Exemplo n.º 1
0
    def test_model21(self):
        model1 = Sequential(self.s, model_table='Simple_CNN1')
        model1.add(InputLayer(3, 224, 224))
        model1.add(Conv2d(8, 7))
        pool1 = Pooling(2)
        model1.add(pool1)
        conv1 = Conv2d(1, 7, src_layers=[pool1])
        conv2 = Conv2d(1, 7, src_layers=[pool1])
        model1.add(conv1)
        model1.add(conv2)
        model1.add(Concat(act='identity', src_layers=[conv1, conv2]))
        model1.add(Pooling(2))
        model1.add(Dense(2))
        model1.add(OutputLayer(act='softmax', n=2))

        if self.data_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR is not set in the environment variables")

        caslib, path = caslibify(self.s, path=self.data_dir+'images.sashdat', task='load')

        self.s.table.loadtable(caslib=caslib,
                               casout={'name': 'eee', 'replace': True},
                               path=path)

        r = model1.fit(data='eee', inputs='_image_', target='_label_', max_epochs=1)
        self.assertTrue(r.severity == 0)

        model1.deploy(self.data_dir, output_format='onnx')
Exemplo n.º 2
0
def onnx_extract_concat(graph, node, layers):
    ''' 
    Construct concat layer from ONNX op 

    Parameters
    ----------
    graph : ONNX GraphProto
        Specifies a GraphProto object.
    node : ONNX NodeProto
        Specifies a NodeProto object.
    layers : list of Layers
        Specifies the existing layers of a model.
    
    Returns
    -------
    :class:`Concat`

    '''
    previous = onnx_find_previous_compute_layer(graph, node)

    if not previous:
        src_names = [find_input_layer_name(graph)]
    else:
        src_names = [p.name for p in previous]

    src = [get_dlpy_layer(layers, i) for i in src_names]

    return Concat(name=node.name, act='identity', src_layers=src)
Exemplo n.º 3
0
    def test_model15(self):
        # test RECTIFIER activation for concat layer
        try:
            import onnx
        except:
            unittest.TestCase.skipTest(self, "onnx not found in the libraries")

        model1 = Sequential(self.s, model_table='Simple_CNN1')
        model1.add(InputLayer(3, 224, 224))
        model1.add(Conv2d(8, 7))
        pool1 = Pooling(2)
        model1.add(pool1)
        conv1 = Conv2d(1, 7, src_layers=[pool1])
        conv2 = Conv2d(1, 7, src_layers=[pool1])
        model1.add(conv1)
        model1.add(conv2)
        model1.add(Concat(act='RECTIFIER', src_layers=[conv1, conv2]))
        model1.add(Pooling(2))
        model1.add(Dense(2))
        model1.add(OutputLayer(act='softmax', n=2))

        if self.data_dir is None:
            unittest.TestCase.skipTest(
                self, "DLPY_DATA_DIR is not set in the environment variables")

        caslib, path, tmp_caslib = caslibify(self.s,
                                             path=self.data_dir +
                                             'images.sashdat',
                                             task='load')

        self.s.table.loadtable(caslib=caslib,
                               casout={
                                   'name': 'eee',
                                   'replace': True
                               },
                               path=path)

        r = model1.fit(data='eee',
                       inputs='_image_',
                       target='_label_',
                       max_epochs=1)
        self.assertTrue(r.severity == 0)

        import tempfile
        tmp_dir_to_dump = tempfile.gettempdir()

        model1.deploy(tmp_dir_to_dump, output_format='onnx')

        import os
        os.remove(os.path.join(tmp_dir_to_dump, "Simple_CNN1.onnx"))

        if (caslib is not None) and tmp_caslib:
            self.s.retrieve('table.dropcaslib',
                            message_level='error',
                            caslib=caslib)
Exemplo n.º 4
0
def initial_block(inp):
    '''
    Defines the initial block of ENet

    Parameters
    ----------
    inp : class:`InputLayer`
    Input layer

    Returns
    -------
    :class:`Concat`
    '''
    x = Conv2d(13, 3, stride=2, padding=1, act='identity',
               include_bias=False)(inp)
    x_bn = BN(act='relu')(x)
    y = Pooling(2)(inp)
    merge = Concat()([x_bn, y])

    return merge
Exemplo n.º 5
0
def YoloV2_MultiSize(conn,
                     anchors,
                     model_table='YoloV2-MultiSize',
                     n_channels=3,
                     width=416,
                     height=416,
                     scale=1.0 / 255,
                     random_mutation=None,
                     act='leaky',
                     act_detection='AUTO',
                     softmax_for_class_prob=True,
                     coord_type='YOLO',
                     max_label_per_image=30,
                     max_boxes=30,
                     n_classes=20,
                     predictions_per_grid=5,
                     do_sqrt=True,
                     grid_number=13,
                     coord_scale=None,
                     object_scale=None,
                     prediction_not_a_object_scale=None,
                     class_scale=None,
                     detection_threshold=None,
                     iou_threshold=None,
                     random_boxes=False,
                     match_anchor_size=None,
                     num_to_force_coord=None,
                     random_flip=None,
                     random_crop=None):
    '''
    Generates a deep learning model with the Yolov2 architecture.

    The model is same as Yolov2 proposed in original paper. In addition to
    Yolov2, the model adds a passthrough layer that brings feature from an
    earlier layer to lower resolution layer.

