def initialized_on_problem(self, problem, role):
     """Find out what sequence it is that we are supposed to conserve."""
     if not hasattr(self, 'ends_locations') or self.ends_locations is None:
         L = len(problem.sequence)
         wsize = self.window_size
         ends_locations = [Location(0, wsize), Location(L - wsize, L)]
         return self.copy_with_changes(ends_locations=ends_locations)
     else:
         return self
Exemplo n.º 2
0
    def evaluate(self, problem):
        """Score as (-total number of blast identities in matches)."""
        location = self.location
        if location is None:
            location = Location(0, len(problem.sequence))
        sequence = location.extract_sequence(problem.sequence)

        blast_record = blast_sequence(sequence,
                                      blast_db=self.blast_db,
                                      subject_sequences=self.sequences,
                                      word_size=self.word_size,
                                      perc_identity=self.perc_identity,
                                      num_alignments=self.num_alignments,
                                      num_threads=self.num_threads,
                                      ungapped=self.ungapped,
                                      e_value=self.e_value,
                                      culling_limit=self.culling_limit)

        if isinstance(blast_record, list):
            alignments = [
                alignment for rec in blast_record
                for alignment in rec.alignments
            ]
        else:
            alignments = blast_record.alignments

        query_hits = [
            (min(hit.query_start, hit.query_end) + location.start - 1,
             max(hit.query_start, hit.query_end) + location.start,
             1 - 2 * (hit.query_start > hit.query_end), hit.identities)
            for alignment in alignments for hit in alignment.hsps
        ]

        locations = sorted([(start, end, ids)
                            for (start, end, strand, ids) in query_hits
                            if (end - start) >= self.min_align_length])
        # locations = [
        #     (r[0][0], r[-1][-1])
        #     for r in group_nearby_segments(locations, max_start_spread=2)
        # ]

        score = -sum([ids for start, end, ids in locations])
        locations = [Location(start, end) for start, end, ids in locations]

        if locations == []:
            return SpecEvaluation(self,
                                  problem,
                                  score=1,
                                  message="Passed: no BLAST match found")

        return SpecEvaluation(self,
                              problem,
                              score=score,
                              locations=locations,
                              message="Failed - matches at %s" % locations)
Exemplo n.º 3
0
 def codon_index_to_location(self, index):
     if self.location.strand >= 0:
         return Location(
             start=self.location.start + 3 * index,
             end=self.location.start + 3 * (index + 1),
             strand=1
         )
     else:
         return Location(
             start=self.location.end - 3 * (index + 1),
             end=self.location.end - 3 * index,
             strand=-1,
         )
Exemplo n.º 4
0
    def evaluate(self, problem):
        """Return a score equal to -number_of modifications.

        Locations are "binned" modifications regions. Each bin has a length
        in nucleotides equal to ``localization_interval_length`.`
        """
        target = self.target_sequence
        sequence = self.extract_subsequence(problem.sequence)
        discrepancies = np.nonzero(
            sequences_differences_array(sequence, target))[0]

        if self.indices is not None:
            discrepancies = self.indices[discrepancies]
        elif self.location is not None:
            if self.location.strand == -1:
                discrepancies = self.location.end - discrepancies
            else:
                discrepancies = discrepancies + self.location.start

        intervals = [(r[0], r[-1]) for r in group_nearby_indices(
            discrepancies, max_group_spread=self.localization_interval_length)]
        locations = [Location(start, end, 1) for start, end in intervals]

        return SpecEvaluation(self,
                              problem,
                              score=-len(discrepancies),
                              locations=locations)
Exemplo n.º 5
0
    def global_evaluation(self, problem):
        extract_kmer = self.get_kmer_extractor(problem.sequence)
        kmers_locations = defaultdict(lambda: [])
        start, end = self.extended_location.start, self.extended_location.end
        for i in range(start, end - self.min_length):
            kmers_locations[extract_kmer(i)].append((i, i + self.min_length))
        locations = sorted([
            Location(start_, end_)
            for locations_list in kmers_locations.values()
            for start_, end_ in locations_list if len(locations_list) > 1 and (
                self.location.start < start_ < end_ < self.location.end)
        ],
                           key=lambda l: l.start)

