Exemplo n.º 1
0
def orog_dif_plot():
	'''Plot spatial differences between MetUM model output using default and updated orography and coastline files during
	foehn and non-foehn conditions. Thesis Figure 4.8. '''
	# Load necessary files
	old_orog = iris.load_cube('/data/clivarm/wip/ellgil82/new_ancils/km1p5/orog/orog_original.nc', 'OROGRAPHY (/STRAT LOWER BC)')[0,0,:,:]
	new_orog = iris.load_cube('/data/clivarm/wip/ellgil82/new_ancils/km1p5/orog/new_orog_smoothed.nc', 'Height')[0, 0,:, :]
	old_lsm = iris.load_cube('/data/clivarm/wip/ellgil82/new_ancils/km1p5/lsm/lsm_original.nc', 'LAND MASK (No halo) (LAND=TRUE)')[0, 0, :, :]
	new_lsm = iris.load_cube('/data/clivarm/wip/ellgil82/new_ancils/km1p5/lsm/new_mask.nc', 'LAND MASK (No halo) (LAND=TRUE)')[0,0,:,:]
	# Set up figure
	fig, ax = plt.subplots(1, 1, figsize=(10,11.5))
	ax.spines['right'].set_visible(False)
	ax.spines['left'].set_visible(False)
	ax.spines['top'].set_visible(False)
	ax.spines['bottom'].set_visible(False)
	ax.tick_params(axis='both', which='both', length=0, labelbottom='off', labelleft='off')
	# Plot Cabinet Inlet AWS
	cube = iris.load_cube('/data/clivarm/wip/ellgil82/May_2016/Re-runs/CS2/20160522T1200Z_Peninsula_km1p5_ctrl_pa000.pp','surface_altitude')
	real_lon, real_lat = rotate_data(cube, 0, 1)
	ax.plot(-63.37105, -66.48272, markersize=15, marker='o', color='#f68080', zorder=10)
	# Calculate differences
	orog_dif = new_orog.data - old_orog.data
	lsm_dif = new_lsm.data - old_lsm.data
	# Mask data where no difference is seen
	orog_dif = ma.masked_where((lsm_dif == 0) & (new_lsm.data == 0), orog_dif)
	lsm_dif = ma.masked_where(lsm_dif == 0, lsm_dif)
	# Truncate colormap to minimise visual impact of one or two extreme values
	squished_bwr = shiftedColorMap(cmap=matplotlib.cm.bwr, min_val=-800, max_val=800, name='squished_bwr', var=orog_dif, start = .15, stop = .85)
	# Plot differences between old and new orography and LSM
	c = ax.pcolormesh(real_lon, real_lat, orog_dif, cmap='squished_bwr', vmin=-800, vmax=800, zorder = 1)
	lsm = ax.contourf(real_lon, real_lat, lsm_dif, cmap = 'bwr', vmax = 1, vmin = -1, zorder = 2)
	# Add new LSM and 25 m orography contour
	ax.contour(real_lon, real_lat, new_lsm.data, lw=3, colors='dimgrey', zorder = 3)
	ax.contour(real_lon, real_lat, new_orog.data, lw = 2, levels = [100], colors = 'dimgrey', zorder = 4)
	# Set up colour bar
	cbaxes = fig.add_axes([0.22, 0.12, 0.56, 0.03])
	cbticks = np.linspace(-800, 800, 4)
	cbticklabs = [-800, 0, 800]
	cb = plt.colorbar(c, cax=cbaxes, orientation='horizontal', ticks=cbticks)
	cb.set_ticks(cbticks, cbticklabs)
	cb.ax.set_xlabel('Surface elevation difference (m)', fontsize=30, labelpad=20, color='dimgrey')
	cb.ax.text(-0.3, 2.2, 'Area removed \nfrom new LSM', fontsize = 30, color = 'dimgrey')
	cb.ax.text(0.78, 2.2, 'Area added \nto new LSM', fontsize = 30, color = 'dimgrey')
	cb.outline.set_edgecolor('dimgrey')
	cb.outline.set_linewidth(2)
	cb.solids.set_edgecolor('face')
	cb.ax.tick_params(labelsize=30, tick1On=False, tick2On=False, labelcolor='dimgrey', pad=10)
	[l.set_visible(False) for (w, l) in enumerate(cb.ax.xaxis.get_ticklabels()) if w % 3 != 0]
	plt.subplots_adjust(bottom=0.27, left=0.11, right=0.89, top=0.95, hspace=0.05)
	plt.savefig('/users/ellgil82/figures/new_ancils/orog_difs_km1p5.png', transparent = True)
	plt.savefig('/users/ellgil82/figures/new_ancils/orog_difs_km1p5.eps', transparent = True)
	plt.savefig('/users/ellgil82/figures/new_ancils/orog_difs_km1p5.pdf', transparent=True)
	plt.show()
Exemplo n.º 2
0
def mask_difs():
    difs = glm_SIC.data-ERA_SIC.data
    difs[glm_SIC==0] = 0
    difs_m = np.ma.masked_equal(difs, 0)
    difs_m = np.ma.masked_greater_equal(difs, -0.001)
    fig, ax = plt.subplots(1,1, figsize = (12,9))
    ax.spines['right'].set_visible(False)
    ax.spines['left'].set_visible(False)
    ax.spines['top'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    ax.tick_params(which = 'both', tick1On = 'False', tick2On = 'False')
    ax.axis('off')
    plt.setp(ax.get_yticklabels(), visible=False)
    plt.setp(ax.get_xticklabels(), visible = False)
    bwr_zero = shiftedColorMap(cmap=matplotlib.cm.bwr, min_val=-2.5, max_val=3.5, name='bwr_zero', var='s', start=0., stop=1.)
    GLM = ax.contourf(glm_SST.data, cmap=bwr_zero, vmin=-2.5, vmax=3.5)
    difs = ax.contourf(difs_m, cmap = 'viridis')
    lsm1 = ax.contour(glm_LSM.data, colors='dimgrey', linewidths=3, levels=[0])
    thresh1 = ax.contour(glm_SIC.data, levels =[0.1], linewidths=5, colors = 'r',  zorder = 9, )
    thresh2 = ax.contour(ERA_SIC.data, levels= [0] , linewidths=5,colors = 'green')
    CBarXTicks = [-2, 0, 2]
    SST_axes = fig.add_axes([0.1, 0.1, 0.03, 0.7]) #left, bottom, width, height
    dif_axes = fig.add_axes([0.82, 0.1, 0.03, 0.7])
    CBar1 = plt.colorbar(GLM, cax=SST_axes, orientation='vertical', ticks=CBarXTicks)  #
    ax.text(-0.25, 1.1, s = 'SST ($^{\circ}$C)', transform =  ax.transAxes, rotation = 0, color = 'dimgrey', fontsize = '34')
    CBar2 = plt.colorbar(difs, cax = dif_axes, orientation='vertical', ticks = [0, -0.05, -0.1])
    ax.text(0.98, 1.1, s = 'glm SIC - \nERA SIC', transform =  ax.transAxes, rotation = 0, color = 'dimgrey', fontsize = '34')
    for CBar in [CBar1, CBar2]:
        CBar.solids.set_edgecolor("face")
        CBar.outline.set_edgecolor('dimgrey')
        CBar.ax.tick_params(which='both', axis='both', labelsize=34, labelcolor='dimgrey', pad=10, size=0, tick1On=False, tick2On=False)
        CBar.outline.set_linewidth(2)
    lns = [Line2D([0], [0],  color='red',  linewidth=5),
           Line2D([0], [0], color='green',  linewidth=5)]
    labs = ['glm SIC = 0.1','ERA SIC edge']#  '                      ','                      '
    lgd = plt.legend(lns, labs, ncol=1, bbox_to_anchor=(-6,1.2), borderaxespad=0.,  prop={'size': 24})
    for ln in lgd.get_texts():
        plt.setp(ln, color='dimgrey')
    lgd.get_frame().set_linewidth(0.0)
    plt.subplots_adjust(left = 0.2, bottom = 0.1, right = 0.78, top = 0.8)
    plt.show()
Exemplo n.º 3
0
def plot_SMB(SMBvar, comp_dict, region, mean_or_SD, calc):
    range_dict = {
        'pr': (0, 1000),
        'sbl': (0, 300),
        'snm': (0, 10),
        'mrro': (0, 10),
        'SMB': (-200, 1000),
        'evap': (0, 300)
    }
    fig = plt.figure(figsize=[10, 6])
    ax = plt.subplot(1, 1, 1, projection=ccrs.SouthPolarStereo())
    fig.subplots_adjust(bottom=0.05,
                        top=0.9,
                        left=0.04,
                        right=0.85,
                        wspace=0.02)
