Exemplo n.º 1
0
def read_input_data(model):
  data = []
  vocab = set()
  tokenizer = NltkAndPunctTokenizer()
  splitter = Truncate(400)  # NOTE: we truncate past 400 tokens
  selector = TopTfIdf(NltkPlusStopWords(True), n_to_select=5)
  with open(OPTS.input_file) as f:
    for i, line in enumerate(f):
      try:
        document_raw, question_raw = line.strip().split('\t')
      except ValueError as e:
        print(line.strip())
        print('Error at line %d' % i)
        raise e
      document = re.split("\s*\n\s*", document_raw)
      question = tokenizer.tokenize_paragraph_flat(question_raw)
      doc_toks = [tokenizer.tokenize_paragraph(p) for p in document]
      split_doc = splitter.split(doc_toks)
      context = selector.prune(question, split_doc)
      if model.preprocessor is not None:
        context = [model.preprocessor.encode_text(question, x) for x in context]
      else:
        context = [flatten_iterable(x.text) for x in context]
      vocab.update(question)
      for txt in context:
        vocab.update(txt)
      ex = [ParagraphAndQuestion(x, question, None, "user-question%d"%i)
            for i, x in enumerate(context)]
      data.append((document_raw, question_raw, context, ex))
  return data, vocab
def find_answer(documents, raw_question):

    raw_question = raw_question.lower()
    documents = [d.lower() for d in documents]

    global best_spans, conf

    documents = [re.split("\s*\n\s*", doc) for doc in documents]
    tokenizer = NltkAndPunctTokenizer()

    question = tokenizer.tokenize_paragraph_flat(raw_question)

    documents = [[tokenizer.tokenize_paragraph(p) for p in doc]
                 for doc in documents]

    splitter = MergeParagraphs(400)

    documents = [splitter.split(doc) for doc in documents]

    if len(documents) == 1:
        selector = TopTfIdf(NltkPlusStopWords(True), n_to_select=5)
        context = selector.prune(question, documents[0])
    else:
        selector = ShallowOpenWebRanker(n_to_select=10)
        context = selector.prune(question, flatten_iterable(documents))

    context = [flatten_iterable(x.text) for x in context]

    data = [
        ParagraphAndQuestion(x, question, None, "user-question%d" % i)
        for i, x in enumerate(context)
    ]

    encoded = model.encode(data, is_train=False)

    with sess.as_default():
        spans, confid = sess.run([best_spans, conf], feed_dict=encoded)

    best_para = np.argmax(confid)
    ans = " ".join(context[best_para][spans[best_para][0]:spans[best_para][1] +
                                      1])
    confidence = confid[best_para]

    return ans, confidence
    def getAnswer(self):
        #parser = argparse.ArgumentParser(description="Run an ELMo model on user input")
        #parser.add_argument("model", help="Model directory")
        #parser.add_argument("question", help="Question to answer")
        #parser.add_argument("documents", help="List of text documents to answer the question with", nargs='+')
        #args = parser.parse_args()

        #print("Preprocessing...")

        # Load the model
        model_dir = ModelDir(MODEL_DIR)
        model = model_dir.get_model()
        if not isinstance(model, ParagraphQuestionModel):
            raise ValueError(
                "This script is built to work for ParagraphQuestionModel models only"
            )

        conn = pyodbc.connect(DB_CONN)

        cursor = conn.cursor()
        #(23211,28690,33214,25638,25837,26454,28693,26137,31428,32087)
        query="select cast(filetext as varchar(max)) as filetext, name, type from dbo.UserworkspaceData where objectmasterid= "+\
               str(self.ObjectMasterId)+\
               " order by id asc"
        #query="select cast(filetext as varchar(max)) as filetext from kpl_tmp"
        documents = []
        document = ""
        name = ""
        filetype = 0
        for doc in cursor.execute(query):
            document = document + doc[0]
            name = doc[1]
            filetype = doc[2]
        #open("E:/kpl.txt","w+").write(document)
        documents.append(document)
        #documents.replace("\n\n","\n")
        #r.sub("",documents)
        #documents=" ".join(documents.split())
        #open("E:\kpl_test.txt","w+").write(document)
        #doc="D:\Document QnA\document-qa-master\Data\Drug_Delivery_Surveying_Global_Competitive_Landscape_BMI.txt"
        # =============================================================================
        #     if not isfile(doc):
        #         raise ValueError(doc + " does not exist")
        #     with open(doc, "r") as f:
        #         documents.append(f.read())
        # =============================================================================