        if locations == []:
            return SpecEvaluation(
                self,
                problem,
                score=0,
                message="Passed: no nonunique %d-mer found." % self.min_length)

        return SpecEvaluation(
            self,
            problem,
            score=-len(locations),
            locations=locations,
            message="Failed, the following positions are the first occurences "
            "of non-unique segments %s" % locations)
Exemplo n.º 6
0
 def initialize_on_problem(self, problem, role):
     """Find out what sequence it is that we are supposed to conserve."""
     if self.location is None:
         result = self.copy_with_changes()
         result.location = Location(0, len(problem.sequence), 1)
         return result
     else:
         return self
Exemplo n.º 7
0
 def codons_indices_to_locations(self, indices):
     """Convert a list of codon positions to a list of Locations"""
     indices = np.array(indices)
     if self.location.strand == -1:
         indices = sorted(self.location.end - indices)
         return [
             Location(group[0] - 3, group[-1], strand=-1)
             for group in group_nearby_indices(
                 indices, max_group_spread=self.localization_group_spread)
         ]
     else:
         indices += self.location.start
         return [
             Location(group[0], group[-1] + 3)
             for group in group_nearby_indices(
                 indices, max_group_spread=self.localization_group_spread)
         ]
Exemplo n.º 8
0
    def __init__(self, location=None, translation=None, boost=1.0):
        """Initialize."""
        self.translation = translation
        if isinstance(location, tuple):
            location = Location.from_tuple(location, default_strand=+1)
        if (location is not None) and (location.strand not in [-1, 1]):
            location = Location(location.start, location.end, 1)
        self.set_location(location)
        self.boost = boost

        self.initialize_translation_from_problem = (translation is None)
        self.initialize_location_from_problem = (location is None)
Exemplo n.º 9
0
    def initialize_on_problem(self, problem, role):
        """Find out what sequence it is that we are supposed to conserve."""
        if self.location is None:
            location = Location(0, len(problem.sequence), 1)
            result = self.copy_with_changes(location=location)
        else:
            result = self

        if self.target_sequence is None:
            result = result.copy_with_changes()
            result.target_sequence = self.extract_subsequence(problem.sequence)
        return result
Exemplo n.º 10
0
 def initialize_on_problem(self, problem, role='constraint'):
     """Find out what sequence it is that we are supposed to conserve."""
     if self.location is None:
         location = Location(0, len(problem.sequence), 1)
         result = self.copy_with_changes(location=location)
     else:
         result = self
     if not all([len(c) == len(result.location) for c in result.choices]):
         raise ValueError("All sequence choices should have the same "
                          "length as the region on which the spec is "
                          "applied.")
     return result
Exemplo n.º 11
0
    def initialize_on_problem(self, problem, role):
        """Get translation from the sequence if it is not already set."""
        if self.location is None:
            location = Location(0, len(problem.sequence), 1)
            result = self.copy_with_changes()
            result.set_location(location)
        else:
            result = self
        if result.translation is None:
            subsequence = result.location.extract_sequence(problem.sequence)
            translation = translate(subsequence, self.codons_translations)

            result = result.copy_with_changes(translation=translation)
        return result
Exemplo n.º 12
0
    def __init__(self,
                 max_energy=-5.0,
                 location=None,
                 optimize_initiator=False,
                 boost=1.0):
        self.max_e = max_energy
        self.boost = boost
        self.optimize_initiator = optimize_initiator

