def s(theta, theta0=prm.theta_m, eps=em.EPS):
     return dolfin.conditional(
         abs(theta - theta0) < eps,
         prm.cp_m * eps + prm.L_m / 2,
         dolfin.conditional(theta > theta0,
                            prm.cp_s * eps + prm.L_m,
                            prm.cp_s * eps))
Exemplo n.º 2
0
    def updateCoefficients(self):

        x, y = SpatialCoordinate(self.mesh)
        # r = .1*sqrt((x-np.pi)**2 + (y-np.pi)**2)
        # self.u_ = pow(r,1.5) * sin(x) * sin(y)

        # Set up explicit solution
        self.u_ = sin(x) * sin(y)

        # Init coefficient matrix
        self.a1 = as_matrix([[2, .5], [
            0.5, 1.5
        ]]) + conditional(x * y > 0, 1., -1.) * as_matrix([[1., .5], [.5, .5]])
        self.a2 = as_matrix([[1.5, .5], [
            0.5, 2.
        ]]) + conditional(x * y > 0, 1., -1.) * as_matrix([[.5, .5], [.5, 1.]])
        self.a = self.gamma[0] * self.a1 + (1. - self.gamma[0]) * self.a2

        # Init right-hand side
        self.f1 = inner(self.a1, grad(grad(self.u_)))
        self.f2 = inner(self.a2, grad(grad(self.u_)))
        self.fcond = conditional(x * y > 0, 0., 1.)
        # self.f = self.fcond * self.f1 + (1.-self.fcond) * self.f2
        self.f = self.gamma[0] * self.f1 + (1. - self.gamma[0]) * self.f2
        # conditional(x*x*x-y>0.0,2.0,1.0)]])

        # self.f = inner(self.a, grad(grad(self.u_)))

        # Set boundary conditions to exact solution
        self.g = Constant(0.0)
Exemplo n.º 3
0
def nu_PWC_harm(phi, cc):
    A = df.conditional(df.gt(phi, 0.975), 1.0, 0.0)
    B = df.conditional(df.lt(phi, 0.025), 1.0, 0.0)
    nu = A * cc[r"\nu_1"]\
       + B * cc[r"\nu_2"]\
       + (1.0 - A - B) * 2.0 / (1.0 / cc[r"\nu_1"] + 1.0 / cc[r"\nu_2"])
    return nu
    def updateCoefficients(self):

        # Init coefficient matrix
        x = SpatialCoordinate(self.mesh)[0]

        self.a = as_matrix([[.5 * (x * self.gamma[0] * self.sigmax)**2]])
        self.b = as_vector([x * (self.gamma[0] * (self.mu - self.r) + self.r)])
        self.c = Constant(0.0)

        # Init right-hand side
        self.f = Constant(0.0)
        self.u_ = exp(
            ((self.mu - self.r)**2 / (2 * self.sigmax**2) * self.alpha /
             (1 - self.alpha) + self.r * self.alpha) *
            (self.T[1] - self.t)) * (x**self.alpha) / self.alpha
        self.u_T = (x**self.alpha) / self.alpha

        # Set boundary conditions
        # self.g_t = lambda t : [(Constant(0.0), "near(x[0],0)")]
        self.g = Constant(0.0)
        # self.g_t = lambda t : self.u_t(t)

        self.gamma_star = [
            Constant((self.mu - self.r) / (self.sigmax**2 * (1 - self.alpha)))
        ]

        self.loc = conditional(x > 0.5, conditional(x < 1.5, 1, 0), 0)
Exemplo n.º 5
0
def nu_PWC_arit(phi, cc):
    A = df.conditional(df.gt(phi, 0.975), 1.0, 0.0)
    B = df.conditional(df.lt(phi, 0.025), 1.0, 0.0)
    nu = A * cc[r"\nu_1"]\
       + B * cc[r"\nu_2"]\
       + (1.0 - A - B) * 0.5 * (cc[r"\nu_1"] + cc[r"\nu_2"])
    return nu
Exemplo n.º 6
0
 def hs_C0():
     if type(x) == np.ndarray:
         y = 0.0*x
         for pos, val in enumerate(x):
             if abs(val - x0) < eps:
                 y[pos] = (val-x0)/(2*eps)+0.5
             elif val > x0:
                 y[pos] = 1
             else:
                 y[pos] = 0
         return y
     return dolfin.conditional(abs(x-x0)<eps,(x-x0)/(2*eps)+0.5, dolfin.conditional(x>x0, 1, 0))
Exemplo n.º 7
0
    def _speed_squared(self, state):
        """ The velocity speed with turbine cut in and out speed limits """

        speed_sq = dot(state[0], state[0]) + dot(state[1], state[1])

        if self._cut_in_speed is not None:
            speed_sq *= conditional(speed_sq < self._cut_in_speed**2, self._eps, 1)

        if self._cut_out_speed is not None:
            speed_sq = conditional(speed_sq > self._cut_out_speed**2,
                    self._cut_out_speed**2, speed_sq)

        return speed_sq
Exemplo n.º 8
0
    def updateCoefficients(self):

        x, y = SpatialCoordinate(self.mesh)

        self.a = as_matrix([[1.0, 0.], [0., 1.]])

