Exemplo n.º 1
0
def makeSim(hallwayColors,
            legalInputs,
            obsNoise,
            dynamics,
            transNoise,
            title='sim',
            initialDist=None):
    """
    Make an instance of the simulator with noisy motion and sensing models.
    @param hallwayColors: A list of the colors of the rooms in the
    hallway, from left to right.
    @param legalInputs: A list of the possible action commands
    @param obsNoise: conditional distribution specifying the
    probability of observing a color given the actual color of the room
    @param dynamics: function that takes the robot's current location,
    action, and hallwaylength, and returns its nominal new location
    @param transNoise: P(actualResultingLocation | nominalResultingLoc)
    represented as a function from ideal location to the actual
    location the robot will end up in
    @param title: String specifying title for simulator window
    """
    n = len(hallwayColors)
    if not initialDist:
        initialDist = dist.UniformDist(range(n))
    worldSM = ssm.StochasticSM(initialDist,
                               makeTransitionModel(dynamics, transNoise, n),
                               makeObservationModel(hallwayColors, obsNoise))
    return makeSESwithGUI(worldSM,
                          hallwayColors,
                          legalInputs,
                          verbose=True,
                          title=title,
                          initBelief=initialDist)
Exemplo n.º 2
0
 def transitionGivenState(s):
     # A uniform distribution we mix in to handle teleportation
     transUniform = dist.UniformDist(range(numStates))
     return dist.MixtureDist(dist.triangleDist(\
                                 util.clip(s+a, 0, numStates-1),
                                 transDiscTriangleWidth,
                                 0, numStates-1),
                      transUniform, 1 - teleportProb)
Exemplo n.º 3
0
def hallSE(hallwayColors,
           legalInputs,
           obsNoise,
           dynamics,
           transNoise,
           initialDist=None,
           verbose=True):
    n = len(hallwayColors)
    if not initialDist:
        initialDist = dist.UniformDist(range(n))
    worldSM = ssm.StochasticSM(initialDist,
                               makeTransitionModel(dynamics, transNoise, n),
                               makeObservationModel(hallwayColors, obsNoise))
    return se.StateEstimator(worldSM, verbose)
Exemplo n.º 4
0
def wrapWindowUI(m,
                 worldColors,
                 legalInputs,
                 windowName='Belief',
                 initBelief=None):
    """
    @param m: A machine created by applying
    C{se.makeStateEstimationSimulation} to a hallway world, which
    take movement commands as input and generates as output structures
    of the form C{(b, (o, a))}, where C{b} is a belief state, C{a} is
    the action command, and C{o} is the observable output generated by
    the world.
    @param worldColors: A list of the colors of the rooms in the
    hallway, from left to right.
    @returns: A composite machine that prompts the user for input to, and
    graphically displays the output of C{m} on each step.
    """
    def drawWorld(size):
        y = 0
        for x in range(size):
            window.drawRect((x, y), (x + 1, y + 1), color=worldColors[x])

    def processOutput(stuff):
        (dist, (o, a)) = stuff
        drawWorld(dim)
        drawBelief(dist, window, dim)
        return (o, a)

    def processInput(stuff):
        if stuff == 'quit':
            print 'Taking action 0 before quitting'
            return 0
        else:
            return int(stuff)

    dim = len(worldColors)
    if not initBelief:
        initBelief = dist.UniformDist(range(dim))
    ydim = 1
    window = DrawingWindow(dim * 50, ydim * 50 + 10, -0.2, dim + 0.2, -0.2,
                           ydim + 0.2, windowName)
    drawWorld(dim)
    drawBelief(initBelief, window, dim)
    return sm.Cascade(
        sm.Cascade(
            sm.Cascade(TextInputSM(legalInputs),
                       sm.PureFunction(processInput)), m),
        sm.PureFunction(processOutput))
Exemplo n.º 5
0
def makeRobotNavModel(ideal, xMin, xMax, numStates, numObservations):

    #!    startDistribution = None    # redefine this
    """
    Create a model of a robot navigating in a 1 dimensional world with
    a single sonar.

    @param ideal: list of ideal sonar readings
    @param xMin: minimum x coordinate for center of robot
    @param xMax: maximum x coordinate for center of robot
    @param numStates: number of discrete states into which to divide
    the range of x coordinates
    @param numObservations: number of discrete observations into which to
    divide the range of good sonar observations, between 0 and C{goodSonarRange}

    @returns: an instance of {\tt ssm.StochasticSM} that describes the
    dynamics of the world
    """
    # make initial distribution over states
    startDistribution = dist.UniformDist(range(numStates))

    ######################################################################
    ###  Define observation model
    ######################################################################
    # real width of triangle distribution, in meters
    # obsTriangleWidth = sonarStDev * 3
    obsTriangleWidth = .05
    obsDiscTriangleWidth = max(2,
                               int(obsTriangleWidth * \
                                   (numObservations / sonarDist.sonarMax)))

    # Part of distribution common to all observations
    obsBackground = dist.MixtureDist(dist.UniformDist(range(numObservations)),
                                     dist.DeltaDist(numObservations - 1), 0.5)

    #!

    def observationModel(ix):
        # ix is a discrete location of the robot
        # return a distribution over observations in that state
        #!        pass
        return dist.MixtureDist(
            dist.triangleDist(ideal[ix], obsDiscTriangleWidth, 0,
                              numObservations), obsBackground, 0.9)

    ######################################################################
    ###  Define transition model
    ######################################################################

    # real width of triangle distribution, in meters
    transTriangleWidth = odoStDev * 3
    transDiscTriangleWidth = max(
        2, int(transTriangleWidth * (numStates / (xMax - xMin))))
    transDiscTriangleWidth = 2
    teleportProb = 0

    #!

    def transitionModel(a):
        # a is a discrete action
        # returns a conditional probability distribution on the next state
        # given the previous state
        #!        pass
        def transitionGivenState(s):
            # A uniform distribution we mix in to handle teleportation
            transUniform = dist.UniformDist(range(numStates))
            return dist.MixtureDist(dist.triangleDist(\
                                        util.clip(s+a, 0, numStates-1),
                                        transDiscTriangleWidth,
                                        0, numStates-1),
                             transUniform, 1 - teleportProb)

        return transitionGivenState

    ######################################################################
    ###  Create and return SSM
    ######################################################################
#!

    return ssm.StochasticSM(startDistribution, transitionModel,
                            observationModel)