Exemplo n.º 1
0
def MobileNetV1(conn,
                model_table='MobileNetV1',
                n_classes=1000,
                n_channels=3,
                width=224,
                height=224,
                random_flip=None,
                random_crop=None,
                random_mutation=None,
                norm_stds=(255 * 0.229, 255 * 0.224, 255 * 0.225),
                offsets=(255 * 0.485, 255 * 0.456, 255 * 0.406),
                alpha=1,
                depth_multiplier=1):
    '''
    Generates a deep learning model with the MobileNetV1 architecture.
    The implementation is revised based on
    https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet.py

    Parameters
    ----------
    conn : CAS
        Specifies the CAS connection object.
    model_table : string or dict or CAS table, optional
        Specifies the CAS table to store the deep learning model.
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 1000
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3
    width : int, optional
        Specifies the width of the input layer.
        Default: 32
    height : int, optional
        Specifies the height of the input layer.
        Default: 32
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the input layer.
        Valid Values: 'none', 'random'
    norm_stds : double or iter-of-doubles, optional
        Specifies a standard deviation for each channel in the input data.
        The final input data is normalized with specified means and standard deviations.
        Default: (255*0.229, 255*0.224, 255*0.225)
    offsets : double or iter-of-doubles, optional
        Specifies an offset for each channel in the input data. The final input
        data is set after applying scaling and subtracting the specified offsets.
        Default: (255*0.485, 255*0.456, 255*0.406)
    alpha : int, optional
        Specifies the width multiplier in the MobileNet paper
        Default: 1
    depth_multiplier : int, optional
        Specifies the number of depthwise convolution output channels for each input channel.
        Default: 1

    Returns
    -------
    :class:`Model`

    References
    ----------
    https://arxiv.org/pdf/1605.07146.pdf

    '''
    def _conv_block(inputs, filters, alpha, kernel=3, stride=1):
        """
        Adds an initial convolution layer (with batch normalization

        inputs:
            Input tensor
        filters:
            the dimensionality of the output space
        alpha: controls the width of the network.
            - If `alpha` < 1.0, proportionally decreases the number
                of filters in each layer.
            - If `alpha` > 1.0, proportionally increases the number
                of filters in each layer.
            - If `alpha` = 1, default number of filters from the paper
                 are used at each layer.
        kernel:
            specifying the width and height of the 2D convolution window.
        strides:
            the strides of the convolution

        """
        filters = int(filters * alpha)
        x = Conv2d(filters,
                   kernel,
                   act='identity',
                   include_bias=False,
                   stride=stride,
                   name='conv1')(inputs)
        x = BN(name='conv1_bn', act='relu')(x)
        return x, filters

    def _depthwise_conv_block(inputs,
                              n_groups,
                              pointwise_conv_filters,
                              alpha,
                              depth_multiplier=1,
                              stride=1,
                              block_id=1):
        """Adds a depthwise convolution block.

        inputs:
            Input tensor
        n_groups : int
            number of groups
        pointwise_conv_filters:
            the dimensionality of the output space
        alpha: controls the width of the network.
            - If `alpha` < 1.0, proportionally decreases the number
                of filters in each layer.
            - If `alpha` > 1.0, proportionally increases the number
                of filters in each layer.
            - If `alpha` = 1, default number of filters from the paper
                 are used at each layer.
        depth_multiplier:
            The number of depthwise convolution output channels
        strides: An integer or tuple/list of 2 integers,
            specifying the strides of the convolution
        block_id: Integer, a unique identification designating
            the block number.

        """
        pointwise_conv_filters = int(pointwise_conv_filters * alpha)

        x = GroupConv2d(n_groups * depth_multiplier,
                        n_groups,
                        3,
                        stride=stride,
                        act='identity',
                        include_bias=False,
                        name='conv_dw_%d' % block_id)(inputs)
        x = BN(name='conv_dw_%d_bn' % block_id, act='relu')(x)

        x = Conv2d(pointwise_conv_filters,
                   1,
                   act='identity',
                   include_bias=False,
                   stride=1,
                   name='conv_pw_%d' % block_id)(x)
        x = BN(name='conv_pw_%d_bn' % block_id, act='relu')(x)
        return x, pointwise_conv_filters

    parameters = locals()
    input_parameters = get_layer_options(input_layer_options, parameters)
    inp = Input(**input_parameters, name='data')
    # the model down-sampled for 5 times by performing stride=2 convolution on
    # conv_dw_1, conv_dw_2, conv_dw_4, conv_dw_6, conv_dw_12
    # for each block, we use depthwise convolution with kernel=3 and point-wise convolution to save computation
    x, depth = _conv_block(inp, 32, alpha, stride=2)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     64,
                                     alpha,
                                     depth_multiplier,
                                     block_id=1)

    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     128,
                                     alpha,
                                     depth_multiplier,
                                     stride=2,
                                     block_id=2)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     128,
                                     alpha,
                                     depth_multiplier,
                                     block_id=3)

    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     256,
                                     alpha,
                                     depth_multiplier,
                                     stride=2,
                                     block_id=4)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     256,
                                     alpha,
                                     depth_multiplier,
                                     block_id=5)