        #print("Loaded %d documents" % len(documents))
        #temp=documents[0].split()
        # Split documents into lists of paragraphs
        #documents=[" ".join(temp[i:(i+400)]) for i in range(1,len(temp),400)]
        documents = [re.split("\s*\n\s*", doc) for doc in documents]
        # Tokenize the input, the models expects data to be tokenized using `NltkAndPunctTokenizer`
        # Note the model expects case-sensitive input
        tokenizer = NltkAndPunctTokenizer()
        question = tokenizer.tokenize_paragraph_flat(
            self.Question)  # List of words

        # Now list of document->paragraph->sentence->word
        documents = [[tokenizer.tokenize_paragraph(p) for p in doc]
                     for doc in documents]

        # Now group the document into paragraphs, this returns `ExtractedParagraph` objects
        # that additionally remember the start/end token of the paragraph within the source document
        splitter = MergeParagraphs(400)
        #splitter = PreserveParagraphs() # Uncomment to use the natural paragraph grouping
        documents = [splitter.split(doc) for doc in documents]
        #print(str(len(documents))+" kpl") #kpl
        # Now select the top paragraphs using a `ParagraphFilter`
        if len(documents) == 1:
            # Use TF-IDF to select top paragraphs from the document
            selector = TopTfIdf(NltkPlusStopWords(True), n_to_select=5)
            context = selector.prune(question, documents[0])
        else:
            # Use a linear classifier to select top paragraphs among all the documents
            selector = ShallowOpenWebRanker(n_to_select=10)
            context = selector.prune(question, flatten_iterable(documents))

    #print("Select %d paragraph" % len(context))

        if model.preprocessor is not None:
            # Models are allowed to define an additional pre-processing step
            # This will turn the `ExtractedParagraph` objects back into simple lists of tokens
            context = [
                model.preprocessor.encode_text(question, x) for x in context
            ]
        else:
            # Otherwise just use flattened text
            context = [flatten_iterable(x.text) for x in context]
        #x=open("E:\context.txt","a+")
        #[x.write(" ".join(cont)) for cont in context]
        #x.write("\n.......................................................\n")

        #print("Setting up model")
        # Tell the model the batch size (can be None) and vocab to expect, This will load the
        # needed word vectors and fix the batch size to use when building the graph / encoding the input
        voc = set(question)
        for txt in context:
            voc.update(txt)

        model.set_input_spec(self.nlp,
                             ParagraphAndQuestionSpec(batch_size=len(context)),
                             voc)
        # Now we build the actual tensorflow graph, `best_span` and `conf` are
        # tensors holding the predicted span (inclusive) and confidence scores for each
        # element in the input batch, confidence scores being the pre-softmax logit for the span
        #print("Build tf graph") #kpl
        sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
        # We need to use sess.as_default when working with the cuNND stuff, since we need an active
        # session to figure out the # of parameters needed for each layer. The cpu-compatible models don't need this.
        with sess.as_default():
            # 8 means to limit the span to size 8 or less
            best_spans, conf = model.get_prediction().get_best_span(8)

    # Loads the saved weights
        model_dir.restore_checkpoint(sess)

        # Now the model is ready to run
        # The model takes input in the form of `ContextAndQuestion` objects, for example:
        data = [
            ParagraphAndQuestion(x, question, None, "user-question%d" % i)
            for i, x in enumerate(context)
        ]

        #print("Starting run")
        # The model is run in two steps, first it "encodes" a batch of paragraph/context pairs
        # into numpy arrays, then we use `sess` to run the actual model get the predictions
        encoded = model.encode(
            data, is_train=True)  # batch of `ContextAndQuestion` -> feed_dict
        best_spans, conf = sess.run(
            [best_spans, conf], feed_dict=encoded)  # feed_dict -> predictions

        best_para = np.argmax(
            conf
        )  # We get output for each paragraph, select the most-confident one to print

