Exemplo n.º 1
0
def set_poisson_eq_2d(n=8):
    '''
    Basic example where only the mesh refinement is controlled.
    '''

    # mesh
    mesh = UnitSquareMesh(n, n)

    # function space
    V = FunctionSpace(mesh, 'P', 1)

    # bcs
    u_D = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]', degree=2)

    def boundary(x, on_boundary):
        return on_boundary

    bc = DirichletBC(V, u_D, boundary)

    # variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    f = Constant(-6.0)
    a = dot(grad(u), grad(v)) * dx
    L = f * v * dx

    # define unknown
    u = Function(V)

    return a, L, u, bc
Exemplo n.º 2
0
def formulate_laplacian(mesh, V=None):

    if V is None:
        V = FunctionSpace(mesh, 'CG', 1)

    u_h = TrialFunction(V)
    v = TestFunction(V)

    a = inner(grad(u_h), grad(v)) * dx
    b = inner(u_h, v) * dx
    dummy = inner(1., v) * dx

    return V, a, b, dummy
Exemplo n.º 3
0
def get_formulation(V, u_initial, f, dt, var_name='Temperature'):

    # interpolate initial condition
    u_n = Function(V, name=var_name)
    u_n.interpolate(u_initial)

    # function spaces
    u_h = TrialFunction(V)
    v = TestFunction(V)

    # formulation
    a = u_h * v * dx + dt * dot(grad(u_h), grad(v)) * dx
    L = (u_n + dt * f) * v * dx

    return u_n, a, L
Exemplo n.º 4
0
def get_formulation_constant_props(V, u_initial, f, dt, conductivity, density,
                                   specific_heat, var_name='Temperature'):

    # medium properties
    k = Constant(conductivity)
    rho = Constant(density)
    c_p = Constant(specific_heat)

    # interpolate initial condition
    u_n = Function(V, name=var_name)
    u_n.interpolate(u_initial)

    # function spaces
    u_h = TrialFunction(V)
    v = TestFunction(V)

    # formulation
    param1 = rho * c_p
    param2 = k / param1
    a = u_h * v * dx + param2 * dt * dot(grad(u_h), grad(v)) * dx
    L = (u_n + param1 * dt * f) * v * dx

    return u_n, a, L
Exemplo n.º 5
0
def project(v, V=None, bcs=None, mesh=None,
            function=None,
            solver_type="lu",
            preconditioner_type="default",
            form_compiler_parameters=None):
    """Return projection of given expression *v* onto the finite element
    space *V*.

    *Arguments*
        v
            a :py:class:`Function <dolfin.functions.function.Function>` or
            an :py:class:`Expression <dolfin.functions.expression.Expression>`
        bcs
            Optional argument :py:class:`list of DirichletBC
            <dolfin.fem.bcs.DirichletBC>`
        V
            Optional argument :py:class:`FunctionSpace
            <dolfin.functions.functionspace.FunctionSpace>`
        mesh
            Optional argument :py:class:`mesh <dolfin.cpp.Mesh>`.
        solver_type
            see :py:func:`solve <dolfin.fem.solving.solve>` for options.
        preconditioner_type
            see :py:func:`solve <dolfin.fem.solving.solve>` for options.
        form_compiler_parameters
            see :py:class:`Parameters <dolfin.cpp.Parameters>` for more
            information.

    *Example of usage*

        .. code-block:: python

            v = Expression("sin(pi*x[0])")
            V = FunctionSpace(mesh, "Lagrange", 1)
            Pv = project(v, V)

        This is useful for post-processing functions or expressions
        which are not readily handled by visualization tools (such as
        for example discontinuous functions).

    """

    # Try figuring out a function space if not specified
    if V is None:
        # Create function space based on Expression element if trying
        # to project an Expression
        if isinstance(v, dolfin.function.expression.Expression):
            if mesh is not None and isinstance(mesh, cpp.mesh.Mesh):
                V = FunctionSpace(mesh, v.ufl_element())
            # else:
            #     cpp.dolfin_error("projection.py",
            #                      "perform projection",
            #                      "Expected a mesh when projecting an Expression")
        else:
            # Otherwise try extracting function space from expression
            V = _extract_function_space(v, mesh)

    # Projection into a MultiMeshFunctionSpace
    if isinstance(V, MultiMeshFunctionSpace):

        # Create the measuresum of uncut and cut-cells
        dX = ufl.dx() + ufl.dC()

        # Define variational problem for projection
        w = TestFunction(V)
        Pv = TrialFunction(V)
        a = ufl.inner(w, Pv) * dX
        L = ufl.inner(w, v) * dX

        # Assemble linear system
        A = assemble_multimesh(a, form_compiler_parameters=form_compiler_parameters)
        b = assemble_multimesh(L, form_compiler_parameters=form_compiler_parameters)

        # Solve linear system for projection
        if function is None:
            function = MultiMeshFunction(V)
        cpp.la.solve(A, function.vector(), b, solver_type, preconditioner_type)

        return function

    # Ensure we have a mesh and attach to measure
    if mesh is None:
        mesh = V.mesh()
    dx = ufl.dx(mesh)

    # Define variational problem for projection
    w = TestFunction(V)
    Pv = TrialFunction(V)
    a = ufl.inner(w, Pv) * dx
    L = ufl.inner(w, v) * dx

    # Assemble linear system
    A, b = assemble_system(a, L, bcs=bcs,
                           form_compiler_parameters=form_compiler_parameters)

    # Solve linear system for projection
    if function is None:
        function = Function(V)
    cpp.la.solve(A, function.vector(), b, solver_type, preconditioner_type)

    return function