    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     512,
                                     alpha,
                                     depth_multiplier,
                                     stride=2,
                                     block_id=6)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     512,
                                     alpha,
                                     depth_multiplier,
                                     block_id=7)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     512,
                                     alpha,
                                     depth_multiplier,
                                     block_id=8)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     512,
                                     alpha,
                                     depth_multiplier,
                                     block_id=9)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     512,
                                     alpha,
                                     depth_multiplier,
                                     block_id=10)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     512,
                                     alpha,
                                     depth_multiplier,
                                     block_id=11)

    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     1024,
                                     alpha,
                                     depth_multiplier,
                                     stride=2,
                                     block_id=12)
    x, depth = _depthwise_conv_block(x,
                                     depth,
                                     1024,
                                     alpha,
                                     depth_multiplier,
                                     block_id=13)

    x = GlobalAveragePooling2D(name="Global_avg_pool")(x)
    x = OutputLayer(n=n_classes)(x)

    model = Model(conn, inp, x, model_table)
    model.compile()

    return model
Exemplo n.º 2
0
def MobileNetV2(conn,
                model_table='MobileNetV2',
                n_classes=1000,
                n_channels=3,
                width=224,
                height=224,
                norm_stds=(255 * 0.229, 255 * 0.224, 255 * 0.225),
                offsets=(255 * 0.485, 255 * 0.456, 255 * 0.406),
                random_flip=None,
                random_crop=None,
                random_mutation=None,
                alpha=1):
    '''
    Generates a deep learning model with the MobileNetV2 architecture.
    The implementation is revised based on
    https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet_v2.py

    Parameters
    ----------
    conn : CAS
        Specifies the CAS connection object.
    model_table : string or dict or CAS table, optional
        Specifies the CAS table to store the deep learning model.
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 1000
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3
    width : int, optional
        Specifies the width of the input layer.
        Default: 224
    height : int, optional
        Specifies the height of the input layer.
        Default: 224
    norm_stds : double or iter-of-doubles, optional
        Specifies a standard deviation for each channel in the input data.
        The final input data is normalized with specified means and standard deviations.
        Default: (255 * 0.229, 255 * 0.224, 255 * 0.225)
    offsets : double or iter-of-doubles, optional
        Specifies an offset for each channel in the input data. The final input
        data is set after applying scaling and subtracting the specified offsets.
        Default: (255*0.485, 255*0.456, 255*0.406)
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the input layer.
        Valid Values: 'none', 'random'
    alpha : int, optional
        Specifies the width multiplier in the MobileNet paper
        Default: 1

    alpha : int, optional

    Returns
    -------
    :class:`Model`

    References
    ----------
    https://arxiv.org/abs/1801.04381

    '''
    def _make_divisible(v, divisor, min_value=None):
        # make number of channel divisible
        if min_value is None:
            min_value = divisor
        new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
        # Make sure that round down does not go down by more than 10%.
        if new_v < 0.9 * v:
            new_v += divisor
        return new_v

    def _inverted_res_block(inputs, in_channels, expansion, stride, alpha,
                            filters, block_id):
        """
        Inverted Residual Block

        Parameters
        ----------
        inputs:
            Input tensor
        in_channels:
            Specifies the number of input tensor's channel
        expansion:
            expansion factor always applied to the input size.
        stride:
            the strides of the convolution
        alpha:
            width multiplier.
        filters:
            the dimensionality of the output space.
        block_id:
            block id used for naming layers

        """
        pointwise_conv_filters = int(filters * alpha)
        pointwise_filters = _make_divisible(pointwise_conv_filters, 8)
        x = inputs
        prefix = 'block_{}_'.format(block_id)
        n_groups = in_channels

        if block_id:
            # Expand
            n_groups = expansion * in_channels
            x = Conv2d(expansion * in_channels,
                       1,
                       include_bias=False,
                       act='identity',
                       name=prefix + 'expand')(x)
            x = BN(name=prefix + 'expand_BN', act='identity')(x)
        else:
            prefix = 'expanded_conv_'

        # Depthwise
        x = GroupConv2d(n_groups,
                        n_groups,
                        3,
                        stride=stride,
                        act='identity',
                        include_bias=False,
                        name=prefix + 'depthwise')(x)
        x = BN(name=prefix + 'depthwise_BN', act='relu')(x)

        # Project
        x = Conv2d(pointwise_filters,
                   1,
                   include_bias=False,
                   act='identity',
                   name=prefix + 'project')(x)
        x = BN(name=prefix + 'project_BN',
               act='identity')(x)  # identity activation on narrow tensor

        if in_channels == pointwise_filters and stride == 1:
            return Res(name=prefix + 'add')([inputs, x]), pointwise_filters
        return x, pointwise_filters

    parameters = locals()
    input_parameters = get_layer_options(input_layer_options, parameters)
    inp = Input(**input_parameters, name='data')
    # compared with mobilenetv1, v2 introduces inverted residual structure.
    # and Non-linearities in narrow layers are removed.
    # inverted residual block does three convolutins: first is 1*1 convolution, second is depthwise convolution,
    # third is 1*1 convolution but without any non-linearity
    first_block_filters = _make_divisible(32 * alpha, 8)
    x = Conv2d(first_block_filters,
               3,
               stride=2,
               include_bias=False,
               name='Conv1',
               act='identity')(inp)
    x = BN(name='bn_Conv1', act='relu')(x)

    x, n_channels = _inverted_res_block(x,
                                        first_block_filters,
                                        filters=16,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=1,
                                        block_id=0)