        if isinstance(location, tuple):
            location = Location.from_tuple(location)
        if location is not None and (location.strand == -1):
            location = Location(location.start, location.end, 1)
        self.location = location
Exemplo n.º 13
0
 def evaluate(self, problem):
     """Score is the number of wrong-translation codons."""
     location = (self.location if self.location is not None else
                 Location(0, len(problem.sequence)))
     subsequence = location.extract_sequence(problem.sequence)
     translation = translate(subsequence, self.codons_translations)
     errors = [
         ind
         for ind in range(len(translation))
         if translation[ind] != self.translation[ind]
     ]
     errors_locations = [
         Location(3 * ind, 3 * (ind + 1)) if self.location.strand >= 0 else
         Location(start=self.location.end - 3 * (ind + 1),
                  end=self.location.end - 3 * ind,
                  strand=-1)
         for ind in errors
     ]
     success = (len(errors) == 0)
     return SpecEvaluation(self, problem, score=-len(errors),
                           locations=errors_locations,
                           message="All OK." if success else
                           "Wrong translation at indices %s" % errors)
Exemplo n.º 14
0
    def evaluate(self, problem):
        """Return a score equal to -number_of_equalities.

        Locations are "binned" equality regions. Each bin has a length
        in nucleotides equal to ``localization_interval_length`.`
        """

        # FIND THE INDICES WHERE THE SEQUENCE IS UNCHANGED

        # Note: at this stage any minimum_percent or amount_percent have been
        # transformed into abolsute self.minimum and self.amount.

        target = self.reference
        sequence = self.extract_subsequence(problem.sequence)
        equalities = np.nonzero(
            1 - sequences_differences_array(sequence, target))[0]
        if self.indices is not None:
            equalities = self.indices[equalities]
        elif self.location is not None:
            if self.location.strand == -1:
                equalities = self.location.end - equalities
            else:
                equalities = equalities + self.location.start

        def indices_to_intervals(indices):
            intervals = group_nearby_indices(
                indices, max_group_spread=self.localization_interval_length)
            return [(interval[0], interval[-1] + 1) for interval in intervals]

        if self.indices is not None:
            n_indices = len(self.indices)
        else:
            n_indices = len(self.location)
        n_differences = n_indices - len(equalities)
        if self.minimum is not None:
            score = n_differences - self.minimum
            intervals = indices_to_intervals(equalities)
        else:
            score = -abs(n_differences - self.amount)
            if n_differences <= self.amount:
                intervals = indices_to_intervals(equalities)
            else:
                differences = [
                    i for i in self.location.indices if i not in equalities
                ]
                intervals = indices_to_intervals(differences)
        locations = ([self.location] if (self.minimum is not None) else
                     [Location(start, end, 1) for start, end in intervals])
        return SpecEvaluation(self, problem, score=score, locations=locations)
Exemplo n.º 15
0
    def localized(self, location, problem=None, with_righthand=True):
        """Generic localization method for codon specifications.

        Calls the class'  ``.localized_on_window`` method at the end.

        """
        if self.location is not None:
            overlap = self.location.overlap_region(location)
            if overlap is None:
                return None
            else:
                # return self
                o_start, o_end = overlap.start, overlap.end
                w_start, w_end = self.location.start, self.location.end

                if self.location.strand != -1:
                    start_codon = int((o_start - w_start) / 3)
                    end_codon = int((o_end - w_start - 1) / 3) + 1
                    new_location = Location(
                        start=w_start + 3 * start_codon,
                        end=min(w_end, w_start + 3 * (end_codon)),
                        strand=self.location.strand,
                    )
                else:
                    start_codon = int((w_end - o_end) / 3)
                    end_codon = int((w_end - o_start - 1) / 3) + 1
                    new_location = Location(
                        start=max(w_start, w_end - 3 * (end_codon)),
                        end=w_end - 3 * start_codon,
                        strand=self.location.strand,
                    )
                return self.localized_on_window(
                    new_location, start_codon, end_codon
                )
        else:
            return self
Exemplo n.º 16
0
    def insert_pattern_in_problem(self, problem, reverse=False):
        """Insert the pattern in the problem's sequence by successive tries.