    # Limit the map to -60 degrees latitude and below.
    ax.set_extent([-180, 180, -90, -59.5], ccrs.PlateCarree())
    lsm_full = iris.load_cube(filepath + 'sftlf.nc')
    if region == 'AIS':
        lsm = lsm_full
    else:
        lsm = iris.load_cube(filepath + 'sftlf.nc', region)
    gridlons = lsm.coord('longitude').contiguous_bounds()
    gridlats = lsm.coord('latitude').contiguous_bounds()
    ax.spines['geo'].set_visible(False)
    if calc == 'yes':
        if mean_or_SD == 'mean':
            mean_data = comp_dict[SMBvar].collapsed('time',
                                                    iris.analysis.MEAN).data
        elif mean_or_SD == 'SD':
            mean_data = comp_dict[SMBvar].collapsed('time',
                                                    iris.analysis.STD_DEV).data
    else:
        mean_data = comp_dict[SMBvar]
    squished_cmap = shiftedColorMap(cmap=matplotlib.cm.coolwarm_r,
                                    min_val=range_dict[SMBvar][0],
                                    max_val=range_dict[SMBvar][1],
                                    name='squished_cmap',
                                    var=mean_data,
                                    start=0.3,
                                    stop=0.7)
    f = ax.pcolormesh(gridlons,
                      gridlats,
                      np.ma.masked_where(lsm.data == 0, mean_data),
                      transform=ccrs.PlateCarree(),
                      cmap=squished_cmap,
                      vmin=range_dict[SMBvar][0],
                      vmax=range_dict[SMBvar][1])
    ax.contour(lsm_full.coord('longitude').points,
               lsm_full.coord('latitude').points,
               lsm_full.data > 0,
               levels=[0],
               linewidths=2,
               colors='k',
               transform=ccrs.PlateCarree())
    CbAx = fig.add_axes([0.85, 0.15, 0.02, 0.6])
    cb = plt.colorbar(f,
                      orientation='vertical',
                      cax=CbAx,
                      extend='both',
                      ticks=[
                          range_dict[SMBvar][0], 0, range_dict[SMBvar][1] / 2,
                          range_dict[SMBvar][1]
                      ])  #shrink = 0.8,
    cb.solids.set_edgecolor("face")
    cb.outline.set_edgecolor('dimgrey')
    cb.ax.tick_params(which='both',
                      axis='both',
                      labelsize=20,
                      labelcolor='dimgrey',
                      pad=10,
                      size=0,
                      tick1On=False,
                      tick2On=False)
    cb.outline.set_linewidth(2)
    cb.ax.set_title('Annual mean\n' + SMBvar + ' (kg m$^{-2}$ yr$^{-1}$)',
                    fontname='Helvetica',
                    color='dimgrey',
                    fontsize=20,
                    pad=20)
    gl = ax.gridlines(crs=ccrs.PlateCarree(),
                      draw_labels=True,
                      y_inline=True,
                      linewidth=2,
                      color='gray',
                      alpha=0.5,
                      linestyle=':')
    gl.xlabel_style = {
        'color': 'dimgrey',
        'size': 20,
    }
    gl.ylabel_style = {
        'color': 'dimgrey',
        'size': 20,
    }
    plt.savefig(filepath + 'ERA-Interim_historical_' + mean_or_SD + SMBvar +
                string_dict[region] + '.png')
    plt.show()
Exemplo n.º 4
0
def plot_SMB_components(region, mean_or_SD, components):
    orog_full = iris.load_cube(filepath + 'orog.nc')
    lsm_full = iris.load_cube(filepath + 'sftlf.nc')
    if region == 'AIS':
        lsm = lsm_full
    else:
        lsm = iris.load_cube(filepath + 'sftlf.nc', region)
    lsm.coord('latitude').guess_bounds()
    lsm.coord('longitude').guess_bounds()
    # turn the iris Cube data structure into numpy arrays
    gridlons = lsm.coord('longitude').contiguous_bounds()
    gridlats = lsm.coord('latitude').contiguous_bounds()
    projection = ccrs.SouthPolarStereo()
    axes_class = (GeoAxes, dict(map_projection=projection))
    fig = plt.figure(figsize=(20, 14))
    axgr = AxesGrid(
        fig,
        111,
        axes_class=axes_class,
        nrows_ncols=(2, 3),
        axes_pad=2,
        #cbar_location='right',
        #cbar_mode='single',
        #cbar_pad=0.4,
        #cbar_size='2.5%',
        label_mode='')
    titles = ['pr', 'evapsbl', 'sbl', 'mrro', 'snm', 'SMB',
              'SD of SMB']  # Will miss SD SMB out if sbl inc.