    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=24,
                                        alpha=alpha,
                                        stride=2,
                                        expansion=6,
                                        block_id=1)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=24,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=2)

    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=32,
                                        alpha=alpha,
                                        stride=2,
                                        expansion=6,
                                        block_id=3)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=32,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=4)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=32,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=5)

    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=64,
                                        alpha=alpha,
                                        stride=2,
                                        expansion=6,
                                        block_id=6)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=64,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=7)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=64,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=8)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=64,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=9)

    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=96,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=10)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=96,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=11)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=96,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=12)

    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=160,
                                        alpha=alpha,
                                        stride=2,
                                        expansion=6,
                                        block_id=13)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=160,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=14)
    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=160,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=15)

    x, n_channels = _inverted_res_block(x,
                                        n_channels,
                                        filters=320,
                                        alpha=alpha,
                                        stride=1,
                                        expansion=6,
                                        block_id=16)

    # no alpha applied to last conv as stated in the paper:
    # if the width multiplier is greater than 1 we increase the number of output channels
    if alpha > 1.0:
        last_block_filters = _make_divisible(1280 * alpha, 8)
    else:
        last_block_filters = 1280

    x = Conv2d(last_block_filters,
               1,
               include_bias=False,
               name='Conv_1',
               act='identity')(x)
    x = BN(name='Conv_1_bn', act='relu')(x)

    x = GlobalAveragePooling2D(name="Global_avg_pool")(x)
    x = OutputLayer(n=n_classes)(x)

    model = Model(conn, inp, x, model_table)
    model.compile()

    return model
Exemplo n.º 3
0
def EfficientNet(conn, model_table='EfficientNet', n_classes=100, n_channels=3, width=224, height=224,
                 width_coefficient=1, depth_coefficient=1, dropout_rate=0.2, drop_connect_rate=0, depth_divisor=8,
                 activation_fn='relu', blocks_args=_MBConv_BLOCKS_ARGS,
                 offsets=(255*0.406, 255*0.456, 255*0.485), norm_stds=(255*0.225, 255*0.224, 255*0.229),
                 random_flip=None, random_crop=None, random_mutation=None):
    '''
    Generates a deep learning model with the EfficientNet architecture.
    The implementation is revised based on
    https://github.com/keras-team/keras-applications/blob/master/keras_applications/efficientnet.py

    Parameters
    ----------
    conn : CAS
        Specifies the CAS connection object.
    model_table : string or dict or CAS table, optional
        Specifies the CAS table to store the deep learning model.
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 1000
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3
    width : int, optional
        Specifies the width of the input layer.
        Default: 224
    height : int, optional
        Specifies the height of the input layer.
        Default: 224
    width_coefficient: double, optional
        Specifies the scale coefficient for network width.
        Default: 1.0
    depth_coefficient: double, optional
        Specifies the scale coefficient for network depth.
        Default: 1.0
    dropout_rate: double, optional
        Specifies the dropout rate before final classifier layer.
        Default: 0.2
    drop_connect_rate: double, optional
        Specifies the dropout rate at skip connections.
        Default: 0.0
    depth_divisor: integer, optional
        Specifies the unit of network width.
        Default: 8
    activation_fn: string, optional
        Specifies the activation function
    blocks_args: list of dicts
         Specifies parameters to construct blocks for the efficientnet model.
    offsets : double or iter-of-doubles, optional
        Specifies an offset for each channel in the input data. The final input
        data is set after applying scaling and subtracting the specified offsets.
        Default: (255*0.406, 255*0.456, 255*0.485)
    norm_stds : double or iter-of-doubles, optional
        Specifies a standard deviation for each channel in the input data.
        The final input data is normalized with specified means and standard deviations.
        Default: (255*0.225, 255*0.224, 255*0.229)
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the input layer.
        Valid Values: 'none', 'random'


    Returns
    -------
    :class:`Model`

    References
    ----------
    https://arxiv.org/pdf/1905.11946.pdf

    '''

    def round_filters(filters, width_coefficient, depth_divisor):
        '''
        round the number of the scaled width, which is for width scaling in efficientnet.
        Parameters
        ----------
        filters: integer
            Specifies the number of filters.
        width_coefficient: double
            Specifies the scale coefficient for network width.
        depth_divisor: integer
            Specifies the unit of network width.
        '''

        filters *= width_coefficient
        new_filters = int(filters + depth_divisor / 2) // depth_divisor * depth_divisor
        new_filters = max(depth_divisor, new_filters)
        # Make sure that round down does not go down by more than 10%.
        if new_filters < 0.9 * filters:
            new_filters += depth_divisor
        return int(new_filters)

    def round_repeats(repeats, depth_coefficient):
        '''
        round the number of the scaled depth, which is for depth scaling in effcientnet.
        Parameters
        ----------
        repeats: integer
            Specifies the number of repeats for a block.
        depth_coefficient: double
            Specifies the scale coefficient for a block.
        '''

        return int(math.ceil(depth_coefficient * repeats))

    def _MBConvBlock(inputs, in_channels, out_channels, ksize, stride, expansion, se_ratio, stage_id, block_id,
                     noskip=False, activation_fn='relu'):
        '''
        Inverted Residual Block

