def build_dataset(self, data: FilteredData, corpus) -> Dataset:
     flattened = []
     for point in data.data:
         for para in point.paragraphs:
             flattened.append(ParagraphAndQuestion(para.text, point.question,
                                         TokenSpans(point.answer_text, para.answer_spans),
                                         point.question_id))
     return ParagraphAndQuestionDataset(flattened, self.batcher)
Exemplo n.º 2
0
def get_questions(per_document, dataset, splitter, para_filter, preprocessor,
                  n_processes, batch_size):
    test_questions = dataset.get_dev()
    corpus = dataset.evidence
    print("Building question/paragraph pairs...")

    # Loads the relevant questions/documents, selects the right paragraphs, and runs the model's preprocessor
    if per_document:
        prep = ExtractMultiParagraphs(splitter,
                                      para_filter,
                                      preprocessor,
                                      require_an_answer=False)
    else:
        prep = ExtractMultiParagraphsPerQuestion(splitter,
                                                 para_filter,
                                                 preprocessor,
                                                 require_an_answer=False)
    prepped_data = preprocess_par(test_questions, corpus, prep, n_processes,
                                  1000)

    data = []
    for q in prepped_data.data:
        for i, p in enumerate(q.paragraphs):
            if q.answer_text is None:
                ans = None
            else:
                ans = TokenSpans(q.answer_text, p.answer_spans)
            data.append(
                DocumentParagraphQuestion(q.question_id, p.doc_id,
                                          (p.start, p.end), q.question, p.text,
                                          ans, i))

    # Reverse so our first batch will be the largest (so OOMs happen early)
    questions = sorted(data,
                       key=lambda x: (x.n_context_words, len(x.question)),
                       reverse=True)
    test_questions = ParagraphAndQuestionDataset(
        questions, FixedOrderBatcher(batch_size, True))
    n_questions = len(questions)
    return test_questions, n_questions
Exemplo n.º 3
0
def main():
    parser = argparse.ArgumentParser(description='Evaluate a model on TriviaQA data')
    parser.add_argument('model', help='model directory')
    parser.add_argument('-p', '--paragraph_output', type=str,
                        help="Save fine grained results for each paragraph in csv format")
    parser.add_argument('-o', '--official_output', type=str, help="Build an offical output file with the model's"
                                                                  " most confident span for each (question, doc) pair")
    parser.add_argument('--no_ema', action="store_true", help="Don't use EMA weights even if they exist")
    parser.add_argument('--n_processes', type=int, default=None,
                        help="Number of processes to do the preprocessing (selecting paragraphs+loading context) with")
    parser.add_argument('-i', '--step', type=int, default=None, help="checkpoint to load, default to latest")
    parser.add_argument('-n', '--n_sample', type=int, default=None, help="Number of questions to evaluate on")
    parser.add_argument('-a', '--async', type=int, default=10)
    parser.add_argument('-t', '--tokens', type=int, default=400,
                        help="Max tokens per a paragraph")
    parser.add_argument('-g', '--n_paragraphs', type=int, default=15,
                        help="Number of paragraphs to run the model on")
    parser.add_argument('-f', '--filter', type=str, default=None, choices=["tfidf", "truncate", "linear"],
                        help="How to select paragraphs")
    parser.add_argument('-b', '--batch_size', type=int, default=200,
                        help="Batch size, larger sizes might be faster but wll take more memory")
    parser.add_argument('--max_answer_len', type=int, default=8,
                        help="Max answer span to select")
    parser.add_argument('-c', '--corpus',
                        choices=["web-dev", "web-test", "web-verified-dev", "web-train",
                                 "open-dev", "open-train"],
                        default="web-verified-dev")
    args = parser.parse_args()

    model_dir = ModelDir(args.model)
    model = model_dir.get_model()

    if args.corpus.startswith('web'):
        dataset = TriviaQaWebDataset()
        corpus = dataset.evidence
        if args.corpus == "web-dev":
            test_questions = dataset.get_dev()
        elif args.corpus == "web-test":
            test_questions = dataset.get_test()
        elif args.corpus == "web-verified-dev":
            test_questions = dataset.get_verified()
        elif args.corpus == "web-train":
            test_questions = dataset.get_train()
        else:
            raise RuntimeError()
    else:
        dataset = TriviaQaOpenDataset()
        corpus = dataset.evidence
        if args.corpus == "open-dev":
            test_questions = dataset.get_dev()
        elif args.corpus == "open-train":
            test_questions = dataset.get_train()
        else:
            raise RuntimeError()

    splitter = MergeParagraphs(args.tokens)

    per_document = not args.corpus.startswith("open")

    filter_name = args.filter
    if filter_name is None:
        if args.corpus.startswith("open"):
            filter_name = "linear"
        else:
            filter_name = "tfidf"

    print("Selecting %d paragraphs using %s method per %s" % (args.n_paragraphs, filter_name,
                                                              ("question-document pair" if per_document else "question")))

    if filter_name == "tfidf":
        para_filter = TopTfIdf(NltkPlusStopWords(punctuation=True), args.n_paragraphs)
    elif filter_name == "truncate":
        para_filter = FirstN(args.n_paragraphs)
    elif filter_name == "linear":
        para_filter = ShallowOpenWebRanker(args.n_paragraphs)
    else:
        raise ValueError()

    n_questions = args.n_sample
    if n_questions is not None:
        test_questions.sort(key=lambda x:x.question_id)
        np.random.RandomState(0).shuffle(test_questions)
        test_questions = test_questions[:n_questions]

    print("Building question/paragraph pairs...")
    # Loads the relevant questions/documents, selects the right paragraphs, and runs the model's preprocessor
    if per_document:
        prep = ExtractMultiParagraphs(splitter, para_filter, model.preprocessor, require_an_answer=False)
    else:
        prep = ExtractMultiParagraphsPerQuestion(splitter, para_filter, model.preprocessor, require_an_answer=False)
    prepped_data = preprocess_par(test_questions, corpus, prep, args.n_processes, 1000)

    data = []
    for q in prepped_data.data:
        for i, p in enumerate(q.paragraphs):
            if q.answer_text is None:
                ans = None
            else:
                ans = TokenSpans(q.answer_text, p.answer_spans)
            data.append(DocumentParagraphQuestion(q.question_id, p.doc_id,
                                                 (p.start, p.end), q.question, p.text,
                                                  ans, i))