        # Init right-hand side
        xi = 0.5 + pi / 100
        self.u_ = conditional(x <= xi, 0.0, 0.5 * (x - xi)**2)
        # self.f = inner(self.a, grad(grad(self.u_)))
        self.f = conditional(x <= xi, 0.0, 1.0)

        # Set boundary conditions to exact solution
        self.g = self.u_
Exemplo n.º 9
0
def sign(x, x0=0.0):
    """ Give sign of the argument x-x0.

    Parameters
    ----------
    x: float 
            Input argument which position with respect to x0 we want to know
    x0: float, optional
            Center point.
    Returns
    -------
    -1,1,0: float
            A float representing the sign of the argument x-x0 
    """
    return dolfin.conditional(x<x0-dolfin.DOLFIN_EPS,-1,dolfin.conditional((x-x0)<dolfin.DOLFIN_EPS,0,1))
Exemplo n.º 10
0
def navier_stokes_stabilization_penalties(
    simulation,
    nu,
    velocity_continuity_factor_D12=0,
    pressure_continuity_factor=0,
    no_coeff=False,
):
    """
    Calculate the stabilization parameters needed in the DG scheme
    """
    ndim = simulation.ndim
    mpm = simulation.multi_phase_model
    mesh = simulation.data['mesh']
    use_const = simulation.input.get_value(
        'solver/spatially_constant_penalty', False, 'bool'
    )

    if no_coeff:
        mu_min = mu_max = 1.0
    else:
        mu_min, mu_max = mpm.get_laminar_dynamic_viscosity_range()

    P = simulation.data['Vu'].ufl_element().degree()
    if use_const:
        simulation.log.info('    Using spatially constant elliptic penalty')
        penalty_dS = define_penalty(
            mesh, P, mu_min, mu_max, boost_factor=3, exponent=1.0
        )
        penalty_ds = penalty_dS * 2
        simulation.log.info(
            '    DG SIP penalty:  dS %.1f  ds %.1f' % (penalty_dS, penalty_ds)
        )
        penalty_dS = Constant(penalty_dS)
        penalty_ds = Constant(penalty_ds)

    else:
        simulation.log.info('    Using spatially varying elliptic penalties')
        penalty_dS = define_spatially_varying_penalty(
            simulation, P, mu_min, mu_max, boost_factor=3, exponent=1.0
        )
        penalty_ds = penalty_dS * 2
        penalty_dS = dolfin.conditional(
            dolfin.lt(penalty_dS('+'), penalty_dS('-')),
            penalty_dS('-'),
            penalty_dS('+'),
        )

    if velocity_continuity_factor_D12:
        D12 = Constant([velocity_continuity_factor_D12] * ndim)
    else:
        D12 = Constant([0] * ndim)

    if pressure_continuity_factor:
        h = simulation.data['h']
        h = Constant(1.0)
        D11 = avg(h / nu) * Constant(pressure_continuity_factor)
    else:
        D11 = None

    return penalty_dS, penalty_ds, D11, D12
Exemplo n.º 11
0
    def forms_theta_linear(self, psih0, uh, dt, theta_map,
                           theta_L=Constant(1.0), dpsi0=Constant(0.), dpsi00=Constant(0.),
                           h=Constant(0.), neumann_idx=99,  zeta=Constant(0)):

        (psi, lamb, psibar) = self.__trial_functions()
        (w, tau, wbar) = self.__test_functions()

        beta_map = self.beta_map
        n = self.n
        facet_integral = self.facet_integral

        psi_star = psih0 + (1-theta_L)*dpsi00 + theta_L * dpsi0

        # LHS contributions
        gamma = conditional(ge(dot(uh, n), 0), 0, 1)

        # Standard formulation
        N_a = facet_integral(beta_map*dot(psi, w)) \
            + zeta * dot(grad(psi), grad(w)) * dx
        G_a = dot(lamb, w)/dt * dx - theta_map * dot(uh, grad(lamb))*w*dx  \
            + theta_map * (1-gamma) * dot(uh, n) * \
            lamb * w * self.ds(neumann_idx)
        L_a = -facet_integral(beta_map * dot(psibar, w))  # \
        H_a = facet_integral(dot(uh, n)*psibar * tau) \
            - dot(uh, n)*psibar * tau * self.ds(neumann_idx)
        B_a = facet_integral(beta_map * dot(psibar, wbar))