        Parameters
        ----------
        inputs: input tensor
            Speecify input tensor for block.
        in_channels: integer
            Specifies the number of input tensor's channel.
        out_channels: integer
            Specifies the number of output tensor's channel
        ksize:
            Specifies the kernel size of the convolution
        stride: integer
            Specifies the stride of the convolution
        expansion: double
            Specifies the expansion factor for the input layer.
        se_ratio: double
            Specifies the ratio to squeeze the input filters for squeeze-and-excitation block.
        stage_id: integer
            Specifies stage id for naming layers
        block_id:
            Specifies block id for naming layers
        noskip: bool
            Specifies whether the skip connection is used. By default, the skip connection is used.
        activation_fn:
            Specifies activation function
        '''

        # mobilenetv2 block is also known as inverted residual block, which consists of three convolutions:
        # the first is 1*1 convolution for expansion
        # the second is depthwise convolution
        # the third is 1*1 convolution without any non-linearity for projection

        x = inputs
        prefix = 'stage_{}_block_{}'.format(stage_id, block_id)
        n_groups = in_channels  # for expansion=1, n_groups might be different from pointwise_filters

        if expansion > 1:
            # For MobileNet V2, expansion>1 when stage>0
            n_groups = int(expansion * in_channels)  ## update n_groups
            x = Conv2d(n_groups, 1, include_bias=False, act='identity',
                       name=prefix + 'expand')(x)
            x = BN(name=prefix + 'expand_BN', act='identity')(x)

        # Depthwise convolution
        x = GroupConv2d(n_groups, n_groups, ksize, stride=stride, act='identity',
                        include_bias=False, name=prefix + 'depthwise')(x)
        x = BN(name=prefix + 'depthwise_BN', act=activation_fn)(x)

        # Squeeze-Excitation
        if 0 < se_ratio <= 1:
            se_input = x  # features to be squeezed
            x = GlobalAveragePooling2D(name=prefix + "global_avg_pool")(x)
            # Squeeze
            channels_se = max(1, int(in_channels * se_ratio))
            x = Conv2d(channels_se, 1, include_bias=True, act=activation_fn, name=prefix + 'squeeze')(x)
            x = Conv2d(n_groups, 1, include_bias=True, act='sigmoid', name=prefix + 'excitation')(x)
            x = Reshape(name=prefix + 'reshape', width=n_groups, height=1, depth=1)(x)
            x = Scale(name=prefix + 'scale')([se_input, x])  # x = out*w

        # Project
        x = Conv2d(out_channels, 1, include_bias=False, act='identity', name=prefix + 'project')(x)
        x = BN(name=prefix + 'project_BN', act='identity')(x)  # identity activation on narrow tensor
        # Prepare output for MBConv block
        if in_channels == out_channels and stride == 1 and (not noskip):
            # dropout can be added.
            return Res(name=prefix + 'add_se_residual')([x, inputs])
        else:
            return x

    parameters = locals()
    input_parameters = get_layer_options(input_layer_options, parameters)
    inp = Input(**input_parameters, name='data')
    # refer to Table 1  "EfficientNet-B0 baseline network" in paper:
    # "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks"
    stage_id = 0
    out_channels = round_filters(32, width_coefficient,
                                 depth_divisor)  # multiply with width multiplier: width_coefficient
    x = Conv2d(out_channels, 3, stride=2, include_bias=False, name='Conv1', act='identity')(inp)
    x = BN(name='bn_Conv1', act=activation_fn)(x)

    # Create stages with MBConv blocks from stage 1
    in_channels = out_channels  # number of input channels for first MBblock
    stage_id +=1
    total_blocks = float(sum(args[2] for args in blocks_args))
    for expansion, out_channels, num_blocks, ksize, stride, se_ratio in blocks_args:
        out_channels = round_filters(out_channels, width_coefficient, depth_divisor)
        num_blocks = round_repeats(num_blocks, depth_coefficient)
        strides = [stride] + [1] * (num_blocks - 1)
        for block_id, stride in enumerate(strides):
            x = _MBConvBlock(x, in_channels, out_channels, ksize, stride, expansion, se_ratio, stage_id, block_id,activation_fn)
            in_channels = out_channels  # out_channel
        stage_id += 1

    last_block_filters = round_filters(1280, width_coefficient, depth_divisor)
    x = Conv2d(last_block_filters, 1, include_bias=False, name='Conv_top', act='identity')(x)
    x = BN(name='Conv_top_bn', act=activation_fn)(x)

    x = GlobalAveragePooling2D(name="Global_avg_pool", dropout=dropout_rate)(x)
    x = OutputLayer(n=n_classes)(x)

    model = Model(conn, inp, x, model_table)
    model.compile()
    return model
Exemplo n.º 4
0
 def test_global_pooling1(self):
     global_pooling = GlobalAveragePooling2D()
     self.assertTrue(global_pooling.config['width'] == 0)
Exemplo n.º 5
0
    def _MBConvBlock(inputs, in_channels, out_channels, ksize, stride, expansion, se_ratio, stage_id, block_id,
                     noskip=False, activation_fn='relu'):
        '''
        Inverted Residual Block