    # Reverse so our first batch will be the largest (so OOMs happen early)
    questions = sorted(data, key=lambda x: (x.n_context_words, len(x.question)), reverse=True)

    print("Done, starting eval")

    if args.step is not None:
        if args.step == "latest":
            checkpoint = model_dir.get_latest_checkpoint()
        else:
            checkpoint = model_dir.get_checkpoint(int(args.step))
    else:
        checkpoint = model_dir.get_best_weights()
        if checkpoint is not None:
            print("Using best weights")
        else:
            print("Using latest checkpoint")
            checkpoint = model_dir.get_latest_checkpoint()

    test_questions = ParagraphAndQuestionDataset(questions, FixedOrderBatcher(args.batch_size, True))

    evaluation = trainer.test(model,
                             [RecordParagraphSpanPrediction(args.max_answer_len, True)],
                              {args.corpus:test_questions}, ResourceLoader(), checkpoint, not args.no_ema, args.async)[args.corpus]

    if not all(len(x) == len(data) for x in evaluation.per_sample.values()):
        raise RuntimeError()

    df = pd.DataFrame(evaluation.per_sample)

    if args.official_output is not None:
        print("Saving question result")

        # I didn't store the unormalized filenames exactly, so unfortunately we have to reload
        # the source data to get exact filename to output an official test script
        fns = {}
        print("Loading proper filenames")
        if args.corpus == 'web-test':
            source = join(TRIVIA_QA, "qa", "web-test-without-answers.json")
        elif args.corpus == "web-dev":
            source = join(TRIVIA_QA, "qa", "web-dev.json")
        else:
            raise NotImplementedError()

        with open(join(source)) as f:
            data = json.load(f)["Data"]
        for point in data:
            for doc in point["EntityPages"]:
                filename = doc["Filename"]
                fn = join("wikipedia", filename[:filename.rfind(".")])
                fn = normalize_wiki_filename(fn)
                fns[(point["QuestionId"], fn)] = filename

        answers = {}
        scores = {}
        for q_id, doc_id, start, end, txt, score in df[["question_id", "doc_id", "para_start", "para_end",
                                                        "text_answer", "predicted_score"]].itertuples(index=False):
            filename = dataset.evidence.file_id_map[doc_id]
            if filename.startswith("web"):
                true_name = filename[4:] + ".txt"
            else:
                true_name = fns[(q_id, filename)]

            key = q_id + "--" + true_name
            prev_score = scores.get(key)
            if prev_score is None or prev_score < score:
                scores[key] = score
                answers[key] = txt

        with open(args.official_output, "w") as f:
            json.dump(answers, f)

    if per_document:
        group_by = ["question_id", "doc_id"]
    else:
        group_by = ["question_id"]

    # Print a table of scores as more paragraphs are used
    df.sort_values(group_by + ["rank"], inplace=True)
    f1 = compute_model_scores(df, "predicted_score", "text_f1", group_by)
    em = compute_model_scores(df, "predicted_score", "text_em", group_by)
    table = [["N Paragraphs", "EM", "F1"]]
    table += list([str(i+1), "%.4f" % e, "%.4f" % f] for i, (e, f) in enumerate(zip(em, f1)))
    print_table(table)

    output_file = args.paragraph_output
    if output_file is not None:
        print("Saving paragraph result")
        if output_file.endswith("json"):
            with open(output_file, "w") as f:
                json.dump(evaluation.per_sample, f)
        elif output_file.endswith("pkl"):
            with open(output_file, "wb") as f:
                pickle.dump(evaluation.per_sample, f)
        elif output_file.endswith("csv"):

            df.to_csv(output_file, index=False)
        else:
            raise ValueError("Unrecognized file format")
Exemplo n.º 4
0
def main():
    parser = argparse.ArgumentParser(description='Evaluate a model on SQuAD')
    parser.add_argument('model', help='model directory to evaluate')
    parser.add_argument("-o", "--official_output", type=str,
                        help="where to output an official result file")
    parser.add_argument('-n', '--sample_questions', type=int, default=None,
                        help="(for testing) run on a subset of questions")
    parser.add_argument('--answer_bounds', nargs='+', type=int, default=[17],
                        help="Max size of answer")
    parser.add_argument('-b', '--batch_size', type=int, default=200,
                        help="Batch size, larger sizes can be faster but uses more memory")
    parser.add_argument('-s', '--step', default=None,
                        help="Weights to load, can be a checkpoint step or 'latest'")
    # Add ja_test choice to test Multilingual QA dataset.
    parser.add_argument(
        '-c', '--corpus', choices=["dev", "train", "ja_test", "pred"], default="dev")
    parser.add_argument('--no_ema', action="store_true",
                        help="Don't use EMA weights even if they exist")
    # Add ja_test choice to test Multilingual QA pipeline.
    parser.add_argument('-p', '--pred_filepath', default=None,
                        help="The csv file path if you try pred mode")
    args = parser.parse_args()

    model_dir = ModelDir(args.model)

    corpus = SquadCorpus()
    if args.corpus == "dev":
        questions = corpus.get_dev()
    # Add ja_test choice to test Multilingual QA pipeline.
    elif args.corpus == "ja_test":
        questions = corpus.get_ja_test()
    # This is for prediction mode for MLQA pipeline.
    elif args.corpus == "pred":
        questions = create_pred_dataset(args.pred_filepath)
    else:
        questions = corpus.get_train()
    questions = split_docs(questions)

    if args.sample_questions:
        np.random.RandomState(0).shuffle(
            sorted(questions, key=lambda x: x.question_id))
        questions = questions[:args.sample_questions]

