Exemplo n.º 1
0
def edges_image(edge_sets):
    blank = Image.blank(image_original.width, image_original.height, 3, 255)

    for shape in edge_sets:
        for edge in shape:
            print(edge[1])
            blank.draw_line(Point.from_array(edge[0]), Point.from_array(edge[1]), Color.Green(), 1)

    return blank
def _center_minimiser(center, dist):
    """ Used as the cost function in an optimisation routine.
    for a trial center point, we calculate an error that is the sum of the squares of the deviation
    of the distance of each slot from the mean distance of all the slots.
    """
    errors = []
    center = Point.from_array(center)
    distances = [p.distance_to_sq(center) for p in dist]
    mean = np.mean(distances)
    layer_errors = [(d - mean)**2 for d in distances]
    errors.extend(layer_errors)

    return sum(errors)
def _center_minimiser(center, layers):
    """ Used as the cost function in an optimisation routine. The puck consists of 2 layers of slots.
    Within a given layer, each slot is the same distance from the center point of the puck. Therefore
    for a trial center point, we calculate an error that is the sum of the squares of the deviation
    of the distance of each slot from the mean distance of all the slots in the layer.
    """
    errors = []
    center = Point.from_array(center)
    for layer in layers:
        distances = [p.distance_to_sq(center) for p in layer]

        mean = np.mean(distances)
        layer_errors = [(d - mean)**2 for d in distances]
        errors.extend(layer_errors)

    return sum(errors)
Exemplo n.º 4
0
def _center_minimiser(center, layers):
    """ Used as the cost function in an optimisation routine. The puck consists of 2 layers of slots.
    Within a given layer, each slot is the same distance from the center point of the puck. Therefore
    for a trial center point, we calculate an error that is the sum of the squares of the deviation
    of the distance of each slot from the mean distance of all the slots in the layer.
    """
    errors = []
    center = Point.from_array(center)
    for layer in layers:
        distances = [p.distance_to_sq(center) for p in layer]

        mean = np.mean(distances)
        layer_errors = [(d-mean)**2 for d in distances]
        errors.extend(layer_errors)

    return sum(errors)
Exemplo n.º 5
0
    def _locate_finder_in_square(image, transform, size):
        """ For the located barcode in the image, identify which of the sides make
        up the finder pattern.
        """
        radius = int(round(size/2))
        center = transform.trans
        angle = transform.rot

        rotated = image.rotate(angle, center)

        sx1, sy1 = center.x-radius, center.y-radius
        sx2, sy2 = center.x+radius, center.y+radius
        thick = int(round(size / 14))

        # Top
        x1, y1 = sx1, sy1
        x2, y2 = sx2, sy1 + thick
        top = np.sum(rotated.img[y1:y2, x1:x2]) / (size * thick)

        # Left
        x1, y1 = sx1, sy1
        x2, y2 = sx1 + thick, sy2
        left = np.sum(rotated.img[y1:y2, x1:x2]) / (size * thick)

        # Bottom
        x1, y1 = sx1, sy2 - thick
        x2, y2 = sx2, sy2
        bottom = np.sum(rotated.img[y1:y2, x1:x2]) / (size * thick)

        # Right
        x1, y1 = sx2 - thick, sy1
        x2, y2 = sx2, sy2
        right = np.sum(rotated.img[y1:y2, x1:x2]) / (size * thick)

        # Identify finder edges
        if top < bottom and left < right:
            c1 = [sx1, sy1]
            c2 = [sx1, sy2]
            c3 = [sx2, sy1]
        elif top < bottom and right < left:
            c1 = [sx2, sy1]
            c2 = [sx1, sy1]
            c3 = [sx2, sy2]
        elif bottom < top and left < right:
            c1 = [sx1, sy2]
            c2 = [sx2, sy2]
            c3 = [sx1, sy1]
        elif bottom < top and right < left:
            c1 = [sx2, sy2]
            c2 = [sx2, sy1]
            c3 = [sx1, sy2]
        else:
            return None

        # rotate points around center of square
        c1 = _rotate_around_point(Point.from_array(c1), angle, center)
        c2 = _rotate_around_point(Point.from_array(c2), angle, center)
        c3 = _rotate_around_point(Point.from_array(c3), angle, center)

        # Create finder pattern
        c1 = c1.intify()
        side1 = (c2 - c1).intify()
        side2 = (c3 - c1).intify()
        fp = FinderPattern(c1, side1, side2)

        return fp
Exemplo n.º 6
0
    def _locate_finder_in_square(image, transform, size):
        """ For the located barcode in the image, identify which of the sides make
        up the finder pattern.
        """
        radius = int(round(size/2))
        center = transform.trans
        angle = transform.rot

        rotated = image.rotate(angle, center)

        sx1, sy1 = center.x-radius, center.y-radius
        sx2, sy2 = center.x+radius, center.y+radius
        thick = int(round(size / 14))

        # Top
        x1, y1 = sx1, sy1
        x2, y2 = sx2, sy1 + thick
        top = np.sum(rotated.img[y1:y2, x1:x2]) / (size * thick)

        # Left
        x1, y1 = sx1, sy1
        x2, y2 = sx1 + thick, sy2
        left = np.sum(rotated.img[y1:y2, x1:x2]) / (size * thick)

        # Bottom
        x1, y1 = sx1, sy2 - thick
        x2, y2 = sx2, sy2
        bottom = np.sum(rotated.img[y1:y2, x1:x2]) / (size * thick)

        # Right
        x1, y1 = sx2 - thick, sy1
        x2, y2 = sx2, sy2
        right = np.sum(rotated.img[y1:y2, x1:x2]) / (size * thick)

        # Identify finder edges
        if top < bottom and left < right:
            c1 = [sx1, sy1]
            c2 = [sx1, sy2]
            c3 = [sx2, sy1]
        elif top < bottom and right < left:
            c1 = [sx2, sy1]
            c2 = [sx1, sy1]
            c3 = [sx2, sy2]
        elif bottom < top and left < right:
            c1 = [sx1, sy2]
            c2 = [sx2, sy2]
            c3 = [sx1, sy1]
        elif bottom < top and right < left:
            c1 = [sx2, sy2]
            c2 = [sx2, sy1]
            c3 = [sx1, sy2]
        else:
            return None

        # rotate points around center of square
        c1 = _rotate_around_point(Point.from_array(c1), angle, center)
        c2 = _rotate_around_point(Point.from_array(c2), angle, center)
        c3 = _rotate_around_point(Point.from_array(c3), angle, center)

        # Create finder pattern
        c1 = c1.intify()
        side1 = (c2 - c1).intify()
        side2 = (c3 - c1).intify()
        fp = FinderPattern(c1, side1, side2)

        return fp