        This heuristic is attempted to get the number of occurences in the
        pattern from 0 to some number
        """
        sequence_to_insert = self.pattern.sequence
        if reverse:
            sequence_to_insert = reverse_complement(sequence_to_insert)
        L = self.pattern.size
        starts = range(self.location.start, self.location.end - L)
        if self.center:
            center = 0.5 * (self.location.start + self.location.end)
            starts = sorted(starts, key=lambda s: abs(s - center))
        for start in starts:
            new_location = Location(start, start + L, self.location.strand)
            new_constraint = EnforceSequence(
                sequence=sequence_to_insert, location=new_location
            )
            new_space = MutationSpace.from_optimization_problem(
                problem, new_constraints=[new_constraint]
            )
            if len(new_space.unsolvable_segments) > 0:
                continue
            new_sequence = new_space.constrain_sequence(problem.sequence)
            new_constraints = problem.constraints + [new_constraint]
            new_problem = DnaOptimizationProblem(
                sequence=new_sequence,
                constraints=new_constraints,
                mutation_space=new_space,
                logger=None,
            )
            if self.evaluate(new_problem).passes:
                try:
                    new_problem.resolve_constraints()
                    problem.sequence = new_problem.sequence
                    return
                except NoSolutionError:
                    pass
        if (not reverse) and (not self.pattern.is_palyndromic):
            self.insert_pattern_in_problem(problem, reverse=True)
            return
        raise NoSolutionError(
            problem=problem,
            location=self.location,
            message="Insertion of pattern %s in %s failed"
            % (self.pattern.sequence, self.location),
        )
 def sequence_edits_as_features(self, feature_type="misc_feature"):
     """Return a list of Biopython Record Features indicating each of the
     edits."""
     segments = sequences_differences_segments(
         self.sequence, self.sequence_before
     )
     return [
         Location(start, end).to_biopython_feature(
             label="%s=>%s"
             % (self.sequence_before[start:end], self.sequence[start:end]),
             is_edit="true",
             ApEinfo_fwdcolor="#ff0000",
             color="#ff0000",
         )
         for start, end in segments
     ]
Exemplo n.º 18
0
    def evaluate(self, problem):
        """Return the score (-number_of_hairpins) and hairpins locations."""
        sequence = self.location.extract_sequence(problem.sequence)
        reverse = reverse_complement(sequence)
        locations = []
        for i in range(len(sequence) - self.hairpin_window):
            word = sequence[i:i + self.stem_size]
            rest = reverse[-(i + self.hairpin_window):-(i + self.stem_size)]
            if word in rest:
                locations.append((i, i + rest.index(word) + len(word)))
        score = -len(locations)
        locations = group_nearby_segments(locations, max_start_spread=10)
        locations = sorted([
            Location(l[0][0], l[-1][1] + self.hairpin_window)
            for l in locations
        ])

        return SpecEvaluation(self, problem, score, locations=locations)
Exemplo n.º 19
0
    def local_evaluation(self, problem):
        extract_kmer = self.get_kmer_extractor(problem.sequence)
        variable_kmers = {}
        for label in ("location", "extended"):
            variable_kmers[label] = d = {}
            for i in self.localization_data[label]["changing_indices"]:
                kmer = extract_kmer(i)
                if kmer not in d:
                    d[kmer] = [i]
                else:
                    d[kmer].append(i)

        nonunique_locations = []
        for kmer, indices in variable_kmers["location"].items():
            if len(indices) > 1:
                nonunique_locations += indices
        location_variable_kmers = set(variable_kmers["location"].keys())
        extended_variable_kmers = set(variable_kmers["extended"].keys())
        fixed_location_kmers = self.localization_data["location"]["fixed_kmers"]
        extended_fixed_kmers = self.localization_data["extended"]["fixed_kmers"]


        for c in [extended_variable_kmers,
                  fixed_location_kmers, extended_fixed_kmers]:
            nonunique_locations += [
                i
                for kmer in location_variable_kmers.intersection(c)
                for i in variable_kmers["location"][kmer]
            ]