    Parameters
    ----------
    conn : CAS
        Specifies the connection of the CAS connection.
    anchors : list
        Specifies the anchor box values.
    model_table : string, optional
        Specifies the name of CAS table to store the model.
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3
    width : int, optional
        Specifies the width of the input layer.
        Default: 416
    height : int, optional
        Specifies the height of the input layer.
        Default: 416
    scale : double, optional
        Specifies a scaling factor to be applied to each pixel intensity values.
        Default: 1.0 / 255
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the
        input layer.
        Valid Values: 'none', 'random'
    act : string, optional
        Specifies the activation function for the batch normalization layers.
        Default: 'leaky'
    act_detection : string, optional
        Specifies the activation function for the detection layer.
        Valid Values: AUTO, IDENTITY, LOGISTIC, SIGMOID, TANH, RECTIFIER, RELU, SOFPLUS, ELU, LEAKY, FCMP
        Default: AUTO
    softmax_for_class_prob : bool, optional
        Specifies whether to perform Softmax on class probability per
        predicted object.
        Default: True
    coord_type : string, optional
        Specifies the format of how to represent bounding boxes. For example,
        a bounding box can be represented with the x and y locations of the
        top-left point as well as width and height of the rectangle.
        This format is the 'rect' format. We also support coco and yolo formats.
        Valid Values: 'rect', 'yolo', 'coco'
        Default: 'yolo'
    max_label_per_image : int, optional
        Specifies the maximum number of labels per image in the training.
        Default: 30
    max_boxes : int, optional
        Specifies the maximum number of overall predictions allowed in the
        detection layer.
        Default: 30
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 20
    predictions_per_grid : int, optional
        Specifies the amount of predictions will be done per grid.
        Default: 5
    do_sqrt : bool, optional
        Specifies whether to apply the SQRT function to width and height of
        the object for the cost function.
        Default: True
    grid_number : int, optional
        Specifies the amount of cells to be analyzed for an image. For example,
        if the value is 5, then the image will be divided into a 5 x 5 grid.
        Default: 13
    coord_scale : float, optional
        Specifies the weight for the cost function in the detection layer,
        when objects exist in the grid.
    object_scale : float, optional
        Specifies the weight for object detected for the cost function in
        the detection layer.
    prediction_not_a_object_scale : float, optional
        Specifies the weight for the cost function in the detection layer,
        when objects do not exist in the grid.
    class_scale : float, optional
        Specifies the weight for the class of object detected for the cost
        function in the detection layer.
    detection_threshold : float, optional
        Specifies the threshold for object detection.
    iou_threshold : float, optional
        Specifies the IOU Threshold of maximum suppression in object detection.
    random_boxes : bool, optional
        Randomizing boxes when loading the bounding box information. Default: False
    match_anchor_size : bool, optional
        Whether to force the predicted box match the anchor boxes in sizes for all predictions
    num_to_force_coord : int, optional
        The number of leading chunk of images in training when the algorithm forces predicted objects
        in each grid to be equal to the anchor box sizes, and located at the grid center
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'

    Returns
    -------
    :class:`Sequential`

    References
    ----------
    https://arxiv.org/pdf/1612.08242.pdf

    '''

    model = Sequential(conn=conn, model_table=model_table)

    parameters = locals()
    input_parameters = get_layer_options(input_layer_options, parameters)
    model.add(InputLayer(**input_parameters))

    # conv1 224 416
    model.add(Conv2d(32, width=3, act='identity', include_bias=False,
                     stride=1))
    model.add(BN(act=act))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv2 112 208
    model.add(Conv2d(64, width=3, act='identity', include_bias=False,
                     stride=1))
    model.add(BN(act=act))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv3 56 104
    model.add(
        Conv2d(128, width=3, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))
    # conv4 56 104
    model.add(Conv2d(64, width=1, act='identity', include_bias=False,
                     stride=1))
    model.add(BN(act=act))
    # conv5 56 104
    model.add(
        Conv2d(128, width=3, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv6 28 52
    model.add(
        Conv2d(256, width=3, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))
    # conv7 28 52
    model.add(
        Conv2d(128, width=1, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))
    # conv8 28 52
    model.add(
        Conv2d(256, width=3, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv9 14 26
    model.add(
        Conv2d(512, width=3, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))
    # conv10 14 26
    model.add(
        Conv2d(256, width=1, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))
    # conv11 14 26
    model.add(
        Conv2d(512, width=3, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))
    # conv12 14 26
    model.add(
        Conv2d(256, width=1, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))
    # conv13 14 26
    model.add(
        Conv2d(512, width=3, act='identity', include_bias=False, stride=1))
    pointLayer1 = BN(act=act, name='BN5_13')
    model.add(pointLayer1)
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv14 7 13
    model.add(
        Conv2d(1024, width=3, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))
    # conv15 7 13
    model.add(
        Conv2d(512, width=1, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))
    # conv16 7 13
    model.add(
        Conv2d(1024, width=3, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))
    # conv17 7 13
    model.add(
        Conv2d(512, width=1, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))
    # conv18 7 13
    model.add(
        Conv2d(1024, width=3, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))

    # conv19 7 13
    model.add(
        Conv2d(1024, width=3, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act, name='BN6_19'))
    # conv20 7 13
    model.add(
        Conv2d(1024, width=3, act='identity', include_bias=False, stride=1))
    pointLayer2 = BN(act=act, name='BN6_20')
    model.add(pointLayer2)

    # conv21 7 26 * 26 * 512 -> 26 * 26 * 64
    model.add(
        Conv2d(64,
               width=1,
               act='identity',
               include_bias=False,
               stride=1,
               src_layers=[pointLayer1]))
    model.add(BN(act=act))
    # reshape 26 * 26 * 64 -> 13 * 13 * 256
    pointLayer3 = Reshape(act='identity',
                          width=grid_number,
                          height=grid_number,
                          depth=256,
                          name='reshape1')
    model.add(pointLayer3)