    maxvals = [3000, 100, 100, 100, 10, 3000, 300]
    minvals = [-100, -100, -100, -100, -10, -100, -10]
    for i, ax in enumerate(axgr):
        ax.set_extent([-180, 180, -90, -59.5], ccrs.PlateCarree())
        squished_cmap = shiftedColorMap(cmap=matplotlib.cm.coolwarm_r,
                                        min_val=-200.,
                                        max_val=2000.,
                                        name='squished_cmap',
                                        var=components[i],
                                        start=0.3,
                                        stop=0.7)
        ax.contour(lsm_full.coord('longitude').points,
                   lsm_full.coord('latitude').points,
                   lsm_full.data > 0,
                   levels=[0],
                   linewidths=2,
                   colors='k',
                   transform=ccrs.PlateCarree())
        f = ax.pcolormesh(gridlons,
                          gridlats,
                          np.ma.masked_where(lsm.data == 0, components[i]),
                          norm=colors.SymLogNorm(linthresh=0.1,
                                                 linscale=0.1,
                                                 vmin=minvals[i],
                                                 vmax=maxvals[i]),
                          cmap='coolwarm_r',
                          transform=ccrs.PlateCarree())
        ax.spines['geo'].set_visible(False)
        gl = ax.gridlines(crs=ccrs.PlateCarree(),
                          draw_labels=True,
                          y_inline=True,
                          linewidth=2,
                          color='gray',
                          alpha=0.5,
                          linestyle=':')
        gl.xlabel_style = {
            'color': 'dimgrey',
            'size': 20,
        }
        gl.ylabel_style = {
            'color': 'dimgrey',
            'size': 20,
        }
        ax.set_title(titles[i],
                     fontsize=24,
                     fontweight='bold',
                     color='dimgrey',
                     pad=20)
        cb = plt.colorbar(f, extend='both', orientation='vertical', ax=ax)
        cb.solids.set_edgecolor("face")
        cb.outline.set_edgecolor('dimgrey')
        cb.ax.tick_params(which='both',
                          axis='both',
                          labelsize=20,
                          labelcolor='dimgrey',
                          pad=10,
                          size=0,
                          tick1On=False,
                          tick2On=False)
        cb.outline.set_linewidth(2)
    #cb = axgr.cbar_axes[0].colorbar(f, extend='both')#, shrink = 0.8), orientation='vertical',
    #CbAx = fig.add_axes([0.9, 0.15, 0.015, 0.6])
    #cb = fig.colorbar(f, extend = 'both', orientation = 'vertical',  cax = CbAx)
    #cb.solids.set_edgecolor("face")
    #cb.outline.set_edgecolor('dimgrey')
    #cb.ax.tick_params(which='both', axis='both', labelsize=20, labelcolor='dimgrey', pad=10, size=0, tick1On=False,
    #                  tick2On=False)
    #cb.outline.set_linewidth(2)
    #cb.ax.set_title('Annual mean\n (kg m$^{-2}$ yr$^{-1}$)', fontname='Helvetica', color='dimgrey', fontsize=20,
    #                pad=20)
    fig.subplots_adjust(bottom=0.05,
                        top=0.9,
                        left=0.05,
                        right=0.85,
                        wspace=0.18,
                        hspace=0.18)
    plt.savefig(filepath + 'ERA-Interim_historical_SMB_components_' +
                mean_or_SD + '_' + string_dict[region] + '.png')
    plt.show()
Exemplo n.º 5
0
def plot_synop_composite(cf_var, c_var, u_var, v_var):
    fig = plt.figure(frameon=False, figsize=(
        9,
        10))  # !!change figure dimensions when you have a larger model domain
    fig.patch.set_visible(False)
    ax = fig.add_subplot(111)  #, projection=ccrs.PlateCarree())
    plt.axis = 'off'
    PlotLonMin = np.min(var_dict['lon'][120:170])
    PlotLonMax = np.max(var_dict['lon'][120:170])
    PlotLatMin = np.min(var_dict['lat'][130:175])
    PlotLatMax = np.max(var_dict['lat'][130:175])
    XTicks = np.linspace(PlotLonMin, PlotLonMax, 3)
    XTickLabels = [None] * len(XTicks)
    for i, XTick in enumerate(XTicks):
        if XTick < 0:
            XTickLabels[i] = '{:.0f}{:s}'.format(np.abs(XTick), '$^{\circ}$W')
        else:
            XTickLabels[i] = '{:.0f}{:s}'.format(np.abs(XTick),
                                                 '$^{\circ}$E')  #
    plt.xticks(XTicks, XTickLabels)
    ax.set_xlim(PlotLonMin, PlotLonMax)
    ax.tick_params(which='both', pad=10, labelsize=34, color='dimgrey')
    YTicks = np.linspace(PlotLatMin, PlotLatMax, 3)
    YTickLabels = [None] * len(YTicks)
    for i, YTick in enumerate(YTicks):
        if YTick < 0:
            YTickLabels[i] = '{:.0f}{:s}'.format(np.abs(YTick), '$^{\circ}$S')
        else:
            YTickLabels[i] = '{:.0f}{:s}'.format(np.abs(YTick), '$^{\circ}$N')
    plt.yticks(YTicks, YTickLabels)
    ax.set_ylim(PlotLatMin, PlotLatMax)
    ax.tick_params(which='both',
                   axis='both',
                   labelsize=34,
                   labelcolor='dimgrey',
                   pad=10,
                   size=0,
                   tick1On=False,
                   tick2On=False)
    bwr_zero = shiftedColorMap(cmap=matplotlib.cm.bwr,
                               min_val=-15.,
                               max_val=2.,
                               name='bwr_zero',
                               var=cf_var.data,
                               start=0.15,
                               stop=0.85)  #-6, 3
    xlon, ylat = np.meshgrid(var_dict['lon'][120:170],
                             var_dict['lat'][130:175])
    c = ax.pcolormesh(xlon,
                      ylat,
                      cf_var,
                      cmap=bwr_zero,
                      vmin=-15.,
                      vmax=2.,
                      zorder=1)  # latlon=True, transform=ccrs.PlateCarree(),
    cs = ax.contour(xlon,
                    ylat,
                    np.ma.masked_where(
                        var_dict['lsm'].data[130:175, 120:170] == 1, c_var),
                    latlon=True,
                    colors='k',
                    zorder=4)
    ax.clabel(cs, inline=True, fontsize=24, inline_spacing=30, fmt='%1.0f')
    coast = ax.contour(xlon,
                       ylat,
                       var_dict['lsm'].data[130:175, 120:170],
                       levels=[0],
                       colors='#222222',
                       lw=2,
                       latlon=True,
                       zorder=2)
    topog = ax.contour(xlon,
                       ylat,
                       var_dict['orog'].data[130:175, 120:170],
                       levels=[50],
                       colors='#222222',
                       linewidth=1.5,
                       latlon=True,
                       zorder=3)
    CBarXTicks = [
        -15, 0, 2
    ]  # CLevs[np.arange(0,len(CLevs),int(np.ceil(len(CLevs)/5.)))]
    CBAxes = fig.add_axes([0.22, 0.2, 0.6, 0.025])
    CBar = plt.colorbar(c,
                        cax=CBAxes,
                        orientation='horizontal',
                        ticks=CBarXTicks,
                        extend='both')  #
    CBar.set_label('Mean daily maximum 1.5 m \nair temperature ($^{\circ}$C)',
                   fontsize=34,
                   labelpad=10,
                   color='dimgrey')
    CBar.solids.set_edgecolor("face")
    CBar.outline.set_edgecolor('dimgrey')
    CBar.ax.tick_params(which='both',
                        axis='both',
                        labelsize=34,
                        labelcolor='dimgrey',
                        pad=10,
                        size=0,
                        tick1On=False,
                        tick2On=False)
    CBar.outline.set_linewidth(2)
    x, y = np.meshgrid(var_dict['lon'], var_dict['lat'])
    q = ax.quiver(x[::8, ::8],
                  y[::8, ::8],
                  u_var[::8, ::8],
                  v_var[::8, ::8],
                  pivot='middle',
                  scale=50,
                  zorder=5,
                  width=0.006)
    plt.quiverkey(
        q,
        0.25,
        0.9,
        5,
        r'$5$ $m$ $s^{-1}$',
        labelpos='N',
        color='dimgrey',
        labelcolor='dimgrey',
        fontproperties={
            'size': '32',
            'weight': 'bold'
        },
        coordinates='figure',
    )
    plt.subplots_adjust(left=0.2, bottom=0.33, right=0.85)
    plt.savefig(
        '/gws/nopw/j04/bas_climate/users/ellgil82/hindcast/figures/synoptic_cond_Tair_max_LarsenB_melt_period_zoomed.png'
    )
    plt.savefig(
        '/gws/nopw/j04/bas_climate/users/ellgil82/hindcast/figures/synoptic_cond_Tair_max_LarsenB_melt_period_zoomed.eps'
    )
    plt.show()
Exemplo n.º 6
0
def subplots_simple(var, clim, savefig):
    fig, ax = plt.subplots(1,3, figsize = (22,8))
    ax.flatten()
    if clim == 'True' or clim == 'yes':
        case_list = ['Climatology', 'GLM', 'LAM']
    else:
        case_list = ['ERA-Interim', 'GLM', 'LAM']
    lab_dict = {0: 'a', 1: 'b', 2: 'c'}
    for a in [0, 1, 2]:
        ax[a].spines['right'].set_visible(False)
        ax[a].spines['left'].set_visible(False)
        ax[a].spines['top'].set_visible(False)
        ax[a].spines['bottom'].set_visible(False)
        ax[a].tick_params(which = 'both', tick1On = 'False', tick2On = 'False')
        ax[a].axis('off')
        plt.setp(ax[a].get_yticklabels(), visible=False)
        plt.setp(ax[a].get_xticklabels(), visible = False)
        lab = ax[a].text(0.1, 0.85, transform = ax[a].transAxes, zorder=100, s=lab_dict[a], fontsize=32, fontweight='bold', color='dimgrey')
        ax[a].set_title(case_list[a], fontsize=40, color='dimgrey')
    if var == 'SST':
        bwr_zero = shiftedColorMap(cmap=matplotlib.cm.bwr, min_val=-2.5, max_val=3.5, name='bwr_zero', var='s', start=0., stop=1.)
