Exemplo n.º 1
0
    dists = distribution_structures(size=3, alphabet=2, uniform=False)
    example = find(dists, predicate)
    assert coinformation(example) <= -1 / 2


@pytest.mark.flaky(reruns=5)
def test_distribution_structures6():
    """
    A test for the distribution_structures strategy.
    """
    dists = distribution_structures(size=3, alphabet=2, uniform=True)
    example = find(dists, predicate)
    assert coinformation(example) <= -1 / 2


@given(dist=markov_chains(alphabets=3))
def test_markov_chains1(dist):
    """
    Test the markov_chains strategy.
    """
    assert coinformation(dist, [[0], [2]], [1]) == pytest.approx(0.0, abs=1e-7)


@given(dist=markov_chains(alphabets=(2, 2, 2)))
def test_markov_chains2(dist):
    """
    Test the markov_chains strategy.
    """
    assert coinformation(dist, [[0], [2]], [1]) == pytest.approx(0.0, abs=1e-7)

Exemplo n.º 2
0

@given(dist=distributions(alphabets=((2, 4), ) * 4))
def test_zhang_yeung_inequality(dist):
    """
    2I(C:D) <= I(A:B)+I(A:CD)+3I(C:D|A)+I(C:D|B)
    """
    I_a_b = I(dist, [[0], [1]])
    I_c_d = I(dist, [[2], [3]])
    I_a_cd = I(dist, [[0], [2, 3]])
    I_c_d_g_a = I(dist, [[2], [3]], [0])
    I_c_d_g_b = I(dist, [[2], [3]], [1])
    assert 2 * I_c_d <= I_a_b + I_a_cd + 3 * I_c_d_g_a + I_c_d_g_b + epsilon


@given(dist=markov_chains(alphabets=((2, 4), ) * 3))
def test_data_processing_inequality(dist):
    """
    given X - Y - Z:
        I(X:Z) <= I(X:Y)
    """
    i_xy = I(dist, [[0], [1]])
    i_xz = I(dist, [[0], [2]])
    assert i_xz <= i_xy + epsilon


@given(dist=markov_chains(alphabets=((2, 4), ) * 3))
def test_data_processing_inequality_mc(dist):
    """
    given X - Y - Z:
        rho(X:Z) <= rho(X:Y)
Exemplo n.º 3
0

@given(dist=distributions(alphabets=((2, 4),)*4))
def test_zhang_yeung_inequality(dist):
    """
    2I(C:D) <= I(A:B)+I(A:CD)+3I(C:D|A)+I(C:D|B)
    """
    I_a_b = I(dist, [[0], [1]])
    I_c_d = I(dist, [[2], [3]])
    I_a_cd = I(dist, [[0], [2, 3]])
    I_c_d_g_a = I(dist, [[2], [3]], [0])
    I_c_d_g_b = I(dist, [[2], [3]], [1])
    assert 2*I_c_d <= I_a_b + I_a_cd + 3*I_c_d_g_a + I_c_d_g_b + epsilon


@given(dist=markov_chains(alphabets=((2, 4),)*3))
def test_data_processing_inequality(dist):
    """
    given X - Y - Z:
        I(X:Z) <= I(X:Y)
    """
    i_xy = I(dist, [[0], [1]])
    i_xz = I(dist, [[0], [2]])
    assert i_xz <= i_xy + epsilon


@given(dist=markov_chains(alphabets=((2, 4),)*3))
def test_data_processing_inequality_mc(dist):
    """
    given X - Y - Z:
        rho(X:Z) <= rho(X:Y)
Exemplo n.º 4
0
def test_markov_chains1():
    """
    Test the markov_chains strategy.
    """
    dist = markov_chains(alphabets=3).example()
    assert coinformation(dist, [[0], [2]], [1]) == pytest.approx(0.0, abs=1e-7)
Exemplo n.º 5
0
def test_markov_chains1():
    """
    Test the markov_chains strategy.
    """
    dist = markov_chains(alphabets=3).example()
    assert coinformation(dist, [[0], [2]], [1]) == pytest.approx(0.0, abs=1e-7)