        Parameters
        ----------
        inputs: input tensor
            Speecify input tensor for block.
        in_channels: integer
            Specifies the number of input tensor's channel.
        out_channels: integer
            Specifies the number of output tensor's channel
        ksize:
            Specifies the kernel size of the convolution
        stride: integer
            Specifies the stride of the convolution
        expansion: double
            Specifies the expansion factor for the input layer.
        se_ratio: double
            Specifies the ratio to squeeze the input filters for squeeze-and-excitation block.
        stage_id: integer
            Specifies stage id for naming layers
        block_id:
            Specifies block id for naming layers
        noskip: bool
            Specifies whether the skip connection is used. By default, the skip connection is used.
        activation_fn:
            Specifies activation function
        '''

        # mobilenetv2 block is also known as inverted residual block, which consists of three convolutions:
        # the first is 1*1 convolution for expansion
        # the second is depthwise convolution
        # the third is 1*1 convolution without any non-linearity for projection

        x = inputs
        prefix = 'stage_{}_block_{}'.format(stage_id, block_id)
        n_groups = in_channels  # for expansion=1, n_groups might be different from pointwise_filters

        if expansion > 1:
            # For MobileNet V2, expansion>1 when stage>0
            n_groups = int(expansion * in_channels)  ## update n_groups
            x = Conv2d(n_groups, 1, include_bias=False, act='identity',
                       name=prefix + 'expand')(x)
            x = BN(name=prefix + 'expand_BN', act='identity')(x)

        # Depthwise convolution
        x = GroupConv2d(n_groups, n_groups, ksize, stride=stride, act='identity',
                        include_bias=False, name=prefix + 'depthwise')(x)
        x = BN(name=prefix + 'depthwise_BN', act=activation_fn)(x)

        # Squeeze-Excitation
        if 0 < se_ratio <= 1:
            se_input = x  # features to be squeezed
            x = GlobalAveragePooling2D(name=prefix + "global_avg_pool")(x)
            # Squeeze
            channels_se = max(1, int(in_channels * se_ratio))
            x = Conv2d(channels_se, 1, include_bias=True, act=activation_fn, name=prefix + 'squeeze')(x)
            x = Conv2d(n_groups, 1, include_bias=True, act='sigmoid', name=prefix + 'excitation')(x)
            x = Reshape(name=prefix + 'reshape', width=n_groups, height=1, depth=1)(x)
            x = Scale(name=prefix + 'scale')([se_input, x])  # x = out*w

        # Project
        x = Conv2d(out_channels, 1, include_bias=False, act='identity', name=prefix + 'project')(x)
        x = BN(name=prefix + 'project_BN', act='identity')(x)  # identity activation on narrow tensor
        # Prepare output for MBConv block
        if in_channels == out_channels and stride == 1 and (not noskip):
            # dropout can be added.
            return Res(name=prefix + 'add_se_residual')([x, inputs])
        else:
            return x
Exemplo n.º 6
0
def DenseNet(conn,
             model_table='DenseNet',
             n_classes=None,
             conv_channel=16,
             growth_rate=12,
             n_blocks=4,
             n_cells=4,
             n_channels=3,
             width=32,
             height=32,
             scale=1,
             random_flip=None,
             random_crop=None,
             offsets=(85, 111, 139),
             random_mutation=None):
    '''
    Generates a deep learning model with the DenseNet architecture.

    Parameters
    ----------
    conn : CAS
        Specifies the connection of the CAS connection.
    model_table : string
        Specifies the name of CAS table to store the model.
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: None
    conv_channel : int, optional
        Specifies the number of filters of the first convolution layer.
        Default: 16
    growth_rate : int, optional
        Specifies the growth rate of convolution layers.
        Default: 12
    n_blocks : int, optional
        Specifies the number of DenseNet blocks.
        Default: 4
    n_cells : int, optional
        Specifies the number of dense connection for each DenseNet block.
        Default: 4
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3
    width : int, optional
        Specifies the width of the input layer.
        Default: 32
    height : int, optional
        Specifies the height of the input layer.
        Default: 32
    scale : double, optional
        Specifies a scaling factor to be applied to each pixel intensity values.
        Default: 1
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'
    offsets : double or iter-of-doubles, optional
        Specifies an offset for each channel in the input data. The final input
        data is set after applying scaling and subtracting the specified offsets.
        Default: (85, 111, 139)
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the input layer.
        Valid Values: 'none', 'random'

    Returns
    -------
    :class:`Sequential`

    References
    ----------
    https://arxiv.org/pdf/1608.06993.pdf

    '''

    conn.retrieve('loadactionset',
                  _messagelevel='error',
                  actionset='deeplearn')

    # get all the parms passed in
    parameters = locals()

    channel_in = conv_channel  # number of channel of transition conv layer

    model = Sequential(conn=conn, model_table=model_table)

    # get the input parameters
    input_parameters = get_layer_options(input_layer_options, parameters)
    model.add(InputLayer(**input_parameters))