        for c in [location_variable_kmers, fixed_location_kmers]:
            nonunique_locations += [
                i for kmer in extended_variable_kmers.intersection(c)
                for i in variable_kmers["extended"][kmer]
            ]
        nonunique_locations = [Location(i, i + self.min_length)
                               for i in nonunique_locations]
        return SpecEvaluation(
            self, problem, score=-len(nonunique_locations),
            locations=nonunique_locations,
            message="Failed, the following positions are the first occurences"
                    "of local non-unique segments %s" % nonunique_locations)
Exemplo n.º 20
0
 def __init__(self,
              mini=0,
              maxi=1.0,
              target=None,
              window=None,
              location=None,
              boost=1.0):
     """Initialize."""
     if target is not None:
         mini = maxi = target
     self.target = target
     self.mini = mini
     self.maxi = maxi
     self.window = window
     if isinstance(location, tuple):
         location = Location.from_tuple(location)
     if location is not None and (location.strand == -1):
         location = Location(location.start, location.end, 1)
     self.location = location
     self.boost = boost
Exemplo n.º 21
0
 def __init__(
     self,
     mini=0,
     maxi=1.0,
     target=None,
     window=None,
     location=None,
     boost=1.0,
 ):
     """Initialize."""
     if isinstance(mini, str):
         mini, maxi, target, window = self.string_to_parameters(mini)
     if target is not None:
         mini = maxi = target
     self.target = target
     self.mini = mini
     self.maxi = maxi
     self.window = window
     location = Location.from_data(location)
     if location is not None and (location.strand == -1):
         location = Location(location.start, location.end, 1)
     self.location = location
     self.boost = boost
Exemplo n.º 22
0
    def evaluate(self, problem):
        """Return the sum of breaches extent for all windowed breaches."""
        wstart, wend = self.location.start, self.location.end
        sequence = self.location.extract_sequence(problem.sequence)
        gc = gc_content(sequence, window_size=self.window)
        breaches = (np.maximum(0, self.mini - gc) +
                    np.maximum(0, gc - self.maxi))
        score = -breaches.sum()
        breaches_starts = wstart + (breaches > 0).nonzero()[0]

        if len(breaches_starts) == 0:
            breaches_locations = []
        elif len(breaches_starts) == 1:
            if self.window is not None:
                start = breaches_starts[0]
                breaches_locations = [[start, start + self.window]]
            else:
                breaches_locations = [[wstart, wend]]
        else:
            segments = [(bs, bs + self.window) for bs in breaches_starts]
            groups = group_nearby_segments(segments,
                                           max_start_spread=max(
                                               1, self.locations_span))
            breaches_locations = [(group[0][0], group[-1][-1])
                                  for group in groups]

        if breaches_locations == []:
            message = "Passed !"
        else:
            breaches_locations = [Location(*loc) for loc in breaches_locations]
            message = ("Out of bound on segments " +
                       ", ".join([str(l) for l in breaches_locations]))
        return SpecEvaluation(self,
                              problem,
                              score,
                              locations=breaches_locations,
                              message=message)
Exemplo n.º 23
0
    def evaluate(self, problem):
        """Return a score equal to -number_of modifications.

        Locations are "binned" modifications regions. Each bin has a length
        in nucleotides equal to ``localization_interval_length`.`
        """
        sequence = self.location.extract_sequence(problem.sequence)
        discrepancies = np.array([
            i for i, nuc in enumerate(sequence)
            if nuc not in IUPAC_NOTATION[self.sequence[i]]
        ])

        if self.location.strand == -1:
            discrepancies = self.location.end - discrepancies
        else:
            discrepancies = discrepancies + self.location.start
        intervals = [(r[0], r[-1] + 1) for r in group_nearby_indices(
            discrepancies, max_group_spread=self.localization_interval_length)]
        locations = [Location(start, end, 1) for start, end in intervals]

        return SpecEvaluation(self,
                              problem,
                              score=-len(discrepancies),
                              locations=locations)
Exemplo n.º 24
0
 def initialize_on_problem(self, problem, role=None):
     if self.location is None:
         location = Location(0, len(problem.sequence))
         return self.copy_with_changes(location=location)
     else:
         return self
Exemplo n.º 25
0
    def resolve_constraint(self, constraint):
        """Resolve a constraint through successive localizations."""