        if clim == 'True' or clim == 'yes':
            if date == '20080101' or date == '20080130':
                clim = ax[0].pcolormesh(Jan_SST.data, cmap=bwr_zero, vmin= -2.5, vmax = 3.5)
            elif date == '20080207':
                clim = ax[0].pcolormesh(Feb_SST.data, cmap=bwr_zero, vmin= -2.5, vmax = 3.5)
        else:
            ERA = ax[0].pcolormesh(ERA_SST.data, cmap=bwr_zero,vmin= -2.5, vmax = 3.5)
        lsm0 = ax[0].contour(glm_LSM.data, colors='dimgrey', linewidths=3, levels=[0])
        GLM = ax[1].pcolormesh(glm_SST.data, cmap = bwr_zero, vmin= -2.5, vmax = 3.5)
        lsm1 = ax[1].contour(glm_LSM.data, colors='dimgrey', linewidths = 3, levels = [0])
        LAM = ax[2].pcolormesh(LAM_SST.data, cmap =bwr_zero, vmin= -2.5, vmax = 3.5)
        lsm2 = ax[2].contour(LAM_LSM.data, colors='dimgrey',  linewidths = 3, levels = [0])
        CBarXTicks = [-2, 0, 2]
    elif var == 'SIC':
        if clim == 'True' or clim == 'yes':
            if date == '20080101' or date == '20080130':
                clim = ax[0].pcolormesh(Jan_SIC.data, cmap='Blues_r', vmin= 0., vmax = 1.)
            elif date == '20080207':
                clim = ax[0].pcolormesh(Feb_SIC.data, cmap='Blues_r', vmin= 0., vmax = 1.)
        else:
            ERA = ax[0].pcolormesh(ERA_SIC.data, cmap = 'Blues_r', vmin = 0., vmax = 1.)
        lsm0 = ax[0].contour(glm_LSM.data, colors='dimgrey', linewidths=3, levels=[0])
        GLM = ax[1].pcolormesh(glm_SIC.data, cmap = 'Blues_r', vmin = -0., vmax = 1.)
        lsm1 = ax[1].contour(glm_LSM.data, colors = 'dimgrey',  linewidths = 3, levels = [0])
        LAM = ax[2].pcolormesh(LAM_SIC.data, cmap = 'Blues_r', vmin = 0., vmax = 1.)
        lsm2 = ax[2].contour(LAM_LSM.data, colors = 'dimgrey',  linewidths = 3, levels = [0])
        CBarXTicks = [ 0., 0.5, 1.]  # CLevs[np.arange(0,len(CLevs),int(np.ceil(len(CLevs)/5.)))]
    ax[2].yaxis.tick_right()
    CBAxes = fig.add_axes([0.4, 0.15, 0.2, 0.03])
    CBar = plt.colorbar(LAM, cax=CBAxes, orientation='horizontal', ticks=CBarXTicks)  #
    CBar.solids.set_edgecolor("face")
    CBar.outline.set_edgecolor('dimgrey')
    CBar.ax.tick_params(which='both', axis='both', labelsize=34, labelcolor='dimgrey', pad=10, size=0, tick1On=False, tick2On=False)
    CBar.outline.set_linewidth(2)
    plt.subplots_adjust(left = 0.08, right = 0.92, top = 0.9, bottom = 0.28, wspace = 0.23, hspace = 0.18)
    if savefig == 'yes' or savefig == True:
        if var == 'SIC':
            CBar.set_label('Sea ice fraction', fontsize=34, labelpad=10, color='dimgrey')
            if clim == 'yes':
                plt.savefig(filepath + date + '_clim_SIC_inheritance_glm_ERA_native.png')
                plt.savefig(filepath + date + '_clim_SIC_inheritance_glm_ERA_native.eps')
            else:
                plt.savefig(filepath + date + '_SIC_inheritance_glm_ERA_native.png')
                plt.savefig(filepath + date + '_SIC_inheritance_glm_ERA_native.eps')
        elif var == 'SST':
            CBar.set_label('SST ($^{\circ}$C)', fontsize=34, labelpad=10, color='dimgrey')
            if clim == 'yes':
                plt.savefig(filepath+date+'_clim_SST_inheritance_glm_ERA_native.png')
                plt.savefig(filepath+date+'_clim_SST_inheritance_glm_ERA_native.eps')
            else:
                plt.savefig(filepath + date + '_SST_inheritance_glm_ERA_native.png')
                plt.savefig(filepath + date + '_SST_inheritance_glm_ERA_native.eps')
    plt.show()
def plot_ERA():
    'Plot ERA-5 reanalysis data at the onset of foehn conditions during both cases. Thesis Figure 4.1.'
    fig, axs = plt.subplots(1,2, figsize=(20, 12), frameon=False)
    lab_dict = {0: 'a', 1: 'b'}
    #ax = fig.add_axes([0.18, 0.25, 0.75, 0.63], frameon=False) # , projection=ccrs.PlateCarree())#
    case_list = ['CS1', 'CS2']
    for a in [0,1]:
        axs[a].spines['right'].set_visible(False)
        axs[a].spines['left'].set_visible(False)
        axs[a].spines['top'].set_visible(False)
        axs[a].spines['bottom'].set_visible(False)
        ERA_dict = load_ERA(case=case_list[a])
        MetUM_dict = load_files(case=case_list[a], period='onset',res='km4p0')
        # Regrid ERA data onto MetUM 4 km domain grid
        regridded_P = P_ERA.regrid(MetUM_dict['P'], iris.analysis.Linear())
        regridded_P = np.ma.masked_where(lsm.data == 1, regridded_P.data)
        regridded_Tair = T_ERA.regrid(MetUM_dict['T_air'], iris.analysis.Linear())
        regridded_u = u_ERA.regrid(MetUM_dict['u_wind'], iris.analysis.Linear())
        regridded_v = v_ERA.regrid(MetUM_dict['v_wind'], iris.analysis.Linear())
        axs[a].contour(MetUM_dict['lsm'].coord('longitude').points, MetUM_dict['lsm'].coord('latitude').points, MetUM_dict['lsm'].data, colors='#535454', linewidths=2.5,
                zorder=2)  # , transform=RH.coord('grid_longitude').coord_system.as_cartopy_projection())
        axs[a].contour(MetUM_dict['orog'].coord('longitude').points, MetUM_dict['orog'].coord('latitude').points, MetUM_dict['orog'].data, colors='#535454', levels=[15],
                linewidths=2.5, zorder=3)
        P_lev = axs[a].contour(MetUM_dict['lsm'].coord('longitude').points, MetUM_dict['lsm'].coord('latitude').points, regridded_P, colors='#222222', linewidths=3,
                        levels=range(960, 1040, 8), zorder=4)
        axs[a].clabel(P_lev, v=[960, 968, 976, 982, 990], inline=True, inline_spacing=3, fontsize=28, fmt='%1.0f')
        bwr_zero = shiftedColorMap(cmap=matplotlib.cm.bwr, min_val=-20., max_val=10., name='bwr_zero', var=regridded_Tair.data, start = 0., stop = 1.)