        #print("Best Paragraph: " + str(best_para))
        #print("Best span: " + str(best_spans[best_para]))
        #print("Answer text: " + " ".join(context[best_para][best_spans[best_para][0]:best_spans[best_para][1]+1]))
        #print("Confidence: " + str(conf[best_para]))
        Answer = " ".join(context[best_para]
                          [best_spans[best_para][0]:best_spans[best_para][1] +
                           1])

        print("Confidence: " + str(conf[best_para]))
        print("Best Paragraph: " + str(best_para))
        print("Best span: " + str(best_spans[best_para]))
        print("Answer text: " + Answer)
        print(" ".join(context[best_para]))
        context[best_para][best_spans[best_para][
            0]] = r"<em>" + context[best_para][best_spans[best_para][0]]
        context[best_para][best_spans[best_para][1]] = context[best_para][
            best_spans[best_para][1]] + r"</em>"

        start = 0
        end = len(context[best_para])

        positions = [
            x for x, n in enumerate(context[best_para]
                                    [0:best_spans[best_para][0]]) if n == "."
        ]
        if len(positions) >= 2: start = positions[len(positions) - 2] + 1
        positions = [
            x
            for x, n in enumerate(context[best_para][best_spans[best_para][1] +
                                                     1:]) if n == "."
        ]
        if len(positions) > 1:
            end = best_spans[best_para][1] + 1 + positions[1]

        d = dict()
        if conf[best_para] > 10:
            d["answer"] = Answer
        else:
            d["answer"] = ""
        d["name"] = name
        d["filetype"] = filetype
        d["paragraph"] = re.sub(r' (?=\W)', '',
                                " ".join(context[best_para][start:end]))
        d["ObjectMasterId"] = self.ObjectMasterId

        return d


#if __name__ == "__main__":
#    main()
def main():
    parser = argparse.ArgumentParser(description="Run an ELMo model on user input")
    # parser.add_argument("model", type=int, help="Model directory")
    parser.add_argument("question", help="Question to answer")
    parser.add_argument("documents", help="List of text documents to answer the question with", nargs='+')
    args = parser.parse_args()

    # Models path
    SQUAD_MODEL_DIRECTORY_PATH = 'docqa/models-cpu/squad'
    SQUAD_SHARED_NORM_MODEL_DIRECTORY_PATH = 'docqa/models-cpu/squad-shared-norm'
    TRIVIAQA_MODEL_DIRECTORY_PATH = 'docqa/models-cpu/triviaqa-unfiltered-shared-norm'
    TRIVIAQA_SHARED_NORM_MODEL_DIRECTORY_PATH = 'docqa/models-cpu/triviaqa-web-shared-norm'
    
    models_directory = [
        SQUAD_MODEL_DIRECTORY_PATH,
        SQUAD_SHARED_NORM_MODEL_DIRECTORY_PATH,
        TRIVIAQA_MODEL_DIRECTORY_PATH,
        TRIVIAQA_SHARED_NORM_MODEL_DIRECTORY_PATH
    ]

    print("Preprocessing...")

    # Load the model
    # model_dir = ModelDir(args.model)
    model_dir = ModelDir(models_directory[0])
    model = model_dir.get_model()
    if not isinstance(model, ParagraphQuestionModel):
        raise ValueError("This script is built to work for ParagraphQuestionModel models only")

    # Read the documents
    documents = []
    for doc in args.documents:
        if not isfile(doc):
            raise ValueError(doc + " does not exist")
        with open(doc, "r") as f:
            documents.append(f.read())
    print("Loaded %d documents" % len(documents))

    # Split documents into lists of paragraphs
    documents = [re.split("\s*\n\s*", doc) for doc in documents]

    # Tokenize the input, the models expects data to be tokenized using `NltkAndPunctTokenizer`
    # Note the model expects case-sensitive input
    tokenizer = NltkAndPunctTokenizer()
    question = tokenizer.tokenize_paragraph_flat(args.question)  # List of words
    # Now list of document->paragraph->sentence->word
    documents = [[tokenizer.tokenize_paragraph(p) for p in doc] for doc in documents]

    # Now group the document into paragraphs, this returns `ExtractedParagraph` objects
    # that additionally remember the start/end token of the paragraph within the source document
    splitter = MergeParagraphs(400)
    # splitter = PreserveParagraphs() # Uncomment to use the natural paragraph grouping
    documents = [splitter.split(doc) for doc in documents]

    # Now select the top paragraphs using a `ParagraphFilter`
    if len(documents) == 1:
        # Use TF-IDF to select top paragraphs from the document
        selector = TopTfIdf(NltkPlusStopWords(True), n_to_select=5)
        context = selector.prune(question, documents[0])
    else:
        # Use a linear classifier to select top paragraphs among all the documents
        selector = ShallowOpenWebRanker(n_to_select=10)
        context = selector.prune(question, flatten_iterable(documents))

    print("Select %d paragraph" % len(context))

    if model.preprocessor is not None:
        # Models are allowed to define an additional pre-processing step
        # This will turn the `ExtractedParagraph` objects back into simple lists of tokens
        context = [model.preprocessor.encode_text(question, x) for x in context]
    else:
        # Otherwise just use flattened text
        context = [flatten_iterable(x.text) for x in context]
        
    print("Setting up model")
    
