_hor_lines(mat1, hor_slope, dot_dist)
# Group points to vertical lines
list_ver_lines = prep.group_dots_ver_lines(mat1, ver_slope, dot_dist)
# Optional: remove horizontal outliners
list_hor_lines = prep.remove_residual_dots_hor(list_hor_lines, hor_slope)
# Optional: remove vertical outliners
list_ver_lines = prep.remove_residual_dots_ver(list_ver_lines, ver_slope)
# Save output for checking
io.save_plot_image(output_base + "/horizontal_lines.png", list_hor_lines,
                   height, width)
io.save_plot_image(output_base + "/vertical_lines.png", list_ver_lines,
                   height, width)
Exemplo n.º 4
0
    dot_size, dot_dist))

# Select dots with size in the range of [dot_size - dot_size*ratio; dot_size +
# dot_size*ratio]
mat1 = prep.select_dots_based_size(mat1, dot_size, ratio=0.3)
io.save_image(output_base + "/cleaned_1_image.tif", mat1)

# Select dots with the ratio between the major axis and the minor axis (of a
# fitted ellipse) in the range of (1; 1 + ratio).
mat1 = prep.select_dots_based_ratio(mat1, ratio=0.5)
io.save_image(output_base + "/cleaned_2_image.tif", mat1)

# Calculate the horizontal slope and the vertical slope of the grid using the
# middle part of the image (30%).
hor_slope = prep.calc_hor_slope(mat1, ratio=0.3)
ver_slope = prep.calc_ver_slope(mat1, ratio=0.3)
print("Horizontal slope: {0}\nVertical slope: {1}".format(
    hor_slope, ver_slope))

# Group dots into lines. The method searches nearby dots and decide if they
# belong to the same line or not. The search-range in x-direction is
# defined by num_dot_miss and the search-range in y-direction is defined
# by the slope and the acceptable variation. Only lines with the number of
# dots >= 70% of the maximum number of dots on a line are kept.

list_hor_lines = prep.group_dots_hor_lines(mat1,
                                           hor_slope,
                                           dot_dist,
                                           ratio=0.3,
                                           num_dot_miss=6,
                                           accepted_ratio=0.7)
Exemplo n.º 5
0
 def test_calc_ver_slope(self):
     mat_rot = np.int16(
         np.ceil(ndi.rotate(self.mat_dots, -3.0, reshape=False, order=1)))
     ver_slope = prep.calc_ver_slope(mat_rot, ratio=1.0)
     angle = np.rad2deg(np.arctan(ver_slope))
     self.assertTrue(np.abs(angle + 3.0) <= 0.2)