        c = axs[a].pcolormesh(MetUM_dict['real_lon'], MetUM_dict['real_lat'], regridded_Tair.data, cmap=bwr_zero, vmin=-20., vmax=10., zorder=1)  #
        x, y = np.meshgrid(MetUM_dict['real_lon'], MetUM_dict['real_lat'])
        q = axs[a].quiver(x[::40, ::40], y[::40, ::40], regridded_u.data[::40, ::40], regridded_v.data[::40, ::40], color='#414345',
                      pivot='middle', scale=150, zorder=5)
        axs[a].tick_params(which='both', axis='both', labelsize=34, labelcolor='dimgrey', pad=10, size=0, tick1On=False, tick2On=False)
        PlotLonMin = np.min(MetUM_dict['real_lon'])
        PlotLonMax = np.max(MetUM_dict['real_lon'])
        PlotLatMin = np.min(MetUM_dict['real_lat'])
        PlotLatMax = np.max(MetUM_dict['real_lat'])
        XTicks = np.linspace(PlotLonMin, PlotLonMax, 3)
        XTickLabels = [None] * len(XTicks)
        for i, XTick in enumerate(XTicks):
            if XTick < 0:
                XTickLabels[i] = '{:.0f}{:s}'.format(np.abs(XTick), '$^{\circ}$W')
            else:
                XTickLabels[i] = '{:.0f}{:s}'.format(np.abs(XTick), '$^{\circ}$E')
        plt.sca(axs[a])
        plt.xticks(XTicks, XTickLabels)
        axs[a].set_xlim(PlotLonMin, PlotLonMax)
        axs[a].tick_params(which='both', pad=10, labelsize=34, color='dimgrey')
        YTicks = np.linspace(PlotLatMin, PlotLatMax, 4)
        YTickLabels = [None] * len(YTicks)
        for i, YTick in enumerate(YTicks):
            if YTick < 0:
                YTickLabels[i] = '{:.0f}{:s}'.format(np.abs(YTick), '$^{\circ}$S')
            else:
                YTickLabels[i] = '{:.0f}{:s}'.format(np.abs(YTick), '$^{\circ}$N')
        plt.sca(axs[a])
        plt.yticks(YTicks, YTickLabels)
        axs[a].set_ylim(PlotLatMin, PlotLatMax)
        lab = axs[a].text(-80, -61.5, zorder=100,  s=lab_dict[a], fontsize=32, fontweight='bold', color='dimgrey')
        axs[a].set_title(case_list[a], fontsize=34, color='dimgrey')
    CBarXTicks = [-20, -10, 0, 10]  # CLevs[np.arange(0,len(CLevs),int(np.ceil(len(CLevs)/5.)))]
    CBAxes = fig.add_axes([0.35, 0.15, 0.3, 0.03])
    CBar = plt.colorbar(c, cax=CBAxes, orientation='horizontal', ticks=CBarXTicks)  #
    CBar.set_label('2 m air temperature ($^{\circ}$C)', fontsize=34, labelpad=10, color='dimgrey')
    CBar.solids.set_edgecolor("face")
    CBar.outline.set_edgecolor('dimgrey')
    CBar.ax.tick_params(which='both', axis='both', labelsize=34, labelcolor='dimgrey', pad=10, size=0, tick1On=False,
                        tick2On=False)
    CBar.outline.set_linewidth(2)
    plt.sca(axs[1])
    plt.tick_params(axis = 'y', which=  'both', labelleft = 'off', labelright = 'on')
    #yaxis.set_label_coords(1.27, 0.5)
    plt.quiverkey(q, 0.51, 0.9, 20, r'$20$ $m$ $s^{-1}$', labelpos='N', color='#414345', labelcolor='#414345',
                  fontproperties={'size': '32', 'weight': 'bold'},
                  coordinates='figure', )
    plt.draw()
    plt.subplots_adjust(bottom = 0.25, top = 0.85)
    plt.savefig('/users/ellgil82/figures/Wintertime melt/Re-runs/ERA_foehn_onset_both_cases.png', transparent=True)
    plt.savefig('/users/ellgil82/figures/Wintertime melt/Re-runs/ERA_foehn_onset_both_cases.eps', transparent=True)
    plt.show()
def plot_both(period, res):
    ''' Plot spatial maps of synoptic conditions during both cases from MetUM model output, either before or during the onset
    of foehn conditions. Thesis Figure 4.4.

    Inputs:

        - period: string indicating either pre-foehn onset or during foehn onset, either 'pre' or 'onset'
        - res: string indicating resolution of model output loaded, either 'km1p5' or 'km4p0'

    Outputs:

        - image files in .png and .eps format

    '''
    fig, axs = plt.subplots(1,2, figsize=(20, 12), frameon=False)
    lab_dict = {0: 'c', 1: 'd'}
    #ax = fig.add_axes([0.18, 0.25, 0.75, 0.63], frameon=False) # , projection=ccrs.PlateCarree())#
    case_list = ['CS1', 'CS2']
    for a in [0,1]:
        axs[a].spines['right'].set_visible(False)
        axs[a].spines['left'].set_visible(False)
        axs[a].spines['top'].set_visible(False)
        axs[a].spines['bottom'].set_visible(False)
        MetUM_dict = load_files(case = case_list[a], period = period, res = res)
        axs[a].contour(MetUM_dict['lsm'].coord('longitude').points, MetUM_dict['lsm'].coord('latitude').points, MetUM_dict['lsm'].data, colors='#535454', linewidths=2.5,
                zorder=2)  # , transform=RH.coord('grid_longitude').coord_system.as_cartopy_projection())
        axs[a].contour(MetUM_dict['orog'].coord('longitude').points, MetUM_dict['orog'].coord('latitude').points, MetUM_dict['orog'].data, colors='#535454', levels=[50],
                linewidths=2.5, zorder=3) # Plot orography at approx. height of grounding line
        P_lev = axs[a].contour(MetUM_dict['lsm'].coord('longitude').points, MetUM_dict['lsm'].coord('latitude').points, MetUM_dict['P'], colors='#222222', linewidths=3,
                        levels=range(960, 1020, 4), zorder=4) # Plot MSLP contours
        axs[a].clabel(P_lev, v=[960, 968, 976, 982, 990], inline=True, inline_spacing=3, fontsize=28, fmt='%1.0f')
        bwr_zero = shiftedColorMap(cmap=matplotlib.cm.bwr, min_val=-30., max_val=10., name='bwr_zero', var=T_air.data, start = 0., stop = 1.)
        c = axs[a].pcolormesh(MetUM_dict['real_lon'], MetUM_dict['real_lat'], MetUM_dict['T_air'].data, cmap=bwr_zero, vmin=-30., vmax=10., zorder=1)  # Plot temperatures
        x, y = np.meshgrid(MetUM_dict['real_lon'], MetUM_dict['real_lat'])
        q = axs[a].quiver(x[::25, ::25], y[::25, ::25], MetUM_dict['u'].data[::25, ::25], MetUM_dict['v'].data[::25, ::25], color='#414345',
                      pivot='middle', scale=100, zorder=5) # Plot 10 m wind vectors
        axs[a].tick_params(which='both', axis='both', labelsize=34, labelcolor='dimgrey', pad=10, size=0, tick1On=False, tick2On=False)
        # Set up plot ticks and labels
        PlotLonMin = np.min(real_lon)
        PlotLonMax = np.max(real_lon)
        PlotLatMin = np.min(real_lat)
        PlotLatMax = np.max(real_lat)
        XTicks = np.linspace(PlotLonMin, PlotLonMax, 3)
        XTickLabels = [None] * len(XTicks)
        for i, XTick in enumerate(XTicks):
            if XTick < 0:
                XTickLabels[i] = '{:.0f}{:s}'.format(np.abs(XTick), '$^{\circ}$W')
            else:
                XTickLabels[i] = '{:.0f}{:s}'.format(np.abs(XTick), '$^{\circ}$E')
        plt.sca(axs[a])
        plt.xticks(XTicks, XTickLabels)
        axs[a].set_xlim(PlotLonMin, PlotLonMax)
        axs[a].tick_params(which='both', pad=10, labelsize=34, color='dimgrey')
        YTicks = np.linspace(PlotLatMin, PlotLatMax, 4)
        YTickLabels = [None] * len(YTicks)
        for i, YTick in enumerate(YTicks):
            if YTick < 0:
                YTickLabels[i] = '{:.0f}{:s}'.format(np.abs(YTick), '$^{\circ}$S')
            else:
                YTickLabels[i] = '{:.0f}{:s}'.format(np.abs(YTick), '$^{\circ}$N')
        plt.sca(axs[a])
        plt.yticks(YTicks, YTickLabels)
        axs[a].set_ylim(PlotLatMin, PlotLatMax)
        lab = axs[a].text(-80, -61.5, zorder=100,  s=lab_dict[a], fontsize=32, fontweight='bold', color='dimgrey')
        axs[a].set_title(case_list[a], fontsize=34, color='dimgrey')
    CBarXTicks = [-30, -10, 10]  # CLevs[np.arange(0,len(CLevs),int(np.ceil(len(CLevs)/5.)))]