    questions.sort(key=lambda x: x.n_context_words, reverse=True)
    dataset = ParagraphAndQuestionDataset(
        questions, FixedOrderBatcher(args.batch_size, True))

    evaluators = [SpanEvaluator(args.answer_bounds, text_eval="squad")]
    if args.official_output is not None:
        evaluators.append(RecordSpanPrediction(args.answer_bounds[0]))

    if args.step is not None:
        if args.step == "latest":
            checkpoint = model_dir.get_latest_checkpoint()
        else:
            checkpoint = model_dir.get_checkpoint(int(args.step))
    else:
        checkpoint = model_dir.get_best_weights()
        if checkpoint is not None:
            print("Using best weights")
        else:
            print("Using latest checkpoint")
            checkpoint = model_dir.get_latest_checkpoint()

    model = model_dir.get_model()

    evaluation = trainer.test(model, evaluators, {args.corpus: dataset},
                              corpus.get_resource_loader(), checkpoint, not args.no_ema)[args.corpus]

    # Print the scalar results in a two column table
    scalars = evaluation.scalars
    cols = list(sorted(scalars.keys()))
    table = [cols]
    header = ["Metric", ""]
    table.append([("%s" % scalars[x] if x in scalars else "-") for x in cols])
    print_table([header] + transpose_lists(table))

    # Save the official output
    if args.official_output is not None:
        quid_to_para = {}
        for x in questions:
            quid_to_para[x.question_id] = x.paragraph

        q_id_to_answers = {}
        q_ids = evaluation.per_sample["question_id"]
        spans = evaluation.per_sample["predicted_span"]
        for q_id, (start, end) in zip(q_ids, spans):
            text = quid_to_para[q_id].get_original_text(start, end)
            q_id_to_answers[q_id] = text

        with open(args.official_output, "w") as f:
            json.dump(q_id_to_answers, f)
Exemplo n.º 5
0
def run():
    parser = argparse.ArgumentParser()
    parser.add_argument("squad_path", help="path to squad dev data file")
    parser.add_argument("output_path",
                        help="path where evaluation json file will be written")
    parser.add_argument("--model-path",
                        default="model",
                        help="path to model directory")
    parser.add_argument("--n", type=int, default=None)
    parser.add_argument("-b", "--batch_size", type=int, default=100)
    parser.add_argument("--ema", action="store_true")
    args = parser.parse_args()

    squad_path = args.squad_path
    output_path = args.output_path
    model_dir = ModelDir(args.model_path)
    nltk.data.path.append("nltk_data")

    print("Loading data")
    docs = parse_squad_data(squad_path, "", NltkAndPunctTokenizer(), False)
    pairs = split_docs(docs)
    dataset = ParagraphAndQuestionDataset(
        pairs, ClusteredBatcher(args.batch_size, ContextLenKey(), False, True))

    print("Done, init model")
    model = model_dir.get_model()
    loader = ResourceLoader(lambda a, b: load_word_vector_file(
        join(VEC_DIR, "glove.840B.300d.txt"), b))
    lm_model = model.lm_model
    basedir = join(LM_DIR, "squad-context-concat-skip")
    lm_model.lm_vocab_file = join(basedir,
                                  "squad_train_dev_all_unique_tokens.txt")
    lm_model.options_file = join(
        basedir, "options_squad_lm_2x4096_512_2048cnn_2xhighway_skip.json")
    lm_model.weight_file = join(
        basedir,
        "squad_context_concat_lm_2x4096_512_2048cnn_2xhighway_skip.hdf5")
    lm_model.embed_weights_file = None

    model.set_inputs([dataset], loader)

    print("Done, building graph")
    sess = tf.Session()
    with sess.as_default():
        pred = model.get_prediction()
    best_span = pred.get_best_span(17)[0]

    all_vars = tf.global_variables() + tf.get_collection(
        tf.GraphKeys.SAVEABLE_OBJECTS)
    dont_restore_names = {
        x.name
        for x in all_vars if x.name.startswith("bilm")
    }
    print(sorted(dont_restore_names))
    vars = [x for x in all_vars if x.name not in dont_restore_names]

    print("Done, loading weights")
    checkpoint = model_dir.get_best_weights()
    if checkpoint is None:
        print("Loading most recent checkpoint")
        checkpoint = model_dir.get_latest_checkpoint()
    else:
        print("Loading best weights")

    saver = tf.train.Saver(vars)
    saver.restore(sess, checkpoint)

    if args.ema:
        ema = tf.train.ExponentialMovingAverage(0)
        saver = tf.train.Saver(
            {ema.average_name(x): x
             for x in tf.trainable_variables()})
        saver.restore(sess, checkpoint)

    sess.run(
        tf.variables_initializer(
            [x for x in all_vars if x.name in dont_restore_names]))

    print("Done, starting evaluation")
    out = {}
    for i, batch in enumerate(dataset.get_epoch()):
        if args.n is not None and i == args.n:
            break
        print("On batch: %d" % (i + 1))
        enc = model.encode(batch, False)
        spans = sess.run(best_span, feed_dict=enc)
        for (s, e), point in zip(spans, batch):
            out[point.question_id] = point.get_original_text(s, e)

    sess.close()

    print("Done, saving")
    with open(output_path, "w") as f:
        json.dump(out, f)