    # concat
    model.add(Concat(act='identity', src_layers=[pointLayer2, pointLayer3]))

    # conv22 7 13
    model.add(
        Conv2d(1024, width=3, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))

    model.add(
        Conv2d((n_classes + 5) * predictions_per_grid,
               width=1,
               act='identity',
               include_bias=False,
               stride=1))

    model.add(
        Detection(act=act_detection,
                  detection_model_type='yolov2',
                  anchors=anchors,
                  softmax_for_class_prob=softmax_for_class_prob,
                  coord_type=coord_type,
                  class_number=n_classes,
                  grid_number=grid_number,
                  predictions_per_grid=predictions_per_grid,
                  do_sqrt=do_sqrt,
                  coord_scale=coord_scale,
                  object_scale=object_scale,
                  prediction_not_a_object_scale=prediction_not_a_object_scale,
                  class_scale=class_scale,
                  detection_threshold=detection_threshold,
                  iou_threshold=iou_threshold,
                  random_boxes=random_boxes,
                  max_label_per_image=max_label_per_image,
                  max_boxes=max_boxes,
                  match_anchor_size=match_anchor_size,
                  num_to_force_coord=num_to_force_coord))

    return model
Exemplo n.º 6
0
def DenseNet121(conn,
                model_table='DENSENET121',
                n_classes=1000,
                conv_channel=64,
                growth_rate=32,
                n_cells=[6, 12, 24, 16],
                n_channels=3,
                reduction=0.5,
                width=224,
                height=224,
                scale=1,
                random_flip=None,
                random_crop=None,
                offsets=(103.939, 116.779, 123.68),
                random_mutation=None):
    '''
    Generates a deep learning model with the DenseNet121 architecture.

    Parameters
    ----------
    conn : CAS
        Specifies the connection of the CAS connection.
    model_table : string
        Specifies the name of CAS table to store the model.
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 1000
    conv_channel : int, optional
        Specifies the number of filters of the first convolution layer.
        Default: 64
    growth_rate : int, optional
        Specifies the growth rate of convolution layers.
        Default: 32
    n_cells : int array length=4, optional
        Specifies the number of dense connection for each DenseNet block.
        Default: [6, 12, 24, 16]
    reduction : double, optional
        Specifies the factor of transition blocks.
        Default: 0.5
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3.
    width : int, optional
        Specifies the width of the input layer.
        Default: 224.
    height : int, optional
        Specifies the height of the input layer.
        Default: 224.
    scale : double, optional
        Specifies a scaling factor to be applied to each pixel intensity values.
        Default: 1.
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'
    offsets : double or iter-of-doubles, optional
        Specifies an offset for each channel in the input data. The final input
        data is set after applying scaling and subtracting the specified offsets.
        Default: (103.939, 116.779, 123.68)
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the input layer.
        Valid Values: 'none', 'random'

    Returns
    -------
    :class:`Sequential`

    References
    ----------
    https://arxiv.org/pdf/1608.06993.pdf

    '''

    conn.retrieve('loadactionset',
                  _messagelevel='error',
                  actionset='deeplearn')

    # get all the parms passed in
    parameters = locals()

    n_blocks = len(n_cells)

    model = Sequential(conn=conn, model_table=model_table)

    # get the input parameters
    input_parameters = get_layer_options(input_layer_options, parameters)
    model.add(InputLayer(**input_parameters))

    # Top layers
    model.add(
        Conv2d(conv_channel,
               width=7,
               act='identity',
               include_bias=False,
               stride=2))
    model.add(BN(act='relu'))
    src_layer = Pooling(width=3, height=3, stride=2, padding=1, pool='max')
    model.add(src_layer)

    for i in range(n_blocks):
        for _ in range(n_cells[i]):

            model.add(BN(act='relu'))
            model.add(
                Conv2d(n_filters=growth_rate * 4,
                       width=1,
                       act='identity',
                       stride=1,
                       include_bias=False))

            model.add(BN(act='relu'))
            src_layer2 = Conv2d(n_filters=growth_rate,
                                width=3,
                                act='identity',
                                stride=1,
                                include_bias=False)

            model.add(src_layer2)
            src_layer = Concat(act='identity',
                               src_layers=[src_layer, src_layer2])
            model.add(src_layer)

            conv_channel += growth_rate

        if i != (n_blocks - 1):
            # transition block
            conv_channel = int(conv_channel * reduction)

            model.add(BN(act='relu'))
            model.add(
                Conv2d(n_filters=conv_channel,
                       width=1,
                       act='identity',
                       stride=1,
                       include_bias=False))
            src_layer = Pooling(width=2, height=2, stride=2, pool='mean')

            model.add(src_layer)

    model.add(BN(act='identity'))
    # Bottom Layers
    model.add(GlobalAveragePooling2D())

    model.add(OutputLayer(act='softmax', n=n_classes))

    return model
Exemplo n.º 7
0
    def _shuffle_unit(inputs,
                      in_channels,
                      out_channels,
                      groups,
                      bottleneck_ratio,
                      strides=2,
                      stage=1,
                      block=1):
        """
        create a shuffle unit

        Parameters
        ----------
        inputs:
            Input tensor of with `channels_last` data format
        in_channels:
            number of input channels
        out_channels:
            number of output channels
        strides:
            An integer or tuple/list of 2 integers,
        groups:
            number of groups per channel
        bottleneck_ratio: float
            bottleneck ratio implies the ratio of bottleneck channels to output channels.
        stage:
            stage number
        block:
            block number

        """
        prefix = 'stage%d/block%d' % (stage, block)

        # if strides >= 2:
        # out_channels -= in_channels

        # default: 1/4 of the output channel of a ShuffleNet Unit
        bottleneck_channels = int(out_channels * bottleneck_ratio)
        groups = (1 if stage == 2 and block == 1 else groups)