    CBAxes = fig.add_axes([0.35, 0.15, 0.3, 0.03])
    CBar = plt.colorbar(c, cax=CBAxes, orientation='horizontal', ticks=CBarXTicks)  #
    CBar.set_label('1.5 m air temperature ($^{\circ}$C)', fontsize=34, labelpad=10, color='dimgrey')
    CBar.solids.set_edgecolor("face")
    CBar.outline.set_edgecolor('dimgrey')
    CBar.ax.tick_params(which='both', axis='both', labelsize=34, labelcolor='dimgrey', pad=10, size=0, tick1On=False,
                        tick2On=False)
    CBar.outline.set_linewidth(2)
    plt.sca(axs[1])
    plt.tick_params(axis = 'y', which=  'both', labelleft = 'off', labelright = 'on')
    #yaxis.set_label_coords(1.27, 0.5)
    plt.quiverkey(q, 0.51, 0.9, 10, r'$10$ $m$ $s^{-1}$', labelpos='N', color='#414345', labelcolor='#414345',
                  fontproperties={'size': '32', 'weight': 'bold'},
                  coordinates='figure', )
    plt.draw()
    plt.subplots_adjust(bottom = 0.25, top = 0.85)
    plt.savefig('/users/ellgil82/figures/Wintertime melt/Re-runs/synop_cond_both_cases_'+ period + res + '.png')
    plt.savefig('/users/ellgil82/figures/Wintertime melt/Re-runs/synop_cond_both_cases_'+ period + res + '.eps')
    plt.show()
def plot_transect(res):
    ''''Plot transect through mountains during foehn conditions. Thesis Figure 4.7.

    Inputs:

        - res: string indicating resolution of MetUM model output.

    Outputs:

        - image files in .eps or .png format

    '''
    fig, ax = plt.subplots(1,1, figsize = (12,10))
    ax.set_facecolor('#222222')
    bwr_zero = shiftedColorMap(cmap=matplotlib.cm.bwr, min_val=-10., max_val=40., name='bwr_zero',
                               var=res['theta'].data, start=0., stop=1.)
    if res == surf_4p0:
        slice_idx = 163
        res_str = '4km'
    elif res == surf_1p5:
        slice_idx = 235
        res_str = '1p5km'
    cf = iplt.contourf(res['theta'][12, :, slice_idx, :], cmap=bwr_zero, vmin=-10.1, vmax=40.,
                       levels=[-10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10, 13, 16, 19, 21, 25, 30, 35,
                               40])  #np.linspace(-10., 40., 21))
    c = iplt.contour(res['zonal'][:,slice_idx,:], levels = [0,8,16,24,32,40], colors = 'k')
    if case_study == 'CS1':
        plt.clabel(c, [8,16,24,32], rotation = 0, fontsize = 28, color = 'k', inline = True, fmt = '%.0f')
    elif case_study == 'CS2':
        plt.clabel(c, [8, 24, 32], rotation=0, fontsize=28, color='k', inline=True, fmt='%.0f')
    plt.setp(ax.spines.values(), linewidth=2, color='dimgrey')
    ax.spines['right'].set_visible(False)
    ax.spines['top'].set_visible(False)
    PlotLonMin, PlotLonMax = -68, -60
    ax.set_ylim(0,5000)
    ax.set_yticks([0, 2500, 5000])
    ax.tick_params(axis='both', which='both', labelsize=32, tick1On=False, tick2On=False, labelcolor='dimgrey', pad=10)
    ax.set_ylabel('Altitude\n(m)', rotation=0, fontsize=32, labelpad=70, color='dimgrey')
    [l.set_visible(False) for (w, l) in enumerate(ax.yaxis.get_ticklabels()) if w % 2 != 0]
    XTicks = np.linspace(PlotLonMin, PlotLonMax, 3)
    XTickLabels = [None] * len(XTicks)
    for i, XTick in enumerate(XTicks):
        if XTick < 0:
            XTickLabels[i] = '{:.0f}{:s}'.format(np.abs(XTick), '$^{\circ}$W')
        else:
            XTickLabels[i] = '{:.0f}{:s}'.format(np.abs(XTick), '$^{\circ}$E')
    plt.sca(ax)
    plt.xticks(XTicks, XTickLabels)
    ax.set_xlim(PlotLonMin, PlotLonMax)
    CBarXTicks = [-10, 0, 10, 20, 30, 40]  # CLevs[np.arange(0,len(CLevs),int(np.ceil(len(CLevs)/5.)))]
    CBAxes = fig.add_axes([0.4, 0.15, 0.45, 0.03])
    CBar = plt.colorbar(cf, cax=CBAxes, orientation='horizontal', ticks=CBarXTicks)  #
    CBar.set_label('Air potential temperature ($^{\circ}$C)', fontsize=34, labelpad=10, color='dimgrey')
    CBar.solids.set_edgecolor("face")
    CBar.outline.set_edgecolor('dimgrey')
    CBar.ax.tick_params(which='both', axis='both', labelsize=32, labelcolor='dimgrey', pad=10, size=0, tick1On=False,
                        tick2On=False)
    CBar.outline.set_linewidth(2)
    plt.subplots_adjust(left = 0.3, right = 0.95, bottom = 0.27, top = 0.97)
    plt.savefig('/users/ellgil82/figures/Wintertime melt/Re-runs/transects_theta_u_wind_'+case_study+'_'+res_str+'.png')
    plt.savefig('/users/ellgil82/figures/Wintertime melt/Re-runs/transects_theta_u_wind_'+case_study+'_'+res_str+'.eps')
    plt.show()
Exemplo n.º 10
0
def correlation_maps(year_list, xvar, yvar):
    if len(year_list) > 1:
        fig, ax = plt.subplots(7, 3, figsize=(8, 18))
        CbAx = fig.add_axes([0.25, 0.1, 0.5, 0.02])
        ax = ax.flatten()
        comp_r = np.zeros((220, 220))
        plot = 0
        for year in year_list:
            vars_yr = load_vars(year)
            ax[plot].axis('off')
            r, r2, p, err, xmasked, y_masked, Larsen_mask = run_corr(vars_yr, xvar = xvar, yvar = yvar[:58444])
            if np.mean(r) < 0:
                squished_cmap = shiftedColorMap(cmap=matplotlib.cm.bone_r, min_val=-1., max_val=0., name='squished_cmap', var=r, start=0.25, stop=0.75)
                c = ax[plot].pcolormesh(r, cmap=matplotlib.cm.Spectral, vmin=-1., vmax=0.)
            elif np.mean(r) > 0:
                squished_cmap = shiftedColorMap(cmap = matplotlib.cm.gist_heat_r, min_val = 0, max_val = 1, name = 'squished_cmap', var = r, start = 0.25, stop = 0.75)
                c = ax[plot].pcolormesh(r, cmap = matplotlib.cm.Spectral, vmin = 0., vmax = 1.)
