Exemplo n.º 1
0
    def __init__(self, lab_version, input_size=128):
        super(ColorCNN_v2, self).__init__()
        MIDLEVEL_FEATURE_SIZE = 128

        if lab_version == 1:
            self.final = nn.Tanh()
        elif lab_version == 2:
            self.final = nn.ReLU()

        ## First half: ResNet
        resnet = models.resnet18(num_classes=365)
        # Change first conv layer to accept single-channel (grayscale) input
        resnet.conv1.weight = nn.Parameter(
            resnet.conv1.weight.sum(dim=1).unsqueeze(1))
        # Extract midlevel features from ResNet-gray
        self.midlevel_resnet = nn.Sequential(*list(resnet.children())[0:6])

        self.upsampling = Upsample(scale_factor=2, mode='nearest')

        ## Second half: Upsampling
        self.upsample = nn.Sequential(
            nn.Conv2d(MIDLEVEL_FEATURE_SIZE,
                      128,
                      kernel_size=3,
                      stride=1,
                      padding=1), nn.BatchNorm2d(128), nn.ReLU(),
            self.upsampling,
            nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64), nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64), nn.ReLU(), self.upsampling,
            nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(32), self.final,
            nn.Conv2d(32, 2, kernel_size=3, stride=1,
                      padding=1), self.upsampling)
Exemplo n.º 2
0
    def __init__(self, lab_version):
        super(ColorCNN_v1, self).__init__()

        self.relu = nn.ReLU()
        
        if lab_version == 1:
            self.final = nn.Tanh()
        elif lab_version == 2:
            self.final = nn.Sigmoid()
        
        self.upsampling = Upsample(scale_factor=2, mode='nearest')
        
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=(3,3), stride=1, padding=1, bias=True)
        self.conv2 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=(3,3), stride=2, padding=1, bias=True)
        self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(3,3), stride=1, padding=1, bias=True)
        self.conv4 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(3,3), stride=2, padding=1, bias=True)
        self.conv5 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=(3,3), stride=1, padding=1, bias=True)
        self.conv6 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=(3,3), stride=2, padding=1, bias=True)
        self.conv7 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=(3,3), stride=1, padding=1, bias=True)
        self.conv8 = nn.Conv2d(in_channels=512, out_channels=256, kernel_size=(3,3), stride=1, padding=1, bias=True)
        self.conv9 = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=(3,3), stride=1, padding=1, bias=True)
        self.conv10 = nn.Conv2d(in_channels=128, out_channels=64, kernel_size=(3,3), stride=1, padding=1, bias=True)
        self.conv11 = nn.Conv2d(in_channels=64, out_channels=32, kernel_size=(3,3), stride=1, padding=1, bias=True)
        self.conv12 = nn.Conv2d(in_channels=32, out_channels=2, kernel_size=(3,3), stride=1, padding=1, bias=True)

        self.color = nn.Sequential(
            self.conv1,
            self.relu,
            self.conv2,
            self.relu,
            self.conv3,
            self.relu,
            self.conv4,
            self.relu,
            self.conv5,
            self.relu,
            self.conv6,
            self.relu,
            self.conv7,
            self.relu,
            self.conv8,
            self.relu,
            self.conv9,
            self.relu,
            self.upsampling,
            self.conv10,
            self.relu,
            self.upsampling,
            self.conv11,
            self.relu,
            self.conv12,
            self.final,
            self.upsampling
        )