    # Tell the model the batch size (can be None) and vocab to expect, This will load the
    # needed word vectors and fix the batch size to use when building the graph / encoding the input
    voc = set(question)
    for txt in context:
        voc.update(txt)
    model.set_input_spec(ParagraphAndQuestionSpec(batch_size=len(context)), voc)

    # Now we build the actual tensorflow graph, `best_span` and `conf` are
    # tensors holding the predicted span (inclusive) and confidence scores for each
    # element in the input batch, confidence scores being the pre-softmax logit for the span
    print("Build tf graph")
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    # We need to use sess.as_default when working with the cuNND stuff, since we need an active
    # session to figure out the # of parameters needed for each layer. The cpu-compatible models don't need this.
    with sess.as_default():
        # 8 means to limit the span to size 8 or less
        best_spans, conf = model.get_prediction().get_best_span(10)

    # Loads the saved weights
    model_dir.restore_checkpoint(sess)

    # Now the model is ready to run
    # The model takes input in the form of `ContextAndQuestion` objects, for example:
    data = [ParagraphAndQuestion(x, question, None, "user-question%d"%i)
            for i, x in enumerate(context)]

    print("Starting run")
    # The model is run in two steps, first it "encodes" a batch of paragraph/context pairs
    # into numpy arrays, then we use `sess` to run the actual model get the predictions
    encoded = model.encode(data, is_train=False)  # batch of `ContextAndQuestion` -> feed_dict
    best_spans, conf = sess.run([best_spans, conf], feed_dict=encoded)  # feed_dict -> predictions

    best_para = np.argmax(conf)  # We get output for each paragraph, select the most-confident one to print
    print("Best Paragraph: " + str(best_para))
    para_id = int(str(best_para))
    # print("Best Paragraph: \n" + (" ".join((paras[para_id].text)[0])))
    print("Best Paragraph: \n" + " ".join(context[para_id]))
    print("Best span: " + str(best_spans[best_para]))
    print("Answer text: " + " ".join(context[best_para][best_spans[best_para][0]:best_spans[best_para][1]+1]))
    print("Confidence: " + str(conf[best_para]))
Exemplo n.º 5
0
def predict():
    json_data = {"success": False, "predictions": []}
    print("Preprocessing...")

    # Load the model
    model_dir = ModelDir(
        "/home/antriv/conversation_ai/Transfer_Learning/ALLENAI_DocumentQA/document-qa/pretrained_models/models/triviaqa-unfiltered-shared-norm"
    )
    model = model_dir.get_model()
    if not isinstance(model, ParagraphQuestionModel):
        raise ValueError(
            "This script is built to work for ParagraphQuestionModel models only"
        )

    # Load the question
    question = (flask.request.data).decode("utf-8")

    # Read the documents
    documents = []
    doclist = ["/home/antriv/data/The-Future-Computed.txt"]
    for doc in doclist:
        if not isfile(doc):
            raise ValueError(doc + " does not exist")
        with open(doc, "r") as f:
            documents.append(f.read())
    print("Loaded %d documents" % len(documents))

    # Split documents into lists of paragraphs
    documents = [re.split("\s*\n\s*", doc) for doc in documents]

    # Tokenize the input, the models expects data to be tokenized using `NltkAndPunctTokenizer`
    # Note the model expects case-sensitive input
    tokenizer = NltkAndPunctTokenizer()
    question = tokenizer.tokenize_paragraph_flat(question)  # List of words
    # Now list of document->paragraph->sentence->word
    documents = [[tokenizer.tokenize_paragraph(p) for p in doc]
                 for doc in documents]

    # Now group the document into paragraphs, this returns `ExtractedParagraph` objects
    # that additionally remember the start/end token of the paragraph within the source document
    splitter = MergeParagraphs(400)
    #splitter = PreserveParagraphs() # Uncomment to use the natural paragraph grouping
    documents = [splitter.split(doc) for doc in documents]