            ax[plot].contour(vars_yr['lsm'].data, colors='#222222', lw=2)
            ax[plot].contour(vars_yr['orog'].data, colors='#222222', levels=[100])
            comp_r = comp_r + r
            ax[plot].text(0.4, 1.1, s=year_list[plot], fontsize=24, color='dimgrey', transform=ax[plot].transAxes)
            unmasked_idx = np.where(y_masked.mask[0,:,:] == 0)
            sig = np.ma.masked_array(p, mask = y_masked[0,:,:].mask)
            sig = np.ma.masked_greater(sig, 0.01)
            ax[plot].contourf(sig, hatches = '...')
            plot = plot + 1
        mean_r_composite = comp_r / len(year_list)
        ax[-1].contour(vars_yr['lsm'].data, colors='#222222', lw=2)
        if np.mean(mean_r_composite) < 0:
            squished_cmap = shiftedColorMap(cmap=matplotlib.cm.bone_r, min_val=-1., max_val=0., name='squished_cmap',
                                            var=mean_r_composite, start=0.25, stop=0.75)
            c = ax[-1].pcolormesh(mean_r_composite, cmap=squished_cmap, vmin=-1., vmax=0.)
        elif np.mean(r) > 0:
            squished_cmap = shiftedColorMap(cmap=matplotlib.cm.gist_heat_r, min_val=0, max_val=1, name='squished_cmap',
                                            var=mean_r_composite, start=0.25, stop=0.75)
            c = ax[-1].pcolormesh(r, cmap=squished_cmap, vmin=0., vmax=1.)
        ax[-1].contour(vars_yr['orog'].data, colors='#222222', levels=[100])
        ax[-1].text(0., 1.1, s='Composite', fontsize=24, color='dimgrey', transform=ax[-1].transAxes)
        cb = plt.colorbar(c, orientation='horizontal', cax=CbAx, ticks=[0, 0.5, 1])
        cb.solids.set_edgecolor("face")
        cb.outline.set_edgecolor('dimgrey')
        cb.ax.tick_params(which='both', axis='both', labelsize=24, labelcolor='dimgrey', pad=10, size=0, tick1On=False, tick2On=False)
        cb.outline.set_linewidth(2)
        cb.ax.xaxis.set_ticks_position('bottom')
        # cb.ax.set_xticks([0,4,8])
        cb.set_label('Correlation coefficient', fontsize=24, color='dimgrey', labelpad=30)
        plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.15, hspace=0.3, wspace=0.05)
        if host == 'bsl':
            plt.savefig('/users/ellgil82/figures/Hindcast/SMB/'+ xvar + '_v_' + yvar + '_all_years.png', transparent=True)
            plt.savefig('/users/ellgil82/figures/Hindcast/SMB/'+ xvar + '_v_' + yvar + '_all_years.eps', transparent=True)
        elif host == 'jasmin':
            plt.savefig('/gws/nopw/j04/bas_climate/users/ellgil82/hindcast/figures/Drivers/'+ xvar + '_v_' + yvar + '_all_years.png', transparent=True)
            plt.savefig('/gws/nopw/j04/bas_climate/users/ellgil82/hindcast/figures/Drivers/'+ xvar + '_v_' + yvar + '_all_years.eps', transparent=True)
    # Save composite separately
    elif len(year_list) == 1:
        r, r2, p, err, xmasked, y_masked, Larsen_mask = run_corr(surf, xvar=xvar, yvar=yvar)
    unmasked_idx = np.where(y_masked.mask[0, :, :] == 0)
    sig = np.ma.masked_array(p, mask=y_masked[0, :, :].mask)
    sig = np.ma.masked_greater(sig, 0.01)
    mean_r_composite = r
    fig, ax = plt.subplots(figsize=(8, 8))
    ax.axis('off')
    # Make masked areas white, instead of colour used for zero in colour map
    ax.contourf(y_masked.mask[0, :, :], cmap='Greys_r')
    # Plot coastline
    ax.contour(surf['lsm'].data, colors='#222222', lw=2)
    # Plot correlations
    c = ax.pcolormesh(np.ma.masked_where((y_masked.mask[0, :, :] == 1.), mean_r_composite), cmap=matplotlib.cm.Spectral_r)#, vmin=-1, vmax=1)
    # Plot 50 m orography contour on top
    ax.contour(surf['orog'].data, colors='#222222', levels=[100])
    # Overlay stippling to indicate signficance
    ax.contourf(sig, hatches='...', alpha = 0.0)
    # Set up colourbar
    cb = plt.colorbar(c, orientation='horizontal')#, ticks=[-1, 0, 1])
    cb.solids.set_edgecolor("face")
    cb.outline.set_edgecolor('dimgrey')
    cb.ax.tick_params(which='both', axis='both', labelsize=24, labelcolor='dimgrey', pad=10, size=0, tick1On=False,
                      tick2On=False)
    cb.outline.set_linewidth(2)
    cb.ax.xaxis.set_ticks_position('bottom')
    cb.set_label('Correlation coefficient', fontsize=24, color='dimgrey', labelpad=30)
    # Save figure
    if host == 'bsl':
        plt.savefig('/users/ellgil82/figures/Hindcast/SMB/' + xvar + '_v_' + yvar + '_composite.png', transparent=True)
        plt.savefig('/users/ellgil82/figures/Hindcast/SMB/' + xvar + '_v_' + yvar + '_composite.eps', transparent=True)
    elif host == 'jasmin':
        plt.savefig('/gws/nopw/j04/bas_climate/users/ellgil82/hindcast/figures/Drivers/' + xvar + '_v_' + yvar + '_composite.png',transparent=True)
        plt.savefig('/gws/nopw/j04/bas_climate/users/ellgil82/hindcast/figures/Drivers/' + xvar + '_v_' + yvar + '_composite.eps',transparent=True)
Exemplo n.º 11
0
def plot_foehn_index(subplot):
    Larsen_box = np.zeros((220, 220))
    Larsen_box[40:135, 90:155] = 1.