        # EVALUATE THE CONSTRAINT, FIND BREACHING LOCATIONS

        evaluation = constraint.evaluate(self)
        if evaluation.passes:
            return

        locations = sorted(evaluation.locations)
        iterator = self.logger.iter_bar(location=locations,
                                        bar_message=lambda loc: str(loc))

        # FOR EACH LOCATION, CREATE A LOCAL PROBLEM AND RESOLVE LOCALLY.

        for i, location in enumerate(iterator):

            # SEVERAL "EXTENSIONS" OF THE LOCAL ZONE WILL BE TESTED IN TURN
            # IN CASE THE LOCAL SEQUENCE IS FROZEN DUE TO NUCLEOTIDE INTER-
            # DEPENDENCIES (CODONS, ETC.)

            for extension in self.local_extensions:
                new_location = location.extended(extension)
                mutation_space = self.mutation_space.localized(new_location)

                if mutation_space.space_size == 0:

                    # If the sequence is frozen at this location, either
                    # "continue" (go straight to the next, larger extension)
                    # or if we are already in the largest extension, return
                    # an error with data that will be used by the report
                    # generator.

                    if extension != self.local_extensions[-1]:
                        continue
                    else:
                        error = NoSolutionError(
                            location=new_location,
                            problem=self,
                            message="Constraint breach in region that cannot "
                            "be mutated.",
                        )
                        error.location = new_location
                        error.constraint = constraint
                        error.message = "While solving %s in %s:\n\n%s" % (
                            constraint,
                            new_location,
                            str(error),
                        )
                        self.logger(
                            location__index=len(locations),
                            location__message="Cold exit",
                        )
                        raise error
                new_location = Location(*mutation_space.choices_span)

                # This blocks solves the problem of overlapping breaches,
                # which can make the local optimization impossible.
                # If the next constraint breach overlaps with the current
                # location, localize the constraint with a with_righthand=False
                # flag, which will be used by the constraints ".localized"
                # method to only consider the right-hand side.

                if (i < (len(locations) - 1)) and (
                        locations[i + 1].overlap_region(new_location)):
                    this_local_constraint = constraint.localized(
                        new_location, with_righthand=False, problem=self)
                else:
                    this_local_constraint = constraint.localized(new_location,
                                                                 problem=self)
                evaluation = this_local_constraint.evaluate(self)

                # MAYBE THE LOCAL BREACH WAS ALREADY RESOLVED AS A SIDE EFFECT
                # OF SOLVING PREVIOUS BREACHES. IN THAT CASE, PASS.

                if evaluation.passes:
                    continue

                # ELSE, CREATE A NEW LOCAL PROBLEM WITH LOCALIZED CONSTRAINTS

                this_local_constraint.is_focus = True
                this_local_constraint.evaluation = evaluation

                localized_constraints = [
                    cst.localized(new_location, problem=self)
                    for cst in self.constraints if cst != constraint
                    and not cst.enforced_by_nucleotide_restrictions
                ]
                passing_localized_constraints = [
                    cst for cst in localized_constraints
                    if cst is not None and cst.evaluate(self).passes
                ]
                local_problem = self.__class__(
                    sequence=self.sequence,
                    constraints=([this_local_constraint] +
                                 passing_localized_constraints),
                    mutation_space=mutation_space,
                )
                local_problem.randomization_threshold = (
                    self.randomization_threshold)
                local_problem.max_random_iters = self.max_random_iters
                local_problem.mutations_per_iteration = (
                    self.mutations_per_iteration)