    # Top layers
    model.add(
        Conv2d(conv_channel,
               width=3,
               act='identity',
               include_bias=False,
               stride=1))

    for i in range(n_blocks):
        model.add(
            DenseNetBlock(n_cells=n_cells,
                          kernel_size=3,
                          n_filter=growth_rate,
                          stride=1))
        # transition block
        channel_in += (growth_rate * n_cells)
        model.add(BN(act='relu'))
        if i != (n_blocks - 1):
            model.add(
                Conv2d(channel_in,
                       width=3,
                       act='identity',
                       include_bias=False,
                       stride=1))
            model.add(Pooling(width=2, height=2, pool='mean'))

    model.add(GlobalAveragePooling2D())

    model.add(OutputLayer(act='softmax', n=n_classes))

    return model
Exemplo n.º 7
0
def DenseNet121(conn,
                model_table='DENSENET121',
                n_classes=1000,
                conv_channel=64,
                growth_rate=32,
                n_cells=[6, 12, 24, 16],
                n_channels=3,
                reduction=0.5,
                width=224,
                height=224,
                scale=1,
                random_flip=None,
                random_crop=None,
                offsets=(103.939, 116.779, 123.68),
                random_mutation=None):
    '''
    Generates a deep learning model with the DenseNet121 architecture.

    Parameters
    ----------
    conn : CAS
        Specifies the connection of the CAS connection.
    model_table : string
        Specifies the name of CAS table to store the model.
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 1000
    conv_channel : int, optional
        Specifies the number of filters of the first convolution layer.
        Default: 64
    growth_rate : int, optional
        Specifies the growth rate of convolution layers.
        Default: 32
    n_cells : int array length=4, optional
        Specifies the number of dense connection for each DenseNet block.
        Default: [6, 12, 24, 16]
    reduction : double, optional
        Specifies the factor of transition blocks.
        Default: 0.5
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3.
    width : int, optional
        Specifies the width of the input layer.
        Default: 224.
    height : int, optional
        Specifies the height of the input layer.
        Default: 224.
    scale : double, optional
        Specifies a scaling factor to be applied to each pixel intensity values.
        Default: 1.
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'
    offsets : double or iter-of-doubles, optional
        Specifies an offset for each channel in the input data. The final input
        data is set after applying scaling and subtracting the specified offsets.
        Default: (103.939, 116.779, 123.68)
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the input layer.
        Valid Values: 'none', 'random'

    Returns
    -------
    :class:`Sequential`

    References
    ----------
    https://arxiv.org/pdf/1608.06993.pdf

    '''

    conn.retrieve('loadactionset',
                  _messagelevel='error',
                  actionset='deeplearn')

    # get all the parms passed in
    parameters = locals()

    n_blocks = len(n_cells)

    model = Sequential(conn=conn, model_table=model_table)

    # get the input parameters
    input_parameters = get_layer_options(input_layer_options, parameters)
    model.add(InputLayer(**input_parameters))

    # Top layers
    model.add(
        Conv2d(conv_channel,
               width=7,
               act='identity',
               include_bias=False,
               stride=2))
    model.add(BN(act='relu'))
    src_layer = Pooling(width=3, height=3, stride=2, padding=1, pool='max')
    model.add(src_layer)

    for i in range(n_blocks):
        for _ in range(n_cells[i]):

            model.add(BN(act='relu'))
            model.add(
                Conv2d(n_filters=growth_rate * 4,
                       width=1,
                       act='identity',
                       stride=1,
                       include_bias=False))

            model.add(BN(act='relu'))
            src_layer2 = Conv2d(n_filters=growth_rate,
                                width=3,
                                act='identity',
                                stride=1,
                                include_bias=False)

            model.add(src_layer2)
            src_layer = Concat(act='identity',
                               src_layers=[src_layer, src_layer2])
            model.add(src_layer)

            conv_channel += growth_rate

        if i != (n_blocks - 1):
            # transition block
            conv_channel = int(conv_channel * reduction)

            model.add(BN(act='relu'))
            model.add(
                Conv2d(n_filters=conv_channel,
                       width=1,
                       act='identity',
                       stride=1,
                       include_bias=False))
            src_layer = Pooling(width=2, height=2, stride=2, pool='mean')

            model.add(src_layer)

    model.add(BN(act='identity'))
    # Bottom Layers
    model.add(GlobalAveragePooling2D())

    model.add(OutputLayer(act='softmax', n=n_classes))

    return model
Exemplo n.º 8
0
def ShuffleNetV1(conn,
                 model_table='ShuffleNetV1',
                 n_classes=1000,
                 n_channels=3,
                 width=224,
                 height=224,
                 norm_stds=(255 * 0.229, 255 * 0.224, 255 * 0.225),
                 offsets=(255 * 0.485, 255 * 0.456, 255 * 0.406),
                 random_flip=None,
                 random_crop=None,
                 random_mutation=None,
                 scale_factor=1.0,
                 num_shuffle_units=[3, 7, 3],
                 bottleneck_ratio=0.25,
                 groups=3,
                 block_act='identity'):
    '''
    Generates a deep learning model with the ShuffleNetV1 architecture.
    The implementation is revised based on https://github.com/scheckmedia/keras-shufflenet/blob/master/shufflenet.py