    # Now select the top paragraphs using a `ParagraphFilter`
    if len(documents) == 1:
        # Use TF-IDF to select top paragraphs from the document
        selector = TopTfIdf(NltkPlusStopWords(True), n_to_select=1000)
        context = selector.prune(question, documents[0])
    else:
        # Use a linear classifier to select top paragraphs among all the documents
        selector = ShallowOpenWebRanker(n_to_select=1000)
        context = selector.prune(question, flatten_iterable(documents))

    print("Select %d paragraph" % len(context))

    if model.preprocessor is not None:
        # Models are allowed to define an additional pre-processing step
        # This will turn the `ExtractedParagraph` objects back into simple lists of tokens
        context = [
            model.preprocessor.encode_text(question, x) for x in context
        ]
    else:
        # Otherwise just use flattened text
        context = [flatten_iterable(x.text) for x in context]

    print("Setting up model")
    # Tell the model the batch size (can be None) and vocab to expect, This will load the
    # needed word vectors and fix the batch size to use when building the graph / encoding the input
    voc = set(question)
    for txt in context:
        voc.update(txt)
    model.set_input_spec(ParagraphAndQuestionSpec(batch_size=len(context)),
                         voc)

    # Now we build the actual tensorflow graph, `best_span` and `conf` are
    # tensors holding the predicted span (inclusive) and confidence scores for each
    # element in the input batch, confidence scores being the pre-softmax logit for the span
    print("Build tf graph")
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    # We need to use sess.as_default when working with the cuNND stuff, since we need an active
    # session to figure out the # of parameters needed for each layer. The cpu-compatible models don't need this.
    with sess.as_default():
        # 8 means to limit the span to size 8 or less
        best_spans, conf = model.get_prediction().get_best_span(8)

    # Loads the saved weights
    model_dir.restore_checkpoint(sess)

    # Now the model is ready to run
    # The model takes input in the form of `ContextAndQuestion` objects, for example:
    data = [
        ParagraphAndQuestion(x, question, None, "user-question%d" % i)
        for i, x in enumerate(context)
    ]

    print("Starting run")
    # The model is run in two steps, first it "encodes" a batch of paragraph/context pairs
    # into numpy arrays, then we use `sess` to run the actual model get the predictions
    encoded = model.encode(
        data, is_train=False)  # batch of `ContextAndQuestion` -> feed_dict
    best_spans, conf = sess.run([best_spans, conf],
                                feed_dict=encoded)  # feed_dict -> predictions

    best_para = np.argmax(
        conf
    )  # We get output for each paragraph, select the most-confident one to print
    print("Best Paragraph: " + str(best_para))
    print("Best span: " + str(best_spans[best_para]))
    print("Answer text: " +
          " ".join(context[best_para]
                   [best_spans[best_para][0]:best_spans[best_para][1] + 1]))
    print("Confidence: " + str(conf[best_para]))
    y_output = " ".join(
        context[best_para][best_spans[best_para][0]:best_spans[best_para][1] +
                           1])
    print(y_output)
    json_data["predictions"].append(str(y_output))

    #indicate that the request was a success
    json_data["success"] = True
    #return the data dictionary as a JSON response
    return flask.jsonify(json_data)
Exemplo n.º 6
0
def main(Data: pd.DataFrame, nlp, model_dir, model):
    #parser = argparse.ArgumentParser(description="Run an ELMo model on user input")
    #parser.add_argument("model", help="Model directory")
    #parser.add_argument("question", help="Question to answer")
    #parser.add_argument("documents", help="List of text documents to answer the question with", nargs='+')
    #args = parser.parse_args()

    #print("Preprocessing...")

    # Load the model
    #model_dir = ModelDir(MODEL_DIR)
    #model = model_dir.get_model()
    print(model)
    if not isinstance(model, ParagraphQuestionModel):
        raise ValueError(
            "This script is built to work for ParagraphQuestionModel models only"
        )
    #print(model)
    # Read the documents
    documents = []
    documents.append(Data.at[0, 'Filetext'])
    """import pyodbc

    conn = pyodbc.connect("Driver={ODBC Driver 13 for SQL Server};"               
               "Server=192.168.100.15;"
               "Database=PharmaAce;"
               "UID=sa;"
               "PWD=admin@123;"
               "Trusted_Connection=no;")

    cursor=conn.cursor()
#(23211,28690,33214,25638,25837,26454,28693,26137,31428,32087)