        # x = _group_conv(inputs, in_channels, out_channels = bottleneck_channels,
        #                 groups = (1 if stage == 2 and block == 1 else groups),
        #                 name = '%s/1x1_gconv_1' % prefix)

        x = GroupConv2d(bottleneck_channels,
                        n_groups=(1 if stage == 2 and block == 1 else groups),
                        act='identity',
                        width=1,
                        height=1,
                        stride=1,
                        include_bias=False,
                        name='%s/1x1_gconv_1' % prefix)(inputs)

        x = BN(act='relu', name='%s/bn_gconv_1' % prefix)(x)

        x = ChannelShuffle(n_groups=groups,
                           name='%s/channel_shuffle' % prefix)(x)
        # depthwise convolutioin
        x = GroupConv2d(x.shape[-1],
                        n_groups=x.shape[-1],
                        width=3,
                        height=3,
                        include_bias=False,
                        stride=strides,
                        act='identity',
                        name='%s/1x1_dwconv_1' % prefix)(x)
        x = BN(act=block_act, name='%s/bn_dwconv_1' % prefix)(x)

        out_channels = out_channels if strides == 1 else out_channels - in_channels
        x = GroupConv2d(out_channels,
                        n_groups=groups,
                        width=1,
                        height=1,
                        stride=1,
                        act='identity',
                        include_bias=False,
                        name='%s/1x1_gconv_2' % prefix)(x)

        x = BN(act=block_act, name='%s/bn_gconv_2' % prefix)(x)

        if strides < 2:
            ret = Res(act='relu', name='%s/add' % prefix)([x, inputs])
        else:
            avg = Pooling(width=3,
                          height=3,
                          stride=2,
                          pool='mean',
                          name='%s/avg_pool' % prefix)(inputs)
            ret = Concat(act='relu', name='%s/concat' % prefix)([x, avg])

        return ret
Exemplo n.º 8
0
def UNet(conn,
         model_table='UNet',
         n_classes=2,
         n_channels=1,
         width=256,
         height=256,
         scale=1.0 / 255,
         norm_stds=None,
         offsets=None,
         random_mutation=None,
         init=None,
         bn_after_convolutions=False,
         random_flip=None,
         random_crop=None):
    '''
    Generates a deep learning model with the U-Net architecture.

    Parameters
    ----------
    conn : CAS
        Specifies the connection of the CAS connection.
    model_table : string, optional
        Specifies the name of CAS table to store the model.
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 2
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3
    width : int, optional
        Specifies the width of the input layer.
        Default: 256
    height : int, optional
        Specifies the height of the input layer.
        Default: 256
    scale : double, optional
        Specifies a scaling factor to be applied to each pixel intensity values.
        Default: 1.0/255
    norm_stds : double or iter-of-doubles, optional
        Specifies a standard deviation for each channel in the input data.
        The final input data is normalized with specified means and standard deviations.
    offsets : double or iter-of-doubles, optional
        Specifies an offset for each channel in the input data. The final input
        data is set after applying scaling and subtracting the specified offsets.
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the
        input layer.
        Valid Values: 'none', 'random'
    init : str
        Specifies the initialization scheme for convolution layers.
        Valid Values: XAVIER, UNIFORM, NORMAL, CAUCHY, XAVIER1, XAVIER2, MSRA, MSRA1, MSRA2
        Default: None
    bn_after_convolutions : Boolean
        If set to True, a batch normalization layer is added after each convolution layer.
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'

    Returns
    -------
    :class:`Sequential`

    References
    ----------
    https://arxiv.org/pdf/1505.04597

    '''
    parameters = locals()
    input_parameters = get_layer_options(input_layer_options, parameters)
    inp = Input(**input_parameters, name='data')
    act_conv = 'relu'
    bias_conv = True
    if bn_after_convolutions:
        act_conv = 'identity'
        bias_conv = False
    # The model follows UNet paper architecture. The network down-samples by performing max pooling with stride=2
    conv1 = Conv2d(64, 3, act=act_conv, init=init, include_bias=bias_conv)(inp)
    conv1 = BN(act='relu')(conv1) if bn_after_convolutions else conv1
    conv1 = Conv2d(64, 3, act=act_conv, init=init,
                   include_bias=bias_conv)(conv1)
    conv1 = BN(act='relu')(conv1) if bn_after_convolutions else conv1
    pool1 = Pooling(2)(conv1)

    conv2 = Conv2d(128, 3, act=act_conv, init=init,
                   include_bias=bias_conv)(pool1)
    conv2 = BN(act='relu')(conv2) if bn_after_convolutions else conv2
    conv2 = Conv2d(128, 3, act=act_conv, init=init,
                   include_bias=bias_conv)(conv2)
    conv2 = BN(act='relu')(conv2) if bn_after_convolutions else conv2
    pool2 = Pooling(2)(conv2)

    conv3 = Conv2d(256, 3, act=act_conv, init=init,
                   include_bias=bias_conv)(pool2)
    conv3 = BN(act='relu')(conv3) if bn_after_convolutions else conv3
    conv3 = Conv2d(256, 3, act=act_conv, init=init,
                   include_bias=bias_conv)(conv3)
    conv3 = BN(act='relu')(conv3) if bn_after_convolutions else conv3
    pool3 = Pooling(2)(conv3)

    conv4 = Conv2d(512, 3, act=act_conv, init=init,
                   include_bias=bias_conv)(pool3)
    conv4 = BN(act='relu')(conv4) if bn_after_convolutions else conv4
    conv4 = Conv2d(512, 3, act=act_conv, init=init,
                   include_bias=bias_conv)(conv4)
    conv4 = BN(act='relu')(conv4) if bn_after_convolutions else conv4
    pool4 = Pooling(2)(conv4)

    conv5 = Conv2d(1024, 3, act=act_conv, init=init,
                   include_bias=bias_conv)(pool4)
    conv5 = BN(act='relu')(conv5) if bn_after_convolutions else conv5
    conv5 = Conv2d(1024, 3, act=act_conv, init=init,
                   include_bias=bias_conv)(conv5)
    conv5 = BN(act='relu')(conv5) if bn_after_convolutions else conv5
    # the minimum is 1/2^4 of the original image size
    # Our implementation applies Transpose convolution to upsample feature maps.
    tconv6 = Conv2DTranspose(512,
                             3,
                             stride=2,
                             act='relu',
                             padding=1,
                             output_size=conv4.shape,
                             init=init)(conv5)  # 64
    # concatenation layers to combine encoder and decoder features
    merge6 = Concat()([conv4, tconv6])
    conv6 = Conv2d(512, 3, act=act_conv, init=init,
                   include_bias=bias_conv)(merge6)
    conv6 = BN(act='relu')(conv6) if bn_after_convolutions else conv6
    conv6 = Conv2d(512, 3, act=act_conv, init=init,
                   include_bias=bias_conv)(conv6)
    conv6 = BN(act='relu')(conv6) if bn_after_convolutions else conv6

