Exemplo n.º 1
0
def main():
    x_train, y_train, x_test, y_test = data.mnist(one_hot=True)

    # Define Deep Neural Network structure (input_dim, num_of_nodes)
    layers = [[x_train.shape[1], 256], [256, 128], [128, 64]]

    # Initialize a deep neural network

    dnn = DNN(MODEL_FOLDER, os_slash, layers, params)

    pre_epochs = 100
    train_epochs = 100

    # Create auto-encoders and train them one by one by stacking them in the DNN
    pre_trained_weights = dnn.pre_train(x_train, pre_epochs)

    # Then use the pre-trained weights of these layers as initial weight values for the MLP
    history = dnn.train(x_train,
                        y_train,
                        train_epochs,
                        init_weights=pre_trained_weights)

    plot.plot_loss(history, loss_type='MSE')

    predicted, score = dnn.test(x_test, y_test)

    print("Test accuracy: ", score[1])

    dnn.model.save_weights(MODEL_FOLDER + os_slash + "final_weights.h5")
    dnn.model.save(MODEL_FOLDER + os_slash + "model.h5")
    save_results(score[1])
Exemplo n.º 2
0
def main2():
    dnn = DNN(input=28 * 28,
              layers=[DropoutLayer(160, LQ),
                      Layer(10, LCE)],
              eta=0.05,
              lmbda=1)  # 98%
    dnn.initialize_rand()
    train, test, vadilation = load_mnist_simple()

    f_names = [f'mnist_expaned_k0{i}.pkl.gz' for i in range(50)]
    shuffle(f_names)
    for f_name in f_names:
        print(f_name)
        with timing("load"):
            raw_data = load_data(f_name)
        with timing("shuffle"):
            shuffle(raw_data)
        with timing("reshape"):
            data = [(x.reshape((784, 1)), y)
                    for x, y in islice(raw_data, 100000)]
            del raw_data
        with timing("learn"):
            dnn.learn(data)
        del data
        print('TEST:', dnn.test(test))
Exemplo n.º 3
0
def main():
    train, test, vadilation = load_mnist_simple()
    # x, y = train[0]
    # print("x: ", x.shape)
    # print("y: ", y)

    with timing(f""):
        # dnn = DNN(input=28 * 28, layers=[Layer(30, LQ), Layer(10, LCE)], eta=0.05)  # 96%
        # dnn = DNN(input=28 * 28, layers=[Layer(30, LQ), Layer(10, SM)], eta=0.001)  # 68%
        # dnn = DNN(input=28 * 28, layers=[Layer(100, LQ), Layer(10, LCE)], eta=0.05, lmbda=5)  # 98%
        # dnn = DNN(input=28 * 28, layers=[DropoutLayer(100, LQ), Layer(10, LCE)], eta=0.05)  # 97.5%
        dnn = DNN(input=28 * 28, layers=[DropoutLayer(160, LQ), Layer(10, LCE)], eta=0.05, lmbda=3)
        dnn.initialize_rand()
        dnn.learn(train, epochs=30, test=vadilation, batch_size=29)

    print('test:', dnn.test(test))
    print(dnn.stats())