    Parameters
    ----------
    conn : CAS
        Specifies the CAS connection object.
    model_table : string or dict or CAS table, optional
        Specifies the CAS table to store the deep learning model.
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 1000
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3
    width : int, optional
        Specifies the width of the input layer.
        Default: 32
    height : int, optional
        Specifies the height of the input layer.
        Default: 32
    norm_stds : double or iter-of-doubles, optional
        Specifies a standard deviation for each channel in the input data.
        The final input data is normalized with specified means and standard deviations.
        Default: (255 * 0.229, 255 * 0.224, 255 * 0.225)
    offsets : double or iter-of-doubles, optional
        Specifies an offset for each channel in the input data. The final input
        data is set after applying scaling and subtracting the specified offsets.
        Default: (255*0.485, 255*0.456, 255*0.406)
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the input layer.
        Valid Values: 'none', 'random'
    scale_factor : double

    num_shuffle_units: iter-of-int, optional
        number of stages (list length) and the number of shufflenet units in a
        stage beginning with stage 2 because stage 1 is fixed
        e.g. idx 0 contains 3 + 1 (first shuffle unit in each stage differs) shufflenet units for stage 2
        idx 1 contains 7 + 1 Shufflenet Units for stage 3 and
        idx 2 contains 3 + 1 Shufflenet Units
        Default: [3, 7, 3]
    bottleneck_ratio : double
        bottleneck ratio implies the ratio of bottleneck channels to output channels.
        For example, bottleneck ratio = 1 : 4 means the output feature map is 4 times
        the width of the bottleneck feature map.
    groups: int
        Specifies the number of groups per channel
        Default : 3
    block_act : str
        Specifies the activation function after depth-wise convolution and batch normalization layer
        Default : 'identity'

    Returns
    -------
    :class:`Model`

    References
    ----------
    https://arxiv.org/pdf/1707.01083

    '''
    def _block(x, channel_map, bottleneck_ratio, repeat=1, groups=1, stage=1):
        """
        creates a bottleneck block

        Parameters
        ----------
        x:
            Input tensor
        channel_map:
            list containing the number of output channels for a stage
        repeat:
            number of repetitions for a shuffle unit with stride 1
        groups:
            number of groups per channel
        bottleneck_ratio:
            bottleneck ratio implies the ratio of bottleneck channels to output channels.
        stage:
            stage number

        Returns
        -------
        """
        x = _shuffle_unit(x,
                          in_channels=channel_map[stage - 2],
                          out_channels=channel_map[stage - 1],
                          strides=2,
                          groups=groups,
                          bottleneck_ratio=bottleneck_ratio,
                          stage=stage,
                          block=1)

        for i in range(1, repeat + 1):
            x = _shuffle_unit(x,
                              in_channels=channel_map[stage - 1],
                              out_channels=channel_map[stage - 1],
                              strides=1,
                              groups=groups,
                              bottleneck_ratio=bottleneck_ratio,
                              stage=stage,
                              block=(i + 1))

        return x

    def _shuffle_unit(inputs,
                      in_channels,
                      out_channels,
                      groups,
                      bottleneck_ratio,
                      strides=2,
                      stage=1,
                      block=1):
        """
        create a shuffle unit

        Parameters
        ----------
        inputs:
            Input tensor of with `channels_last` data format
        in_channels:
            number of input channels
        out_channels:
            number of output channels
        strides:
            An integer or tuple/list of 2 integers,
        groups:
            number of groups per channel
        bottleneck_ratio: float
            bottleneck ratio implies the ratio of bottleneck channels to output channels.
        stage:
            stage number
        block:
            block number

        """
        prefix = 'stage%d/block%d' % (stage, block)

        # if strides >= 2:
        # out_channels -= in_channels

        # default: 1/4 of the output channel of a ShuffleNet Unit
        bottleneck_channels = int(out_channels * bottleneck_ratio)
        groups = (1 if stage == 2 and block == 1 else groups)

        # x = _group_conv(inputs, in_channels, out_channels = bottleneck_channels,
        #                 groups = (1 if stage == 2 and block == 1 else groups),
        #                 name = '%s/1x1_gconv_1' % prefix)

        x = GroupConv2d(bottleneck_channels,
                        n_groups=(1 if stage == 2 and block == 1 else groups),
                        act='identity',
                        width=1,
                        height=1,
                        stride=1,
                        include_bias=False,
                        name='%s/1x1_gconv_1' % prefix)(inputs)

        x = BN(act='relu', name='%s/bn_gconv_1' % prefix)(x)

        x = ChannelShuffle(n_groups=groups,
                           name='%s/channel_shuffle' % prefix)(x)
        # depthwise convolutioin
        x = GroupConv2d(x.shape[-1],
                        n_groups=x.shape[-1],
                        width=3,
                        height=3,
                        include_bias=False,
                        stride=strides,
                        act='identity',
                        name='%s/1x1_dwconv_1' % prefix)(x)
        x = BN(act=block_act, name='%s/bn_dwconv_1' % prefix)(x)

        out_channels = out_channels if strides == 1 else out_channels - in_channels
        x = GroupConv2d(out_channels,
                        n_groups=groups,
                        width=1,
                        height=1,
                        stride=1,
                        act='identity',
                        include_bias=False,
                        name='%s/1x1_gconv_2' % prefix)(x)

        x = BN(act=block_act, name='%s/bn_gconv_2' % prefix)(x)

        if strides < 2:
            ret = Res(act='relu', name='%s/add' % prefix)([x, inputs])
        else:
            avg = Pooling(width=3,
                          height=3,
                          stride=2,
                          pool='mean',
                          name='%s/avg_pool' % prefix)(inputs)
            ret = Concat(act='relu', name='%s/concat' % prefix)([x, avg])

        return ret

    out_dim_stage_two = {1: 144, 2: 200, 3: 240, 4: 272, 8: 384}
    try:
        import numpy as np
    except:
        raise DLPyError('Please install numpy to use this architecture.')