    tconv7 = Conv2DTranspose(256,
                             3,
                             stride=2,
                             act='relu',
                             padding=1,
                             output_size=conv3.shape,
                             init=init)(conv6)  # 128
    merge7 = Concat()([conv3, tconv7])
    conv7 = Conv2d(256, 3, act=act_conv, init=init,
                   include_bias=bias_conv)(merge7)
    conv7 = BN(act='relu')(conv7) if bn_after_convolutions else conv7
    conv7 = Conv2d(256, 3, act=act_conv, init=init,
                   include_bias=bias_conv)(conv7)
    conv7 = BN(act='relu')(conv7) if bn_after_convolutions else conv7

    tconv8 = Conv2DTranspose(128,
                             stride=2,
                             act='relu',
                             padding=1,
                             output_size=conv2.shape,
                             init=init)(conv7)  # 256
    merge8 = Concat()([conv2, tconv8])
    conv8 = Conv2d(128, 3, act=act_conv, init=init,
                   include_bias=bias_conv)(merge8)
    conv8 = BN(act='relu')(conv8) if bn_after_convolutions else conv8
    conv8 = Conv2d(128, 3, act=act_conv, init=init,
                   include_bias=bias_conv)(conv8)
    conv8 = BN(act='relu')(conv8) if bn_after_convolutions else conv8

    tconv9 = Conv2DTranspose(64,
                             stride=2,
                             act='relu',
                             padding=1,
                             output_size=conv1.shape,
                             init=init)(conv8)  # 512
    merge9 = Concat()([conv1, tconv9])
    conv9 = Conv2d(64, 3, act=act_conv, init=init,
                   include_bias=bias_conv)(merge9)
    conv9 = BN(act='relu')(conv9) if bn_after_convolutions else conv9
    conv9 = Conv2d(64, 3, act=act_conv, init=init,
                   include_bias=bias_conv)(conv9)
    conv9 = BN(act='relu')(conv9) if bn_after_convolutions else conv9

    conv9 = Conv2d(n_classes, 3, act='relu', init=init)(conv9)

    seg1 = Segmentation(name='Segmentation_1')(conv9)
    model = Model(conn, inputs=inp, outputs=seg1, model_table=model_table)
    model.compile()
    return model
Exemplo n.º 9
0
def InceptionV3(conn,
                model_table='InceptionV3',
                n_classes=1000,
                n_channels=3,
                width=299,
                height=299,
                scale=1,
                random_flip=None,
                random_crop=None,
                offsets=(103.939, 116.779, 123.68),
                pre_trained_weights=False,
                pre_trained_weights_file=None,
                include_top=False,
                random_mutation=None):
    '''
    Generates a deep learning model with the Inceptionv3 architecture with batch normalization layers.

    Parameters
    ----------
    conn : CAS
        Specifies the CAS connection object.
    model_table : string, optional
        Specifies the name of CAS table to store the model in.
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 1000
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3
    width : int, optional
        Specifies the width of the input layer.
        Default: 299
    height : int, optional
        Specifies the height of the input layer.
        Default: 299
    scale : double, optional
        Specifies a scaling factor to be applied to each pixel intensity values.
        Default: 1.0
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'
    offsets : double or iter-of-doubles, optional
        Specifies an offset for each channel in the input data. The final input
        data is set after applying scaling and subtracting the specified offsets.
        Default: (103.939, 116.779, 123.68)
    pre_trained_weights : bool, optional
        Specifies whether to use the pre-trained weights from ImageNet data set
        Default: False
    pre_trained_weights_file : string, optional
        Specifies the file name for the pretained weights.
        Must be a fully qualified file name of SAS-compatible file (*.caffemodel.h5)
        Note: Required when pre_train_weight=True.
    include_top : bool, optional
        Specifies whether to include pre-trained weights of the top layers,
        i.e. the FC layers
        Default: False
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the input layer.
        Valid Values: 'none', 'random'

    Returns
    -------
    :class:`Sequential`
        If `pre_train_weight` is `False`
    :class:`Model`
        If `pre_train_weight` is `True`

    References
    ----------
    https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf

    '''

    conn.retrieve('loadactionset',
                  _messagelevel='error',
                  actionset='deeplearn')

    # get all the parms passed in
    parameters = locals()

    if not pre_trained_weights:
        model = Sequential(conn=conn, model_table=model_table)

        # get the input parameters
        input_parameters = get_layer_options(input_layer_options, parameters)
        model.add(InputLayer(**input_parameters))

        # 299 x 299 x 3
        model.add(
            Conv2d(n_filters=32,
                   width=3,
                   height=3,
                   stride=2,
                   act='identity',
                   include_bias=False,
                   padding=0))
        model.add(BN(act='relu'))
        # 149 x 149 x 32
        model.add(
            Conv2d(n_filters=32,
                   width=3,
                   height=3,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   padding=0))
        model.add(BN(act='relu'))
        # 147 x 147 x 32
        model.add(
            Conv2d(n_filters=64,
                   width=3,
                   height=3,
                   stride=1,
                   act='identity',
                   include_bias=False))
        model.add(BN(act='relu'))
        # 147 x 147 x 64
        model.add(Pooling(width=3, height=3, stride=2, pool='max', padding=0))

        # 73 x 73 x 64
        model.add(
            Conv2d(n_filters=80,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   padding=0))
        model.add(BN(act='relu'))
        # 73 x 73 x 80
        model.add(
            Conv2d(n_filters=192,
                   width=3,
                   height=3,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   padding=0))
        model.add(BN(act='relu'))
        # 71 x 71 x 192
        pool2 = Pooling(width=3, height=3, stride=2, pool='max', padding=0)
        model.add(pool2)