                # STORE THE LOCAL PROBLEM IN THE LOGGER.
                # This is useful for troubleshooting.

                self.logger.store(
                    problem=self,
                    local_problem=local_problem,
                    location=location,
                )

                # RESOLVE THE LOCAL PROBLEM. RETURN AN ERROR IF IT FAILS.

                try:
                    if hasattr(constraint, "resolution_heuristic"):
                        constraint.resolution_heuristic(local_problem)
                    else:
                        local_problem.resolve_constraints_locally()
                    self._replace_sequence(local_problem.sequence)
                    break
                except NoSolutionError as error:
                    if extension == self.local_extensions[-1]:
                        error.location = new_location
                        error.constraint = constraint
                        error.message = "While solving %s in %s:\n\n%s" % (
                            constraint,
                            new_location,
                            str(error),
                        )
                        self.logger(
                            location__index=len(locations),
                            location__message="Cold exit",
                        )
                        raise error
                    else:
                        continue
    def optimize_objective(self, objective):
        """Optimize the total objective score, focusing on a single objective.

        This method will attempt to increase the global objective score by
        focusing on a single objective. First the locations of under-optimal
        subsequences for this objective are identified, then these locations
        are optimized one after the other, left to right.

        For each location, a local problem is created and the optimization uses
        either a custom optimization algorithm, an exhaustive search, or a
        random search, to optimize the local problem
        """
        # EVALUATE OBJECTIVE. RETURN IF THERE IS NOTHING TO BE DONE.
        evaluation = objective.evaluate(self)
        locations = evaluation.locations
        if (objective.best_possible_score
                is not None) and (evaluation.score
                                  == objective.best_possible_score):
            return

        # FOR EACH LOCATION, CREATE AND OPTIMIZE A LOCAL PROBLEM.

        for location in self.logger.iter_bar(location=locations,
                                             bar_message=lambda l: str(l)):
            # Localize the mutation space by freezing any nucleotide outside of
            # it
            mutation_space = self.mutation_space.localized(location)
            if mutation_space.space_size == 0:
                continue

            # Update the location so it matches the span of the mutation_space
            # the resulting location will be equal or smaller to the original
            # location.
            location = Location(*mutation_space.choices_span)
            localized_constraints = [
                cst.localized(location, problem=self)
                for cst in self.constraints
            ]
            localized_constraints = [
                cst for cst in localized_constraints if cst is not None
            ]
            localized_objectives = [
                obj.localized(location, problem=self)
                for obj in self.objectives
            ]
            localized_objectives = [
                obj for obj in localized_objectives if obj is not None
            ]
            local_problem = self.__class__(
                sequence=self.sequence,
                constraints=localized_constraints,
                mutation_space=mutation_space,
                objectives=localized_objectives,
            )
            self.logger.store(problem=self,
                              local_problem=local_problem,
                              location=location)
            local_problem.randomization_threshold = (
                self.randomization_threshold)
            local_problem.max_random_iters = self.max_random_iters
            local_problem.optimization_stagnation_tolerance = (
                self.optimization_stagnation_tolerance)
            local_problem.mutations_per_iteration = (
                self.mutations_per_iteration)

            # OPTIMIZE THE LOCAL PROBLEM

            if hasattr(objective, "optimization_heuristic"):
                # Some specifications implement their own optimization method.
                objective.optimization_heuristic(local_problem)
            else:
                # Run an exhaustive or random search depending on the size
                # of the mutation space.
                space_size = local_problem.mutation_space.space_size
                exhaustive_search = space_size < self.randomization_threshold
                if exhaustive_search:
                    local_problem.optimize_by_exhaustive_search()
                else:
                    local_problem.optimize_by_random_mutations()

            # UPDATE THE PROBLEM's SEQUENCE

            self.sequence = local_problem.sequence
Exemplo n.º 27
0
 def location_or_default(location):
     default = Location(0, len(problem.sequence), 1)
     return default if location is None else location