    if subplot == False or subplot == 'no':
        fig = plt.figure(frameon=False, figsize=(
            8, 8
        ))  # !!change figure dimensions when you have a larger model domain
        fig.patch.set_visible(False)
        ax = fig.add_subplot(111)  #, projection=ccrs.PlateCarree())
        plt.axis = 'off'
        #cf_var = np.nanmean(surf['foehn_idx'].data, axis = 0)
        ax.text(0.,
                1.1,
                zorder=6,
                transform=ax.transAxes,
                s='e',
                fontsize=36,
                fontweight='bold',
                color='dimgrey')
        ax.text(0.4,
                1.1,
                transform=ax.transAxes,
                s='ANN',
                fontsize=30,
                fontweight='bold',
                color='dimgrey')
        cf_var = mn_foehn
        plt.setp(ax.spines.values(), linewidth=0, color='dimgrey')
        PlotLonMin = np.min(real_lon)
        PlotLonMax = np.max(real_lon)
        PlotLatMin = np.min(real_lat)
        PlotLatMax = np.max(real_lat)
        XTicks = np.linspace(PlotLonMin, PlotLonMax, 3)
        XTickLabels = [None] * len(XTicks)
        for i, XTick in enumerate(XTicks):
            if XTick < 0:
                XTickLabels[i] = '{:.0f}{:s}'.format(np.abs(XTick),
                                                     '$^{\circ}$W')
            else:
                XTickLabels[i] = '{:.0f}{:s}'.format(np.abs(XTick),
                                                     '$^{\circ}$E')  #
        plt.xticks(XTicks, XTickLabels)
        ax.set_xlim(PlotLonMin, PlotLonMax)
        ax.tick_params(which='both', pad=10, labelsize=34, color='dimgrey')
        YTicks = np.linspace(PlotLatMin, PlotLatMax, 3)
        YTickLabels = [None] * len(YTicks)
        for i, YTick in enumerate(YTicks):
            if YTick < 0:
                YTickLabels[i] = '{:.0f}{:s}'.format(np.abs(YTick),
                                                     '$^{\circ}$S')
            else:
                YTickLabels[i] = '{:.0f}{:s}'.format(np.abs(YTick),
                                                     '$^{\circ}$N')
        plt.yticks(YTicks, YTickLabels)
        ax.set_ylim(PlotLatMin, PlotLatMax)
        ax.tick_params(which='both',
                       axis='both',
                       labelsize=34,
                       labelcolor='dimgrey',
                       pad=30,
                       size=0,
                       tick1On=False,
                       tick2On=False)
        bwr_zero = shiftedColorMap(cmap=matplotlib.cm.bwr,
                                   min_val=-0.25,
                                   max_val=0.25,
                                   name='bwr_zero',
                                   var=cf_var.data,
                                   start=0.15,
                                   stop=0.85)  #-6, 3
        xlon, ylat = np.meshgrid(real_lon, real_lat)
        c = ax.pcolormesh(xlon,
                          ylat,
                          np.ma.masked_where((Larsen_box == 0.), cf_var),
                          cmap='Spectral_r',
                          vmin=-.25,
                          vmax=.25)
        #ax.contour(xlon, ylat, shaded, levels= [1.], colors='dimgrey', linewidths = 4, latlon=True)
        #ax.text(0., 1.1, zorder=6, transform=ax.transAxes, s='b', fontsize=32, fontweight='bold', color='dimgrey')
        coast = ax.contour(xlon,
                           ylat,
                           surf['lsm'].data,
                           levels=[0],
                           colors='#222222',
                           lw=2,
                           latlon=True,
                           zorder=2)
        topog = ax.contour(xlon,
                           ylat,
                           surf['orog'].data,
                           levels=[50],
                           colors='#222222',
                           linewidth=1.5,
                           latlon=True,
                           zorder=3)
    elif subplot == True or subplot == 'yes':
        fig, axs = plt.subplots(2, 2, frameon=False, figsize=(
            15, 17
        ))  # !!change figure dimensions when you have a larger model domain
        fig.patch.set_visible(False)
        axs = axs.flatten()
        lab_dict = {
            0: ('a', 'DJF'),
            1: ('b', 'MAM'),
            2: ('c', 'JJA'),
            3: ('d', 'SON')
        }
        plot = 0
        vars = [
            np.nanmean(DJF_FI.data, axis=0),
            np.nanmean(MAM_FI.data, axis=0),
            np.nanmean(JJA_FI.data, axis=0),
            np.nanmean(SON_FI.data, axis=0)
        ]
        for ax in axs:
            plt.sca(ax)
            cf_var = vars[plot]
            plt.axis = 'off'
            plt.setp(ax.spines.values(), linewidth=0, color='dimgrey')
            PlotLonMin = np.min(real_lon)
            PlotLonMax = np.max(real_lon)
            PlotLatMin = np.min(real_lat)
            PlotLatMax = np.max(real_lat)
            XTicks = np.linspace(PlotLonMin, PlotLonMax, 3)
            XTickLabels = [None] * len(XTicks)
            for i, XTick in enumerate(XTicks):
                if XTick < 0:
                    XTickLabels[i] = '{:.0f}{:s}'.format(
                        np.abs(XTick), '$^{\circ}$W')
                else:
                    XTickLabels[i] = '{:.0f}{:s}'.format(
                        np.abs(XTick), '$^{\circ}$E')  #
            plt.xticks(XTicks, XTickLabels)
            ax.set_xlim(PlotLonMin, PlotLonMax)
            ax.tick_params(which='both', pad=10, labelsize=34, color='dimgrey')
            YTicks = np.linspace(PlotLatMin, PlotLatMax, 3)
            YTickLabels = [None] * len(YTicks)
            for i, YTick in enumerate(YTicks):
                if YTick < 0:
                    YTickLabels[i] = '{:.0f}{:s}'.format(
                        np.abs(YTick), '$^{\circ}$S')
                else:
                    YTickLabels[i] = '{:.0f}{:s}'.format(
                        np.abs(YTick), '$^{\circ}$N')
            plt.yticks(YTicks, YTickLabels)
            ax.set_ylim(PlotLatMin, PlotLatMax)
            ax.tick_params(which='both',
                           axis='both',
                           labelsize=34,
                           labelcolor='dimgrey',
                           pad=30,
                           size=0,
                           tick1On=False,
                           tick2On=False)
            bwr_zero = shiftedColorMap(cmap=matplotlib.cm.bwr,
                                       min_val=-.25,
                                       max_val=.25,
                                       name='bwr_zero',
                                       var=cf_var.data,
                                       start=0.15,
                                       stop=0.85)  #-6, 3
            xlon, ylat = np.meshgrid(real_lon, real_lat)
            c = ax.pcolormesh(xlon,
                              ylat,
                              np.ma.masked_where((Larsen_box == 0.), cf_var),
                              cmap='Spectral_r',
                              vmin=-.25,
                              vmax=.25)
            #ax.contour(xlon, ylat, shaded, levels= [1.], colors='dimgrey', linewidths = 4, latlon=True)
            ax.text(0.,
                    1.1,
                    zorder=6,
                    transform=ax.transAxes,
                    s=lab_dict[plot][0],
                    fontsize=32,
                    fontweight='bold',
                    color='dimgrey')
            ax.text(0.4,
                    1.1,
                    transform=ax.transAxes,
                    s=lab_dict[plot][1],
                    fontsize=28,
                    fontweight='bold',
                    color='dimgrey')
            coast = ax.contour(xlon,
                               ylat,
                               surf['lsm'].data,
                               levels=[0],
                               colors='#222222',
                               lw=2,
                               latlon=True,
                               zorder=2)
            topog = ax.contour(xlon,
                               ylat,
                               surf['orog'].data,
                               levels=[50],
                               colors='#222222',
                               linewidth=1.5,
                               latlon=True,
                               zorder=3)
            plot = plot + 1
    CBarXTicks = [
        -.25, 0, .25
    ]  # CLevs[np.arange(0,len(CLevs),int(np.ceil(len(CLevs)/5.)))]
    CBAxes = fig.add_axes([0.35, 0.18, 0.4, 0.02])
    CBar = plt.colorbar(c,
                        cax=CBAxes,
                        orientation='horizontal',
                        ticks=CBarXTicks,
                        extend='both')  #
    CBar.set_label('Mean foehn index \n(dimensionless)',
                   fontsize=34,
                   labelpad=10,
                   color='dimgrey')
    CBar.solids.set_edgecolor("face")
    CBar.outline.set_edgecolor('dimgrey')
    CBar.ax.tick_params(which='both',
                        axis='both',
                        labelsize=34,
                        labelcolor='dimgrey',
                        pad=10,
                        size=0,
                        tick1On=False,
                        tick2On=False)
    CBar.outline.set_linewidth(2)
    plt.subplots_adjust(left=0.2,
                        bottom=0.3,
                        wspace=0.35,
                        hspace=0.35,
                        right=0.85)
    if subplot == True or subplot == 'yes':
        plt.savefig(
            '/gws/nopw/j04/bas_climate/users/ellgil82/hindcast/figures/Mean_foehn_index_seas.png',
            transparent=True)
        plt.savefig(
            '/gws/nopw/j04/bas_climate/users/ellgil82/hindcast/figures/Mean_foehn_index_seas.eps',
            transparent=True)
    else:
        plt.savefig(
            '/gws/nopw/j04/bas_climate/users/ellgil82/hindcast/figures/Mean_foehn_index.png',
            transparent=True)
        plt.savefig(
            '/gws/nopw/j04/bas_climate/users/ellgil82/hindcast/figures/Mean_foehn_index.eps',
            transparent=True)
    plt.show()