        # mixed 0: output 35 x 35 x 256

        # branch1x1
        model.add(
            Conv2d(n_filters=64,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[pool2]))
        branch1x1 = BN(act='relu')
        model.add(branch1x1)

        # branch5x5
        model.add(
            Conv2d(n_filters=48,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[pool2]))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=64,
                   width=5,
                   height=5,
                   stride=1,
                   act='identity',
                   include_bias=False))
        branch5x5 = BN(act='relu')
        model.add(branch5x5)

        # branch3x3dbl
        model.add(
            Conv2d(n_filters=64,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[pool2]))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=96,
                   width=3,
                   height=3,
                   stride=1,
                   act='identity',
                   include_bias=False))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=96,
                   width=3,
                   height=3,
                   stride=1,
                   act='identity',
                   include_bias=False))
        branch3x3dbl = BN(act='relu')
        model.add(branch3x3dbl)

        # branch_pool
        model.add(
            Pooling(width=3,
                    height=3,
                    stride=1,
                    pool='average',
                    src_layers=[pool2]))
        model.add(
            Conv2d(n_filters=32,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False))
        branch_pool = BN(act='relu')
        model.add(branch_pool)

        # mixed0 concat
        concat = Concat(
            act='identity',
            src_layers=[branch1x1, branch5x5, branch3x3dbl, branch_pool])
        model.add(concat)

        # mixed 1: output 35 x 35 x 288

        # branch1x1
        model.add(
            Conv2d(n_filters=64,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[concat]))
        branch1x1 = BN(act='relu')
        model.add(branch1x1)

        # branch5x5
        model.add(
            Conv2d(n_filters=48,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[concat]))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=64,
                   width=5,
                   height=5,
                   stride=1,
                   act='identity',
                   include_bias=False))
        branch5x5 = BN(act='relu')
        model.add(branch5x5)

        # branch3x3dbl
        model.add(
            Conv2d(n_filters=64,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[concat]))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=96,
                   width=3,
                   height=3,
                   stride=1,
                   act='identity',
                   include_bias=False))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=96,
                   width=3,
                   height=3,
                   stride=1,
                   act='identity',
                   include_bias=False))
        branch3x3dbl = BN(act='relu')
        model.add(branch3x3dbl)

        # branch_pool
        model.add(
            Pooling(width=3,
                    height=3,
                    stride=1,
                    pool='average',
                    src_layers=[concat]))
        model.add(
            Conv2d(n_filters=64,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False))
        branch_pool = BN(act='relu')
        model.add(branch_pool)

        # mixed1 concat
        concat = Concat(
            act='identity',
            src_layers=[branch1x1, branch5x5, branch3x3dbl, branch_pool])
        model.add(concat)

        # mixed 2: output 35 x 35 x 288

        # branch1x1
        model.add(
            Conv2d(n_filters=64,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[concat]))
        branch1x1 = BN(act='relu')
        model.add(branch1x1)

        # branch5x5
        model.add(
            Conv2d(n_filters=48,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[concat]))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=64,
                   width=5,
                   height=5,
                   stride=1,
                   act='identity',
                   include_bias=False))
        branch5x5 = BN(act='relu')
        model.add(branch5x5)

        # branch3x3dbl
        model.add(
            Conv2d(n_filters=64,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[concat]))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=96,
                   width=3,
                   height=3,
                   stride=1,
                   act='identity',
                   include_bias=False))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=96,
                   width=3,
                   height=3,
                   stride=1,
                   act='identity',
                   include_bias=False))
        branch3x3dbl = BN(act='relu')
        model.add(branch3x3dbl)

        # branch_pool
        model.add(
            Pooling(width=3,
                    height=3,
                    stride=1,
                    pool='average',
                    src_layers=[concat]))
        model.add(
            Conv2d(n_filters=64,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False))
        branch_pool = BN(act='relu')
        model.add(branch_pool)

        # mixed2 concat
        concat = Concat(
            act='identity',
            src_layers=[branch1x1, branch5x5, branch3x3dbl, branch_pool])
        model.add(concat)

        # mixed 3: output 17 x 17 x 768

        # branch3x3
        model.add(
            Conv2d(n_filters=384,
                   width=3,
                   height=3,
                   stride=2,
                   act='identity',
                   include_bias=False,
                   padding=0,
                   src_layers=[concat]))
        branch3x3 = BN(act='relu')
        model.add(branch3x3)

        # branch3x3dbl
        model.add(
            Conv2d(n_filters=64,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[concat]))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=96,
                   width=3,
                   height=3,
                   stride=1,
                   act='identity',
                   include_bias=False))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=96,
                   width=3,
                   height=3,
                   stride=2,
                   act='identity',
                   include_bias=False,
                   padding=0))
        branch3x3dbl = BN(act='relu')
        model.add(branch3x3dbl)

        # branch_pool
        branch_pool = Pooling(width=3,
                              height=3,
                              stride=2,
                              pool='max',
                              padding=0,
                              src_layers=[concat])
        model.add(branch_pool)

        # mixed3 concat
        concat = Concat(act='identity',
                        src_layers=[branch3x3, branch3x3dbl, branch_pool])
        model.add(concat)

        # mixed 4: output 17 x 17 x 768

        # branch1x1
        model.add(
            Conv2d(n_filters=192,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[concat]))
        branch1x1 = BN(act='relu')
        model.add(branch1x1)

        # branch7x7
        model.add(
            Conv2d(n_filters=128,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[concat]))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=128,
                   width=7,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=192,
                   width=1,
                   height=7,
                   stride=1,
                   act='identity',
                   include_bias=False))
        branch7x7 = BN(act='relu')
        model.add(branch7x7)