    print("Mission accomplished!")
Exemplo n.º 6
0
def main():
    parser = argparse.ArgumentParser(description='Evaluate a model on SQuAD')
    parser.add_argument('model', help='model directory to evaluate')
    parser.add_argument("-o", "--official_output", type=str, help="where to output an official result file")
    parser.add_argument('-n', '--sample_questions', type=int, default=None,
                        help="(for testing) run on a subset of questions")
    parser.add_argument('--answer_bounds', nargs='+', type=int, default=[17],
                        help="Max size of answer")
    parser.add_argument('-b', '--batch_size', type=int, default=200,
                        help="Batch size, larger sizes can be faster but uses more memory")
    parser.add_argument('-s', '--step', default=None,
                        help="Weights to load, can be a checkpoint step or 'latest'")
    parser.add_argument('-c', '--corpus', choices=["dev", "train"], default="dev")
    parser.add_argument('--no_ema', action="store_true", help="Don't use EMA weights even if they exist")
    parser.add_argument('--none_prob', action="store_true", help="Output none probability for samples")
    parser.add_argument('--elmo', action="store_true", help="Use elmo model")
    parser.add_argument('--per_question_loss_file', type=str, default=None,
            help="Run question by question and output a question_id -> loss output to this file")
    args = parser.parse_known_args()[0]

    model_dir = ModelDir(args.model)

    corpus = SquadCorpus()
    if args.corpus == "dev":
        questions = corpus.get_dev()
    else:
        questions = corpus.get_train()
    questions = split_docs(questions)

    if args.sample_questions:
        np.random.RandomState(0).shuffle(sorted(questions, key=lambda x: x.question_id))
        questions = questions[:args.sample_questions]

    questions.sort(key=lambda x:x.n_context_words, reverse=True)
    dataset = ParagraphAndQuestionDataset(questions, FixedOrderBatcher(args.batch_size, True))

    evaluators = [SpanEvaluator(args.answer_bounds, text_eval="squad")]
    if args.official_output is not None:
        evaluators.append(RecordSpanPrediction(args.answer_bounds[0]))
    if args.per_question_loss_file is not None:
        evaluators.append(RecordSpanPredictionScore(args.answer_bounds[0], args.batch_size, args.none_prob))

    if args.step is not None:
        if args.step == "latest":
            checkpoint = model_dir.get_latest_checkpoint()
        else:
            checkpoint = model_dir.get_checkpoint(int(args.step))
    else:
        checkpoint = model_dir.get_best_weights()
        if checkpoint is not None:
            print("Using best weights")
        else:
            print("Using latest checkpoint")
            checkpoint = model_dir.get_latest_checkpoint()

    model = model_dir.get_model()
    if args.elmo:
        model.lm_model.lm_vocab_file = './elmo-params/squad_train_dev_all_unique_tokens.txt'
        model.lm_model.options_file = './elmo-params/options_squad_lm_2x4096_512_2048cnn_2xhighway_skip.json'
        model.lm_model.weight_file = './elmo-params/squad_context_concat_lm_2x4096_512_2048cnn_2xhighway_skip.hdf5'
        model.lm_model.embed_weights_file = None


    evaluation = trainer.test(model, evaluators, {args.corpus: dataset},
                              corpus.get_resource_loader(), checkpoint, not args.no_ema)[args.corpus]

    # Print the scalar results in a two column table
    scalars = evaluation.scalars
    cols = list(sorted(scalars.keys()))
    table = [cols]
    header = ["Metric", ""]
    table.append([("%s" % scalars[x] if x in scalars else "-") for x in cols])
    print_table([header] + transpose_lists(table))

    # Save the official output
    if args.official_output is not None:
        quid_to_para = {}
        for x in questions:
            quid_to_para[x.question_id] = x.paragraph

        q_id_to_answers = {}
        q_ids = evaluation.per_sample["question_id"]
        spans = evaluation.per_sample["predicted_span"]
        for q_id, (start, end) in zip(q_ids, spans):
            text = quid_to_para[q_id].get_original_text(start, end)
            q_id_to_answers[q_id] = text

        with open(args.official_output, "w") as f:
            json.dump(q_id_to_answers, f)

    if args.per_question_loss_file is not None:
        print("Saving result")
        output_file = args.per_question_loss_file
        ids = evaluation.per_sample["question_ids"]
        f1s = evaluation.per_sample["text_f1"]
        ems = evaluation.per_sample["text_em"]
        losses = evaluation.per_sample["loss"]

        if args.none_prob:
            none_probs = evaluation.per_sample["none_probs"]
            """
            results = {question_id: {'f1': float(f1), 'em': float(em), 'loss': float(loss), 'none_prob': float(none_prob)} for question_id, f1, em, loss, none_prob in zip(ids, f1s, ems, losses, none_probs)}
            """
            results = {question_id: float(none_prob) for question_id, none_prob in zip(ids, none_probs)}
        else:
            results = {question_id: {'f1': float(f1), 'em': float(em), 'loss': float(loss)} for question_id, f1, em, loss in zip(ids, f1s, ems, losses)}


        with open(output_file, 'w') as f:
            json.dump(results, f)
def main():
    parser = argparse.ArgumentParser(
        description='Evaluate a model on document-level SQuAD')
    parser.add_argument('model', help='model to use')
    parser.add_argument(
        'output',
        type=str,
        help="Store the per-paragraph results in csv format in this file")
    parser.add_argument('-n',
                        '--n_sample',
                        type=int,
                        default=None,
                        help="(for testing) sample documents")
    parser.add_argument(
        '-s',
        '--async',
        type=int,
        default=10,
        help="Encoding batch asynchronously, queueing up to this many")
    parser.add_argument('-a',
                        '--answer_bound',
                        type=int,
                        default=17,
                        help="Max answer span length")
    parser.add_argument('-p',
                        '--n_paragraphs',
                        type=int,
                        default=None,
                        help="Max number of paragraphs to use")
    parser.add_argument(
        '-b',
        '--batch_size',
        type=int,
        default=200,
        help="Batch size, larger sizes can be faster but uses more memory")
    parser.add_argument('-c',
                        '--corpus',
                        choices=["dev", "train", "doc-rd-dev"],
                        default="dev")
    parser.add_argument('--no_ema',
                        action="store_true",
                        help="Don't use EMA weights even if they exist")
    args = parser.parse_args()

    model_dir = ModelDir(args.model)
    print("Loading data")

    questions = []
    ranker = SquadTfIdfRanker(NltkPlusStopWords(True),
                              args.n_paragraphs,
                              force_answer=False)

