Exemplo n.º 1
0
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        accumulators = [
            K.variable(np.zeros(K.get_value(p).shape)) for p in params
        ]
        delta_accumulators = [
            K.variable(np.zeros(K.get_value(p).shape)) for p in params
        ]
        self.updates = []

        for p, g, a, d_a, c in zip(params, grads, accumulators,
                                   delta_accumulators, constraints):
            # update accumulator
            new_a = self.rho * a + (1 - self.rho) * K.square(g)
            self.updates.append((a, new_a))

            # use the new accumulator and the *old* delta_accumulator
            update = g * K.sqrt(d_a + self.epsilon) / K.sqrt(new_a +
                                                             self.epsilon)

            new_p = p - self.lr * update
            self.updates.append((p, c(new_p)))  # apply constraints

            # update delta_accumulator
            new_d_a = self.rho * d_a + (1 - self.rho) * K.square(update)
            self.updates.append((d_a, new_d_a))
        return self.updates
Exemplo n.º 2
0
 def get_gradients(self, loss, params):
     grads = K.gradients(loss, params)
     if hasattr(self, 'clipnorm') and self.clipnorm > 0:
         norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads]))
         grads = [clip_norm(g, self.clipnorm, norm) for g in grads]
     if hasattr(self, 'clipvalue') and self.clipvalue > 0:
         grads = [K.clip(g, -self.clipvalue, self.clipvalue) for g in grads]
     return grads
Exemplo n.º 3
0
 def get_gradients(self, loss, params):
     grads = K.gradients(loss, params)
     if hasattr(self, 'clipnorm') and self.clipnorm > 0:
         norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads]))
         grads = [clip_norm(g, self.clipnorm, norm) for g in grads]
     if hasattr(self, 'clipvalue') and self.clipvalue > 0:
         grads = [K.clip(g, -self.clipvalue, self.clipvalue) for g in grads]
     return grads
Exemplo n.º 4
0
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        accumulators = [K.variable(np.zeros(K.get_value(p).shape)) for p in params]
        self.updates = []

        for p, g, a, c in zip(params, grads, accumulators, constraints):
            new_a = a + K.square(g)  # update accumulator
            self.updates.append((a, new_a))
            new_p = p - self.lr * g / K.sqrt(new_a + self.epsilon)
            self.updates.append((p, c(new_p)))  # apply constraints
        return self.updates
Exemplo n.º 5
0
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        accumulators = [
            K.variable(np.zeros(K.get_value(p).shape)) for p in params
        ]
        self.updates = []

        for p, g, a, c in zip(params, grads, accumulators, constraints):
            new_a = a + K.square(g)  # update accumulator
            self.updates.append((a, new_a))
            new_p = p - self.lr * g / K.sqrt(new_a + self.epsilon)
            self.updates.append((p, c(new_p)))  # apply constraints
        return self.updates
Exemplo n.º 6
0
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        accumulators = [K.variable(np.zeros(K.get_value(p).shape)) for p in params]
        delta_accumulators = [K.variable(np.zeros(K.get_value(p).shape)) for p in params]
        self.updates = []

        for p, g, a, d_a, c in zip(params, grads, accumulators,
                                   delta_accumulators, constraints):
            # update accumulator
            new_a = self.rho * a + (1 - self.rho) * K.square(g)
            self.updates.append((a, new_a))

            # use the new accumulator and the *old* delta_accumulator
            update = g * K.sqrt(d_a + self.epsilon) / K.sqrt(new_a + self.epsilon)

            new_p = p - self.lr * update
            self.updates.append((p, c(new_p)))  # apply constraints

            # update delta_accumulator
            new_d_a = self.rho * d_a + (1 - self.rho) * K.square(update)
            self.updates.append((d_a, new_d_a))
        return self.updates
Exemplo n.º 7
0
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        self.updates = [(self.iterations, self.iterations+1.)]

        t = self.iterations + 1
        lr_t = self.lr * K.sqrt(1 - K.pow(self.beta_2, t)) / (1 - K.pow(self.beta_1, t))

        for p, g, c in zip(params, grads, constraints):
            # zero init of moment
            m = K.variable(np.zeros(K.get_value(p).shape))
            # zero init of velocity
            v = K.variable(np.zeros(K.get_value(p).shape))

            m_t = (self.beta_1 * m) + (1 - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1 - self.beta_2) * K.square(g)
            p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

            self.updates.append((m, m_t))
            self.updates.append((v, v_t))
            self.updates.append((p, c(p_t)))  # apply constraints
        return self.updates
Exemplo n.º 8
0
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        self.updates = [(self.iterations, self.iterations + 1.)]

        t = self.iterations + 1
        lr_t = self.lr * K.sqrt(1 - K.pow(self.beta_2, t)) / (
            1 - K.pow(self.beta_1, t))

        for p, g, c in zip(params, grads, constraints):
            # zero init of moment
            m = K.variable(np.zeros(K.get_value(p).shape))
            # zero init of velocity
            v = K.variable(np.zeros(K.get_value(p).shape))

            m_t = (self.beta_1 * m) + (1 - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1 - self.beta_2) * K.square(g)
            p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

            self.updates.append((m, m_t))
            self.updates.append((v, v_t))
            self.updates.append((p, c(p_t)))  # apply constraints
        return self.updates
Exemplo n.º 9
0
def mean_squared_logarithmic_error(y_true, y_pred):
    first_log = K.log(K.clip(y_pred, K.epsilon(), np.inf) + 1.)
    second_log = K.log(K.clip(y_true, K.epsilon(), np.inf) + 1.)
    return K.mean(K.square(first_log - second_log), axis=-1)
Exemplo n.º 10
0
def root_mean_squared_error(y_true, y_pred):
    return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1))
Exemplo n.º 11
0
def mean_squared_logarithmic_error(y_true, y_pred):
    first_log = K.log(K.clip(y_pred, K.epsilon(), np.inf) + 1.)
    second_log = K.log(K.clip(y_true, K.epsilon(), np.inf) + 1.)
    return K.mean(K.square(first_log - second_log), axis=-1)
Exemplo n.º 12
0
 def __call__(self, p):
     return p / K.sqrt(K.sum(K.square(p), axis=-1, keepdims=True))
Exemplo n.º 13
0
 def __call__(self, p):
     norms = K.sqrt(K.sum(K.square(p), axis=0))
     desired = K.clip(norms, 0, self.m)
     p = p * (desired / (1e-7 + norms))
     return p
Exemplo n.º 14
0
 def __call__(self, p):
     return p / K.sqrt(K.sum(K.square(p), axis=-1, keepdims=True))
Exemplo n.º 15
0
 def __call__(self, p):
     norms = K.sqrt(K.sum(K.square(p), axis=0))
     desired = K.clip(norms, 0, self.m)
     p = p * (desired / (1e-7 + norms))
     return p
Exemplo n.º 16
0
def squared_hinge(y_true, y_pred):
    return K.mean(K.square(K.maximum(1. - y_true * y_pred, 0.)), axis=-1)
Exemplo n.º 17
0
def root_mean_squared_error(y_true, y_pred):
    return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1))
Exemplo n.º 18
0
def squared_hinge(y_true, y_pred):
    return K.mean(K.square(K.maximum(1. - y_true * y_pred, 0.)), axis=-1)