    exp = np.insert(np.arange(0, len(num_shuffle_units), dtype=np.float32), 0,
                    0)
    out_channels_in_stage = 2**exp
    out_channels_in_stage *= out_dim_stage_two[
        groups]  # calculate output channels for each stage
    out_channels_in_stage[0] = 24  # first stage has always 24 output channels
    out_channels_in_stage *= scale_factor
    out_channels_in_stage = out_channels_in_stage.astype(int)

    parameters = locals()
    input_parameters = get_layer_options(input_layer_options, parameters)
    inp = Input(**input_parameters, name='data')

    # create shufflenet architecture
    x = Conv2d(out_channels_in_stage[0],
               3,
               include_bias=False,
               stride=2,
               act="identity",
               name="conv1")(inp)
    x = BN(act='relu', name='bn1')(x)
    x = Pooling(width=3, height=3, stride=2, name="maxpool1")(x)

    # create stages containing shufflenet units beginning at stage 2
    for stage in range(0, len(num_shuffle_units)):
        repeat = num_shuffle_units[stage]
        x = _block(x,
                   out_channels_in_stage,
                   repeat=repeat,
                   bottleneck_ratio=bottleneck_ratio,
                   groups=groups,
                   stage=stage + 2)

    x = GlobalAveragePooling2D(name="Global_avg_pool")(x)
    x = OutputLayer(n=n_classes)(x)

    model = Model(conn, inputs=inp, outputs=x, model_table=model_table)
    model.compile()

    return model
Exemplo n.º 9
0
def Darknet_Reference(conn,
                      model_table='Darknet_Reference',
                      n_classes=1000,
                      act='leaky',
                      n_channels=3,
                      width=224,
                      height=224,
                      scale=1.0 / 255,
                      random_flip='H',
                      random_crop='UNIQUE',
                      random_mutation=None):
    '''
    Generates a deep learning model with the Darknet_Reference architecture.

    The head of the model except the last convolutional layer is same as
    the head of Tiny Yolov2. Darknet Reference is pre-trained model for
    ImageNet classification.

    Parameters
    ----------
    conn : CAS
        Specifies the connection of the CAS connection.
    model_table : string
        Specifies the name of CAS table to store the model.
    n_classes : int, optional
        Specifies the number of classes. If None is assigned, the model will
        automatically detect the number of classes based on the training set.
        Default: 1000
    act : string
        Specifies the type of the activation function for the batch
        normalization layers and the final convolution layer.
        Default: 'leaky'
    n_channels : int, optional
        Specifies the number of the channels (i.e., depth) of the input layer.
        Default: 3.
    width : int, optional
        Specifies the width of the input layer.
        Default: 224.
    height : int, optional
        Specifies the height of the input layer.
        Default: 224.
    scale : double, optional
        Specifies a scaling factor to be applied to each pixel intensity values.
        Default: 1.0 / 255
    random_flip : string, optional
        Specifies how to flip the data in the input layer when image data is
        used. Approximately half of the input data is subject to flipping.
        Valid Values: 'h', 'hv', 'v', 'none'
        Default: 'h'
    random_crop : string, optional
        Specifies how to crop the data in the input layer when image data is
        used. Images are cropped to the values that are specified in the width
        and height parameters. Only the images with one or both dimensions
        that are larger than those sizes are cropped.
        Valid Values: 'none', 'unique', 'randomresized', 'resizethencrop'
        Default: 'unique'
    random_mutation : string, optional
        Specifies how to apply data augmentations/mutations to the data in the input layer.
        Valid Values: 'none', 'random'

    Returns
    -------
    :class:`Sequential`

    '''

    conn.retrieve('loadactionset',
                  _messagelevel='error',
                  actionset='deeplearn')

    # get all the parms passed in
    parameters = locals()

    model = Sequential(conn=conn, model_table=model_table)

    # get the input parameters
    input_parameters = get_layer_options(input_layer_options, parameters)
    model.add(InputLayer(**input_parameters))

    # conv1 224
    model.add(Conv2d(16, width=3, act='identity', include_bias=False,
                     stride=1))
    model.add(BN(act=act))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv2 112
    model.add(Conv2d(32, width=3, act='identity', include_bias=False,
                     stride=1))
    model.add(BN(act=act))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv3 56
    model.add(Conv2d(64, width=3, act='identity', include_bias=False,
                     stride=1))
    model.add(BN(act=act))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv4 28
    model.add(
        Conv2d(128, width=3, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv5 14
    model.add(
        Conv2d(256, width=3, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))
    model.add(Pooling(width=2, height=2, stride=2, pool='max'))
    # conv6 7
    model.add(
        Conv2d(512, width=3, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))
    model.add(Pooling(width=2, height=2, stride=1, pool='max'))
    # conv7 7
    model.add(
        Conv2d(1024, width=3, act='identity', include_bias=False, stride=1))
    model.add(BN(act=act))
    # conv8 7
    model.add(Conv2d(1000, width=1, act=act, include_bias=True, stride=1))

    model.add(GlobalAveragePooling2D())
    model.add(OutputLayer(act='softmax', n=n_classes))

    return model