    if args.corpus == "doc-rd-dev":
        docs = SquadCorpus().get_dev()
        if args.n_sample is not None:
            docs.sort(key=lambda x: x.doc_id)
            np.random.RandomState(0).shuffle(docs)
            docs = docs[:args.n_sample]

        print("Fetching document reader docs...")
        doc_rd_versions = get_doc_rd_doc(docs)
        print("Ranking and matching with questions...")
        for doc in tqdm(docs):
            doc_questions = flatten_iterable(x.questions
                                             for x in doc.paragraphs)
            paragraphs = doc_rd_versions[doc.title]
            ranks = ranker.rank([x.words for x in doc_questions],
                                [x.text for x in paragraphs])
            for i, question in enumerate(doc_questions):
                para_ranks = np.argsort(ranks[i])
                for para_rank, para_num in enumerate(
                        para_ranks[:args.n_paragraphs]):
                    # Just use dummy answers spans for these pairs
                    questions.append(
                        RankedParagraphQuestion(
                            question.words,
                            TokenSpans(question.answer.answer_text,
                                       np.zeros((0, 2), dtype=np.int32)),
                            question.question_id, paragraphs[para_num],
                            para_rank, para_num))
        rl = ResourceLoader()
    else:
        if args.corpus == "dev":
            docs = SquadCorpus().get_dev()
        else:
            docs = SquadCorpus().get_train()
        rl = SquadCorpus().get_resource_loader()

        if args.n_sample is not None:
            docs.sort(key=lambda x: x.doc_id)
            np.random.RandomState(0).shuffle(docs)
            docs = docs[:args.n_sample]

        for q in ranker.ranked_questions(docs):
            for i, p in enumerate(q.paragraphs):
                questions.append(
                    RankedParagraphQuestion(
                        q.question, TokenSpans(q.answer_text, p.answer_spans),
                        q.question_id,
                        ParagraphWithInverse([p.text], p.original_text,
                                             p.spans), i, p.paragraph_num))

    print("Split %d docs into %d paragraphs" % (len(docs), len(questions)))

    questions = sorted(questions,
                       key=lambda x: (x.n_context_words, len(x.question)),
                       reverse=True)
    for q in questions:
        if len(q.answer.answer_spans.shape) != 2:
            raise ValueError()

    checkpoint = model_dir.get_best_weights()
    if checkpoint is not None:
        print("Using best weights")
    else:
        print("Using latest checkpoint")
        checkpoint = model_dir.get_latest_checkpoint()
        if checkpoint is None:
            raise ValueError("No checkpoints found")

    data = ParagraphAndQuestionDataset(
        questions, FixedOrderBatcher(args.batch_size, True))

    model = model_dir.get_model()
    evaluation = trainer.test(
        model, [RecordParagraphSpanPrediction(args.answer_bound, True)],
        {args.corpus: data}, rl, checkpoint, not args.no_ema,
        args. async)[args.corpus]

    print("Saving result")
    output_file = args.output

    df = pd.DataFrame(evaluation.per_sample)

    df.sort_values(["question_id", "rank"], inplace=True, ascending=True)
    group_by = ["question_id"]
    f1 = compute_ranked_scores(df, "predicted_score", "text_f1", group_by)
    em = compute_ranked_scores(df, "predicted_score", "text_em", group_by)
    table = [["N Paragraphs", "EM", "F1"]]
    table += list([str(i + 1), "%.4f" % e, "%.4f" % f]
                  for i, (e, f) in enumerate(zip(em, f1)))
    print_table(table)

    df.to_csv(output_file, index=False)
def main():
    parser = argparse.ArgumentParser(
        description='Evaluate a model on TriviaQA data')
    parser.add_argument('model', help='model directory')
    parser.add_argument(
        '-p',
        '--paragraph_output',
        type=str,
        help="Save fine grained results for each paragraph in csv format")
    parser.add_argument('-o',
                        '--official_output',
                        type=str,
                        help="Build an offical output file with the model's"
                        " most confident span for each (question, doc) pair")
    parser.add_argument('--no_ema',
                        action="store_true",
                        help="Don't use EMA weights even if they exist")
    parser.add_argument(
        '--n_processes',
        type=int,
        default=None,
        help=
        "Number of processes to do the preprocessing (selecting paragraphs+loading context) with"
    )
    parser.add_argument('-i',
                        '--step',
                        type=int,
                        default=None,
                        help="checkpoint to load, default to latest")
    parser.add_argument('-n',
                        '--n_sample',
                        type=int,
                        default=None,
                        help="Number of questions to evaluate on")
    parser.add_argument('-a', '--async', type=int, default=10)
    parser.add_argument('-t',
                        '--tokens',
                        type=int,
                        default=400,
                        help="Max tokens per a paragraph")
    parser.add_argument('-g',
                        '--n_paragraphs',
                        type=int,
                        default=15,
                        help="Number of paragraphs to run the model on")
    parser.add_argument('-f',
                        '--filter',
                        type=str,
                        default=None,
                        choices=["tfidf", "truncate", "linear"],
                        help="How to select paragraphs")
    parser.add_argument(
        '-b',
        '--batch_size',
        type=int,
        default=200,
        help="Batch size, larger sizes might be faster but wll take more memory"
    )
    parser.add_argument('--max_answer_len',
                        type=int,
                        default=8,
                        help="Max answer span to select")
    parser.add_argument('-c',
                        '--corpus',
                        choices=[
                            "web-dev", "web-test", "web-verified-dev",
                            "web-train", "open-dev", "open-train", "wiki-dev",
                            "wiki-test"
                        ],
                        default="web-verified-dev")
    parser.add_argument("-s",
                        "--source_dir",
                        type=str,
                        default=None,
                        help="where to take input files")
    parser.add_argument("--n_span_per_q",
                        type=int,
                        default=1,
                        help="where to take input files")
    args = parser.parse_args()