        # branch7x7dbl
        model.add(
            Conv2d(n_filters=128,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[concat]))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=128,
                   width=1,
                   height=7,
                   stride=1,
                   act='identity',
                   include_bias=False))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=128,
                   width=7,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=128,
                   width=1,
                   height=7,
                   stride=1,
                   act='identity',
                   include_bias=False))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=192,
                   width=7,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False))
        branch7x7dbl = BN(act='relu')
        model.add(branch7x7dbl)

        # branch_pool
        model.add(
            Pooling(width=3,
                    height=3,
                    stride=1,
                    pool='average',
                    src_layers=[concat]))
        model.add(
            Conv2d(n_filters=192,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False))
        branch_pool = BN(act='relu')
        model.add(branch_pool)

        # mixed4 concat
        concat = Concat(
            act='identity',
            src_layers=[branch1x1, branch7x7, branch7x7dbl, branch_pool])
        model.add(concat)

        # mixed 5, 6: output 17 x 17 x 768
        for i in range(2):
            # branch1x1
            model.add(
                Conv2d(n_filters=192,
                       width=1,
                       height=1,
                       stride=1,
                       act='identity',
                       include_bias=False,
                       src_layers=[concat]))
            branch1x1 = BN(act='relu')
            model.add(branch1x1)

            # branch7x7
            model.add(
                Conv2d(n_filters=160,
                       width=1,
                       height=1,
                       stride=1,
                       act='identity',
                       include_bias=False,
                       src_layers=[concat]))
            model.add(BN(act='relu'))
            model.add(
                Conv2d(n_filters=160,
                       width=7,
                       height=1,
                       stride=1,
                       act='identity',
                       include_bias=False))
            model.add(BN(act='relu'))
            model.add(
                Conv2d(n_filters=192,
                       width=1,
                       height=7,
                       stride=1,
                       act='identity',
                       include_bias=False))
            branch7x7 = BN(act='relu')
            model.add(branch7x7)

            # branch7x7dbl
            model.add(
                Conv2d(n_filters=160,
                       width=1,
                       height=1,
                       stride=1,
                       act='identity',
                       include_bias=False,
                       src_layers=[concat]))
            model.add(BN(act='relu'))
            model.add(
                Conv2d(n_filters=160,
                       width=1,
                       height=7,
                       stride=1,
                       act='identity',
                       include_bias=False))
            model.add(BN(act='relu'))
            model.add(
                Conv2d(n_filters=160,
                       width=7,
                       height=1,
                       stride=1,
                       act='identity',
                       include_bias=False))
            model.add(BN(act='relu'))
            model.add(
                Conv2d(n_filters=160,
                       width=1,
                       height=7,
                       stride=1,
                       act='identity',
                       include_bias=False))
            model.add(BN(act='relu'))
            model.add(
                Conv2d(n_filters=192,
                       width=7,
                       height=1,
                       stride=1,
                       act='identity',
                       include_bias=False))
            branch7x7dbl = BN(act='relu')
            model.add(branch7x7dbl)

            # branch_pool
            model.add(
                Pooling(width=3,
                        height=3,
                        stride=1,
                        pool='average',
                        src_layers=[concat]))
            model.add(
                Conv2d(n_filters=192,
                       width=1,
                       height=1,
                       stride=1,
                       act='identity',
                       include_bias=False))
            branch_pool = BN(act='relu')
            model.add(branch_pool)

            # concat
            concat = Concat(
                act='identity',
                src_layers=[branch1x1, branch7x7, branch7x7dbl, branch_pool])
            model.add(concat)

        # mixed 7: output 17 x 17 x 768

        # branch1x1
        model.add(
            Conv2d(n_filters=192,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[concat]))
        branch1x1 = BN(act='relu')
        model.add(branch1x1)

        # branch7x7
        model.add(
            Conv2d(n_filters=192,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[concat]))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=192,
                   width=7,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=192,
                   width=1,
                   height=7,
                   stride=1,
                   act='identity',
                   include_bias=False))
        branch7x7 = BN(act='relu')
        model.add(branch7x7)

        # branch7x7dbl
        model.add(
            Conv2d(n_filters=192,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[concat]))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=192,
                   width=1,
                   height=7,
                   stride=1,
                   act='identity',
                   include_bias=False))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=192,
                   width=7,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=192,
                   width=1,
                   height=7,
                   stride=1,
                   act='identity',
                   include_bias=False))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=192,
                   width=7,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False))
        branch7x7dbl = BN(act='relu')
        model.add(branch7x7dbl)

        # branch_pool
        model.add(
            Pooling(width=3,
                    height=3,
                    stride=1,
                    pool='average',
                    src_layers=[concat]))
        model.add(
            Conv2d(n_filters=192,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False))
        branch_pool = BN(act='relu')
        model.add(branch_pool)

        # mixed7 concat
        concat = Concat(
            act='identity',
            src_layers=[branch1x1, branch7x7, branch7x7dbl, branch_pool])
        model.add(concat)

        # mixed 8: output 8 x 8 x 1280

        # branch3x3
        model.add(
            Conv2d(n_filters=192,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[concat]))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=320,
                   width=3,
                   height=3,
                   stride=2,
                   act='identity',
                   include_bias=False,
                   padding=0))
        branch3x3 = BN(act='relu')
        model.add(branch3x3)

        # branch7x7x3
        model.add(
            Conv2d(n_filters=192,
                   width=1,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False,
                   src_layers=[concat]))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=192,
                   width=7,
                   height=1,
                   stride=1,
                   act='identity',
                   include_bias=False))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=192,
                   width=1,
                   height=7,
                   stride=1,
                   act='identity',
                   include_bias=False))
        model.add(BN(act='relu'))
        model.add(
            Conv2d(n_filters=192,
                   width=3,
                   height=3,
                   stride=2,
                   act='identity',
                   include_bias=False,
                   padding=0))
        branch7x7x3 = BN(act='relu')
        model.add(branch7x7x3)