    for doc in cursor.execute("select cast(filetext as varchar(max)) as filetext from kpl_tmp"):
        documents.append(doc[0])
        #doc="D:\Document QnA\document-qa-master\Data\Drug_Delivery_Surveying_Global_Competitive_Landscape_BMI.txt"   
    if not isfile(doc):
        raise ValueError(doc + " does not exist")
    with open(doc, "r") as f:
        documents.append(f.read())
    """
    #print("Loaded %d documents" % len(documents))
    #temp=documents[0].split()
    # Split documents into lists of paragraphs
    #documents=[" ".join(temp[i:(i+400)]) for i in range(1,len(temp),400)]
    documents = [re.split("\s*\n\s*", doc) for doc in documents]
    # Tokenize the input, the models expects data to be tokenized using `NltkAndPunctTokenizer`
    # Note the model expects case-sensitive input
    tokenizer = NltkAndPunctTokenizer()
    question = tokenizer.tokenize_paragraph_flat(
        Data.at[0, 'Question'])  # List of words
    # Now list of document->paragraph->sentence->word
    documents = [[tokenizer.tokenize_paragraph(p) for p in doc]
                 for doc in documents]

    # Now group the document into paragraphs, this returns `ExtractedParagraph` objects
    # that additionally remember the start/end token of the paragraph within the source document
    splitter = MergeParagraphs(400)
    #splitter = PreserveParagraphs() # Uncomment to use the natural paragraph grouping
    documents = [splitter.split(doc) for doc in documents]
    #print(str(len(documents))+" kpl") #kpl
    # Now select the top paragraphs using a `ParagraphFilter`
    print(len(documents))  #kpl
    if len(documents) == 1:
        # Use TF-IDF to select top paragraphs from the document
        selector = TopTfIdf(NltkPlusStopWords(True), n_to_select=5)
        context = selector.prune(question, documents[0])
    else:
        # Use a linear classifier to select top paragraphs among all the documents
        selector = ShallowOpenWebRanker(n_to_select=10)
        context = selector.prune(question, flatten_iterable(documents))

    #print("Select %d paragraph" % len(context))

    if model.preprocessor is not None:
        # Models are allowed to define an additional pre-processing step
        # This will turn the `ExtractedParagraph` objects back into simple lists of tokens
        context = [
            model.preprocessor.encode_text(question, x) for x in context
        ]
    else:
        # Otherwise just use flattened text
        context = [flatten_iterable(x.text) for x in context]

    print("Setting up model")
    # Tell the model the batch size (can be None) and vocab to expect, This will load the
    # needed word vectors and fix the batch size to use when building the graph / encoding the input
    voc = set(question)
    for txt in context:
        voc.update(txt)
    model.set_input_spec(nlp,
                         ParagraphAndQuestionSpec(batch_size=len(context)),
                         voc)
    # Now we build the actual tensorflow graph, `best_span` and `conf` are
    # tensors holding the predicted span (inclusive) and confidence scores for each
    # element in the input batch, confidence scores being the pre-softmax logit for the span
    #print("Build tf graph") #kpl
    print("after set input spec")
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    # We need to use sess.as_default when working with the cuNND stuff, since we need an active
    # session to figure out the # of parameters needed for each layer. The cpu-compatible models don't need this.
    with sess.as_default():
        # 8 means to limit the span to size 8 or less
        best_spans, conf = model.get_prediction().get_best_span(8)

    # Loads the saved weights
    model_dir.restore_checkpoint(sess)
    print("after loading weights")
    # Now the model is ready to run
    # The model takes input in the form of `ContextAndQuestion` objects, for example:
    data = [
        ParagraphAndQuestion(x, question, None, "user-question%d" % i)
        for i, x in enumerate(context)
    ]

    #print("Starting run")
    # The model is run in two steps, first it "encodes" a batch of paragraph/context pairs
    # into numpy arrays, then we use `sess` to run the actual model get the predictions
    encoded = model.encode(
        data, is_train=True)  # batch of `ContextAndQuestion` -> feed_dict
    best_spans, conf = sess.run([best_spans, conf],
                                feed_dict=encoded)  # feed_dict -> predictions

    best_para = np.argmax(
        conf
    )  # We get output for each paragraph, select the most-confident one to print

    #print("Best Paragraph: " + str(best_para))
    #print("Best span: " + str(best_spans[best_para]))
    #print("Answer text: " + " ".join(context[best_para][best_spans[best_para][0]:best_spans[best_para][1]+1]))
    #print("Confidence: " + str(conf[best_para]))

    return " ".join(
        context[best_para][best_spans[best_para][0]:best_spans[best_para][1] +
                           1])


#if __name__ == "__main__":
#    main()