    dataset_name = args.source_dir.split('/')[-1]
    model_name = args.model.split('/')[-1]
    ElasticLogger().write_log('INFO',
                              'Start Evaluation',
                              context_dict={
                                  'model': model_name,
                                  'dataset': dataset_name
                              })

    model_dir = ModelDir(args.model)
    model = model_dir.get_model()

    if args.corpus.startswith('web'):
        dataset = TriviaQaWebDataset()
        if args.corpus == "web-dev":
            test_questions = dataset.get_dev()
        elif args.corpus == "web-test":
            test_questions = dataset.get_test()
        elif args.corpus == "web-verified-dev":
            test_questions = dataset.get_verified()
        elif args.corpus == "web-train":
            test_questions = dataset.get_train()
        else:
            raise AssertionError()
    elif args.corpus.startswith("wiki"):
        dataset = TriviaQaWikiDataset()
        if args.corpus == "wiki-dev":
            test_questions = dataset.get_dev()
        elif args.corpus == "wiki-test":
            test_questions = dataset.get_test()
        else:
            raise AssertionError()
    else:
        dataset = TriviaQaOpenDataset(args.source_dir)
        if args.corpus == "open-dev":
            # just loading the pkl that was saved in build_span_corpus
            test_questions = dataset.get_dev()
        elif args.corpus == "open-train":
            test_questions = dataset.get_train()
        else:
            raise AssertionError()

    ### ALON debuging
    #test_questions = test_questions[0:5]

    corpus = dataset.evidence
    splitter = MergeParagraphs(args.tokens)

    per_document = args.corpus.startswith(
        "web")  # wiki and web are both multi-document
    #per_document = True

    filter_name = args.filter
    if filter_name is None:
        # Pick default depending on the kind of data we are using
        if per_document:
            filter_name = "tfidf"
        else:
            filter_name = "linear"

    print("Selecting %d paragraphs using method \"%s\" per %s" %
          (args.n_paragraphs, filter_name,
           ("question-document pair" if per_document else "question")))

    if filter_name == "tfidf":
        para_filter = TopTfIdf(NltkPlusStopWords(punctuation=True),
                               args.n_paragraphs)
    elif filter_name == "truncate":
        para_filter = FirstN(args.n_paragraphs)
    elif filter_name == "linear":
        para_filter = ShallowOpenWebRanker(args.n_paragraphs)
    else:
        raise ValueError()

    n_questions = args.n_sample
    docqa.config.SPANS_PER_QUESTION = args.n_span_per_q
    #n_questions = 1
    if n_questions is not None:
        test_questions.sort(key=lambda x: x.question_id)
        np.random.RandomState(0).shuffle(test_questions)
        test_questions = test_questions[:n_questions]

    print("Building question/paragraph pairs...")
    # Loads the relevant questions/documents, selects the right paragraphs, and runs the model's preprocessor
    if per_document:
        prep = ExtractMultiParagraphs(splitter,
                                      para_filter,
                                      model.preprocessor,
                                      require_an_answer=False)
    else:
        prep = ExtractMultiParagraphsPerQuestion(splitter,
                                                 para_filter,
                                                 model.preprocessor,
                                                 require_an_answer=False)
    prepped_data = preprocess_par(test_questions, corpus, prep,
                                  args.n_processes, 1000)

    data = []
    for q in prepped_data.data:
        for i, p in enumerate(q.paragraphs):
            if q.answer_text is None:
                ans = None
            else:
                ans = TokenSpans(q.answer_text, p.answer_spans)
            data.append(
                DocumentParagraphQuestion(q.question_id, p.doc_id,
                                          (p.start, p.end), q.question, p.text,
                                          ans, i))

    # Reverse so our first batch will be the largest (so OOMs happen early)
    questions = sorted(data,
                       key=lambda x: (x.n_context_words, len(x.question)),
                       reverse=True)

    print("Done, starting eval")

    if args.step is not None:
        if args.step == "latest":
            checkpoint = model_dir.get_latest_checkpoint()
        else:
            checkpoint = model_dir.get_checkpoint(int(args.step))
    else:
        checkpoint = model_dir.get_best_weights()
        if checkpoint is not None:
            print("Using best weights")
        else:
            print("Using latest checkpoint")
            checkpoint = model_dir.get_latest_checkpoint()

    test_questions = ParagraphAndQuestionDataset(
        questions, FixedOrderBatcher(args.batch_size, True))

    evaluation = trainer.test(
        model, [RecordParagraphSpanPrediction(args.max_answer_len, True)],
        {args.corpus: test_questions}, ResourceLoader(), checkpoint,
        not args.no_ema, args. async)[args.corpus]

    if not all(len(x) == len(data) for x in evaluation.per_sample.values()):
        raise RuntimeError()

    df = pd.DataFrame(evaluation.per_sample)

    if args.official_output is not None:
        print("Saving question result")

        fns = {}
        if per_document:
            # I didn't store the unormalized filenames exactly, so unfortunately we have to reload
            # the source data to get exact filename to output an official test script
            print("Loading proper filenames")
            if args.corpus == 'web-test':
                source = join(TRIVIA_QA, "qa", "web-test-without-answers.json")
            elif args.corpus == "web-dev":
                source = join(TRIVIA_QA, "qa", "web-dev.json")
            else:
                raise AssertionError()

            with open(join(source)) as f:
                data = json.load(f)["Data"]
            for point in data:
                for doc in point["EntityPages"]:
                    filename = doc["Filename"]
                    fn = join("wikipedia", filename[:filename.rfind(".")])
                    fn = normalize_wiki_filename(fn)
                    fns[(point["QuestionId"], fn)] = filename

        answers = {}
        scores = {}
        for q_id, doc_id, start, end, txt, score in df[[
                "question_id", "doc_id", "para_start", "para_end",
                "text_answer", "predicted_score"
        ]].itertuples(index=False):
            filename = dataset.evidence.file_id_map[doc_id]
            if per_document:
                if filename.startswith("web"):
                    true_name = filename[4:] + ".txt"
                else:
                    true_name = fns[(q_id, filename)]
                # Alon Patch for triviaqa test results
                true_name = true_name.replace('TriviaQA_Org/', '')
                key = q_id + "--" + true_name
            else:
                key = q_id

            prev_score = scores.get(key)
            if prev_score is None or prev_score < score:
                scores[key] = score
                answers[key] = txt

        with open(args.official_output, "w") as f:
            json.dump(answers, f)

    output_file = args.paragraph_output
    if output_file is not None:
        print("Saving paragraph result")
        df.to_csv(output_file, index=False)

    print("Computing scores")

    if per_document:
        group_by = ["question_id", "doc_id"]
    else:
        group_by = ["question_id"]