        # branch_pool
        branch_pool = Pooling(width=3,
                              height=3,
                              stride=2,
                              pool='max',
                              padding=0,
                              src_layers=[concat])
        model.add(branch_pool)

        # mixed8 concat
        concat = Concat(act='identity',
                        src_layers=[branch3x3, branch7x7x3, branch_pool])
        model.add(concat)

        # mixed 9, 10:  output 8 x 8 x 2048
        for i in range(2):
            # branch1x1
            model.add(
                Conv2d(n_filters=320,
                       width=1,
                       height=1,
                       stride=1,
                       act='identity',
                       include_bias=False,
                       src_layers=[concat]))
            branch1x1 = BN(act='relu')
            model.add(branch1x1)

            # branch3x3
            model.add(
                Conv2d(n_filters=384,
                       width=1,
                       height=1,
                       stride=1,
                       act='identity',
                       include_bias=False,
                       src_layers=[concat]))
            branch3x3 = BN(act='relu')
            model.add(branch3x3)

            model.add(
                Conv2d(n_filters=384,
                       width=3,
                       height=1,
                       stride=1,
                       act='identity',
                       include_bias=False,
                       src_layers=[branch3x3]))
            branch3x3_1 = BN(act='relu')
            model.add(branch3x3_1)

            model.add(
                Conv2d(n_filters=384,
                       width=1,
                       height=3,
                       stride=1,
                       act='identity',
                       include_bias=False,
                       src_layers=[branch3x3]))
            branch3x3_2 = BN(act='relu')
            model.add(branch3x3_2)

            branch3x3 = Concat(act='identity',
                               src_layers=[branch3x3_1, branch3x3_2])
            model.add(branch3x3)

            # branch3x3dbl
            model.add(
                Conv2d(n_filters=448,
                       width=1,
                       height=1,
                       stride=1,
                       act='identity',
                       include_bias=False,
                       src_layers=[concat]))
            model.add(BN(act='relu'))
            model.add(
                Conv2d(n_filters=384,
                       width=3,
                       height=3,
                       stride=1,
                       act='identity',
                       include_bias=False))
            branch3x3dbl = BN(act='relu')
            model.add(branch3x3dbl)

            model.add(
                Conv2d(n_filters=384,
                       width=3,
                       height=1,
                       stride=1,
                       act='identity',
                       include_bias=False,
                       src_layers=[branch3x3dbl]))
            branch3x3dbl_1 = BN(act='relu')
            model.add(branch3x3dbl_1)

            model.add(
                Conv2d(n_filters=384,
                       width=1,
                       height=3,
                       stride=1,
                       act='identity',
                       include_bias=False,
                       src_layers=[branch3x3dbl]))
            branch3x3dbl_2 = BN(act='relu')
            model.add(branch3x3dbl_2)

            branch3x3dbl = Concat(act='identity',
                                  src_layers=[branch3x3dbl_1, branch3x3dbl_2])
            model.add(branch3x3dbl)

            # branch_pool
            model.add(
                Pooling(width=3,
                        height=3,
                        stride=1,
                        pool='average',
                        src_layers=[concat]))
            model.add(
                Conv2d(n_filters=192,
                       width=1,
                       height=1,
                       stride=1,
                       act='identity',
                       include_bias=False))
            branch_pool = BN(act='relu')
            model.add(branch_pool)

            # concat
            concat = Concat(
                act='identity',
                src_layers=[branch1x1, branch3x3, branch3x3dbl, branch_pool])
            model.add(concat)

        # calculate dimensions for global average pooling
        w = max((width - 75) // 32 + 1, 1)
        h = max((height - 75) // 32 + 1, 1)

        # global average pooling
        model.add(
            Pooling(width=w,
                    height=h,
                    stride=1,
                    pool='average',
                    padding=0,
                    src_layers=[concat]))

        # output layer
        model.add(OutputLayer(n=n_classes))

        return model

    else:
        if pre_trained_weights_file is None:
            raise ValueError(
                '\nThe pre-trained weights file is not specified.\n'
                'Please follow the steps below to attach the '
                'pre-trained weights:\n'
                '1. Go to the website '
                'https://support.sas.com/documentation/prod-p/vdmml/zip/ '
                'and download the associated weight file.\n'
                '2. Upload the *.h5 file to '
                'a server side directory which the CAS '
                'session has access to.\n'
                '3. Specify the pre_train_weight_file using '
                'the fully qualified server side path.')
        print('NOTE: Scale is set to 1/127.5, and offsets 1 to '
              'match Keras preprocessing.')
        model_cas = model_inceptionv3.InceptionV3_Model(
            s=conn,
            model_table=model_table,
            n_channels=n_channels,
            width=width,
            height=height,
            random_crop=random_crop,
            offsets=[1, 1, 1],
            random_flip=random_flip,
            random_mutation=random_mutation)

        if include_top:
            if n_classes != 1000:
                warnings.warn(
                    'If include_top = True, '
                    'n_classes will be set to 1000.', RuntimeWarning)
            model = Model.from_table(model_cas)
            model.load_weights(path=pre_trained_weights_file, labels=True)
            return model

        else:
            model = Model.from_table(model_cas, display_note=False)
            model.load_weights(path=pre_trained_weights_file)

            weight_table_options = model.model_weights.to_table_params()
            weight_table_options.update(dict(where='_LayerID_<218'))
            model._retrieve_('table.partition',
                             table=weight_table_options,
                             casout=dict(
                                 replace=True,
                                 **model.model_weights.to_table_params()))
            model._retrieve_('deeplearn.removelayer',
                             model=model_table,
                             name='predictions')
            model._retrieve_('deeplearn.addlayer',
                             model=model_table,
                             name='predictions',
                             layer=dict(type='output',
                                        n=n_classes,
                                        act='softmax'),
                             srcLayers=['avg_pool'])
            model = Model.from_table(conn.CASTable(model_table))

            return model