    # Print a table of scores as more paragraphs are used
    df.sort_values(group_by + ["rank"], inplace=True)
    df_scores = df.copy(deep=True)
    df_scores['predicted_score'] = df_scores['predicted_score'].apply(
        lambda x: pd.Series(x).max())

    em = compute_ranked_scores(df_scores, "predicted_score", "text_em",
                               group_by)
    f1 = compute_ranked_scores(df_scores, "predicted_score", "text_f1",
                               group_by)
    table = [["N Paragraphs", "EM", "F1"]]
    table += list([str(i + 1), "%.4f" % e, "%.4f" % f]
                  for i, (e, f) in enumerate(zip(em, f1)))

    table_df = pd.DataFrame(table[1:], columns=table[0]).drop(['N Paragraphs'],
                                                              axis=1)
    ElasticLogger().write_log('INFO', 'Results', context_dict={'model': model_name, 'dataset': dataset_name, \
                                                            'max_EM':table_df.max().ix['EM'], \
                                                            'max_F1':table_df.max().ix['F1'], \
                                                            'result_table': str(table_df)})

    df_flat = []
    for id, question in df.iterrows():
        for text_answer, predicted_span, predicted_score in zip(
                question['text_answer'], question['predicted_span'],
                question['predicted_score']):
            new_question = dict(question.copy())
            new_question.update({
                'text_answer': text_answer,
                'predicted_span': predicted_span,
                'predicted_score': predicted_score
            })
            df_flat.append(new_question)

    results_df = pd.DataFrame(df_flat)
    #Alon: outputing the estimates for all the
    #results_df = results_df.groupby(['question_id', 'text_answer']).apply(lambda df: df.ix[df['predicted_score'].argmax()]).reset_index(drop=True)
    results_df.sort_values(by=['question_id', 'predicted_score'],
                           ascending=False).set_index([
                               'question_id', 'text_answer'
                           ])[['question', 'predicted_score',
                               'text_em']].to_csv('results.csv')

    print_table(table)
Exemplo n.º 9
0
def run():
    parser = argparse.ArgumentParser()
    parser.add_argument("input_data")
    parser.add_argument("output_data")

    parser.add_argument("--plot_dir", type=str, default=None)

    parser.add_argument("--model_dir", type=str, default="/tmp/model/document-qa")
    parser.add_argument("--lm_dir", type=str, default="/home/castle/data/lm/squad-context-concat-skip")
    parser.add_argument("--glove_dir", type=str, default="/home/castle/data/glove")

    parser.add_argument("--n", type=int, default=None)
    parser.add_argument("-b", "--batch_size", type=int, default=30)
    parser.add_argument("--ema", action="store_true")
    args = parser.parse_args()

    input_data = args.input_data
    output_path = args.output_data
    model_dir = ModelDir(args.model_dir)
    nltk.data.path.append("nltk_data")

    print("Loading data")
    docs = parse_squad_data(input_data, "", NltkAndPunctTokenizer(), False)
    pairs = split_docs(docs)
    dataset = ParagraphAndQuestionDataset(pairs, ClusteredBatcher(args.batch_size, ContextLenKey(), False, True))

    print("Done, init model")
    model = model_dir.get_model()
    # small hack, just load the vector file at its expected location rather then using the config location
    loader = ResourceLoader(lambda a, b: load_word_vector_file(join(args.glove_dir, "glove.840B.300d.txt"), b))
    lm_model = model.lm_model
    basedir = args.lm_dir
    plotdir = args.plot_dir

    lm_model.lm_vocab_file = join(basedir, "squad_train_dev_all_unique_tokens.txt")
    lm_model.options_file = join(basedir, "options_squad_lm_2x4096_512_2048cnn_2xhighway_skip.json")
    lm_model.weight_file = join(basedir, "squad_context_concat_lm_2x4096_512_2048cnn_2xhighway_skip.hdf5")
    lm_model.embed_weights_file = None

    model.set_inputs([dataset], loader)

    print("Done, building graph")
    sess = tf.Session()
    with sess.as_default():
        pred = model.get_prediction()
    best_span = pred.get_best_span(17)[0]

    if plotdir != None:
        start_logits_op, end_logits_op = pred.get_logits()

    all_vars = tf.global_variables() + tf.get_collection(tf.GraphKeys.SAVEABLE_OBJECTS)
    dont_restore_names = {x.name for x in all_vars if x.name.startswith("bilm")}
    print(sorted(dont_restore_names))
    vars = [x for x in all_vars if x.name not in dont_restore_names]

    print("Done, loading weights")
    checkpoint = model_dir.get_best_weights()
    if checkpoint is None:
        print("Loading most recent checkpoint")
        checkpoint = model_dir.get_latest_checkpoint()
    else:
        print("Loading best weights")

    saver = tf.train.Saver(vars)
    saver.restore(sess, checkpoint)

    if args.ema:
        ema = tf.train.ExponentialMovingAverage(0)
        saver = tf.train.Saver({ema.average_name(x): x for x in tf.trainable_variables()})
        saver.restore(sess, checkpoint)

    sess.run(tf.variables_initializer([x for x in all_vars if x.name in dont_restore_names]))

    print("Done, starting evaluation")
    out = {}
    for i, batch in enumerate(dataset.get_epoch()):
        if args.n is not None and i == args.n:
            break
        print("On batch size [%d], now in %d th batch" % (args.batch_size, i +1))
        enc = model.encode(batch, False)
        if plotdir != None:
            spans, start_logits, end_logits = sess.run([best_span, start_logits_op, end_logits_op], feed_dict=enc)
            for bi, point in enumerate(batch):
                q = ' '.join(point.question)
                c = point.paragraph.get_context()
                gt = ' | '.join(point.answer.answer_text)
                s, e = spans[bi]
                pred = point.get_original_text(s, e)
                start_dist = start_logits[bi]
                end_dist = end_logits[bi]
                c_interval = np.arange(0.0, start_dist.shape[0], 1)
                c_label = c
                plt.figure(1)
                plt.subplot(211)
                plt.plot(c_interval, start_dist, color='r')
                plt.title("Q : " + q + " // A : " + gt, fontsize=9)
                plt.text(0, 0, r'Predict : %s [%d:%d]' % (pred, s, e), color='b')
                axes = plt.gca()
                axes.set_ylim([-20, 20])

                plt.subplot(212)
                plt.plot(c_interval, end_dist, color='g')
                plt.xticks(c_interval, c_label, rotation=90, fontsize=5)
                axes = plt.gca()
                axes.set_ylim([-20, 20])
                plt.show()

            break
        else:
            spans = sess.run(best_span, feed_dict=enc)

        for (s, e), point in zip(spans, batch):
            out[point.question_id] = point.get_original_text(s, e)

    sess.close()

    print("Done, saving")
    with open(output_path, "w") as f:
        json.dump(out, f)

    print("Mission accomplished!")
Exemplo n.º 10
0
def main():
    parser = argparse.ArgumentParser(description='Evaluate a model on SQuAD')
    parser.add_argument('model', help='model directory to evaluate')
    parser.add_argument("-o", "--official_output", type=str, help="where to output an official result file")
    parser.add_argument('-n', '--sample_questions', type=int, default=None,
                        help="(for testing) run on a subset of questions")
    parser.add_argument('--answer_bounds', nargs='+', type=int, default=[17],
                        help="Max size of answer")
    parser.add_argument('-b', '--batch_size', type=int, default=45,
                        help="Batch size, larger sizes can be faster but uses more memory")
    parser.add_argument('-s', '--step', default=None,
                        help="Weights to load, can be a checkpoint step or 'latest'")
    parser.add_argument('-c', '--corpus', choices=["dev", "train"], default="dev")
    parser.add_argument('--no_ema', action="store_true", help="Don't use EMA weights even if they exist")
    args = parser.parse_args()

    num_choices = 4

    model_dir = ModelDir(args.model)

    corpus = SquadCorpus()
    if args.corpus == "dev":
        questions = corpus.get_dev()
    else:
        questions = corpus.get_train()
    questions = split_docs(questions)

    if args.sample_questions:
        np.random.RandomState(0).shuffle(sorted(questions, key=lambda x: x.question_id))
        questions = questions[:args.sample_questions]


    questions.sort(key=lambda x:x.n_context_words, reverse=True)
    #pdb.set_trace()
    #print(args.batch_size)
    #dataset = ParagraphAndQuestionDataset(questions, FixedOrderBatcher(args.batch_size, False),None,num_choices)


    dataset = ParagraphAndQuestionDataset(questions, ClusteredBatcher(45, ContextLenKey(), False, False),None,num_choices)
    
    #ClusteredBatcher(45, ContextLenKey(), False, False)

    evaluators = [MultiChoiceEvaluator(num_choices)]
    #if args.official_output is not None:
        #evaluators.append(RecordSpanPrediction(args.answer_bounds[0]))
    #pdb.set_trace()
    if args.step is not None:
        if args.step == "latest":
            checkpoint = model_dir.get_latest_checkpoint()
        else:
            checkpoint = model_dir.get_checkpoint(int(args.step))
    else:
        checkpoint = model_dir.get_best_weights()
        if checkpoint is not None:
            print("Using best weights")
        else:
            print("Using latest checkpoint")
            checkpoint = model_dir.get_latest_checkpoint()

    model = model_dir.get_model()
    #pdb.set_trace()
    evaluation = trainer.test(model, evaluators, {args.corpus: dataset},
                              corpus.get_resource_loader(), checkpoint, not args.no_ema)[args.corpus]
    
    #pdb.set_trace()
    
    # Print the scalar results in a two column table
    scalars = evaluation.scalars
    cols = list(sorted(scalars.keys()))
    table = [cols]
    header = ["Metric", ""]
    table.append([("%s" % scalars[x] if x in scalars else "-") for x in cols])
    print_table([header] + transpose_lists(table))

    # Save the official output
    if args.official_output is not None:
        data_to_dump = {}

        list_of_choices = ['A','B','C','D']

        q_ids = evaluation.per_sample["question_id"]
        correct_ans = evaluation.per_sample["correct answer"]
        correct_ids = evaluation.per_sample["correct index"]
        pred_ids = evaluation.per_sample["predictied index"]
        pred_ans = evaluation.per_sample["predictied answer"]
        is_correct  = evaluation.per_sample["is correct"]
        #pdb.set_trace()
        for ix, q_ids in enumerate(q_ids):
            if(is_correct[ix]):
                data_to_dump[q_ids] = {'Is Correct' : 'True',
                 'predictied' : [' '.join(pred_ans[ix]),list_of_choices[pred_ids[ix]]],
                 'correct' : [' '.join(correct_ans[ix]),list_of_choices[correct_ids[ix]]]
                } 
            else:
                data_to_dump[q_ids] = {'Is Correct' : 'False',
                 'predictied' : [' '.join(pred_ans[ix]),list_of_choices[pred_ids[ix]]],
                 'correct' : [' '.join(correct_ans[ix]),list_of_choices[correct_ids[ix]]]
                } 
        #pdb.set_trace()
        with open(args.official_output, "w") as f:
            json.dump(data_to_dump , f)