        # RHS contributions
        Q_a = dot(Constant(0), w) * dx
        R_a = dot(psi_star, tau)/dt*dx  \
            + (1-theta_map)*dot(uh, grad(tau))*psih0*dx \
            - (1-theta_map) * (1-gamma) * dot(uh, n) * psi_star * tau * self.ds(neumann_idx) \
            - gamma*dot(h, tau) * self.ds(neumann_idx)
        S_a = facet_integral(Constant(0) * wbar)
        return self.__fem_forms(N_a, G_a, L_a, H_a, B_a, Q_a, R_a, S_a)
Exemplo n.º 12
0
    def get_colour_function(self, k):
        """
        Return the colour function on timestep t^{n+k}
        """
        if k == 0:
            if self.continuous_fields:
                c = self.continuous_c
            else:
                c = self.simulation.data['c']
        elif k == -1:
            if self.continuous_fields:
                c = self.continuous_c_old
            else:
                c = self.simulation.data['cp']
        elif k == -2:
            if self.continuous_fields:
                c = self.continuous_c_oldold
            else:
                c = self.simulation.data['cpp']

        if self.force_bounded:
            c = dolfin.max_value(dolfin.min_value(c, Constant(1.0)),
                                 Constant(0.0))

        if self.force_sharp:
            c = dolfin.conditional(dolfin.ge(c, 0.5), Constant(1.0),
                                   Constant(0.0))

        return c
Exemplo n.º 13
0
    def get_transition_bounds(self):
        '''Returns dictionary of `(lower, upper)` bounds for energy
transitions. See :py:meth:`get_transition_lower_bounds` for more.
'''
        lowers = self.get_transition_lower_bounds()
        upper_bound = ufl.as_ufl(self.inf_upper_bound.m_as(self.energy_unit))

        r = {}
        for k, lower in lowers.items():
            lst = []
            for k2, lower2 in lowers.items():
                if k == k2: continue

                # FIXME: this is WRONG if lower is exactly equal to lower2
                lst.append(
                    dolfin.conditional(
                        ufl.as_ufl(lower2.m) < lower.m, upper_bound, lower2.m))

            if not lst:
                lst.append(upper_bound)

            upper = self._ufl_minimum(lst)
            r[k] = (lower, upper * lower.units)

        return r
Exemplo n.º 14
0
    def get_strandberg_I(self):
        u = self.unit_registry
        h = u('1 planck_constant')
        c = u('1 speed_of_light')
        kT = self.pdd.kT
        mu = self.pdd.mesh_util

        n_r = 1
        K = (8 * dolfin.pi * n_r **2) / (h**3 * c**2)

        E_L, E_U = self.get_absorption_bounds()

        # equivalent to flipping integration bounds if E_U < E_L
        sign = dolfin.conditional(dolfin.gt(
            E_U.magnitude,
            E_L.m_as(E_U.units)), +1, -1)

        # antiderivative of `E^2 exp(E/kT)`
        def F(E):
            return -kT*(2*kT**2 + 2*E*kT + E**2) * mu.exp(-E/kT)

        I = F(E_U) - F(E_L)

        ans = K * I * sign

        # to evaluate integrals
        # ans = (ans.m((0.0, 0.0)) * ans.units).to("1 / centimeter ** 2 / second")
        # print(self.src_band.key, self.dst_band.key, ans)

        return ans
Exemplo n.º 15
0
def main():
    fsr = FunctionSubspaceRegistry()

    deg = 2
    mesh = dolfin.UnitSquareMesh(100, 3)
    muc = mesh.ufl_cell()
    el_w = dolfin.FiniteElement('DG', muc, deg - 1)
    el_j = dolfin.FiniteElement('BDM', muc, deg)
    el_DG0 = dolfin.FiniteElement('DG', muc, 0)
    el = dolfin.MixedElement([el_w, el_j])
    space = dolfin.FunctionSpace(mesh, el)
    DG0 = dolfin.FunctionSpace(mesh, el_DG0)
    fsr.register(space)
    facet_normal = dolfin.FacetNormal(mesh)
    xyz = dolfin.SpatialCoordinate(mesh)

    trial = dolfin.Function(space)
    test = dolfin.TestFunction(space)

    w, c = dolfin.split(trial)
    v, phi = dolfin.split(test)

    sympy_exprs = derive_exprs()
    exprs = {
        k: sympy_dolfin_printer.to_ufl(sympy_exprs['R'], mesh, v)
        for k, v in sympy_exprs['quantities'].items()
    }

    f = exprs['f']
    w0 = dolfin.project(dolfin.conditional(dolfin.gt(xyz[0], 0.5), 1.0, 0.3),
                        DG0)
    w_BC = exprs['w']

    dx = dolfin.dx()
    form = (+v * dolfin.div(c) * dx - v * f * dx +
            dolfin.exp(w + w0) * dolfin.dot(phi, c) * dx +
            dolfin.div(phi) * w * dx -
            (w_BC - w0) * dolfin.dot(phi, facet_normal) * dolfin.ds() -
            (w0('-') - w0('+')) * dolfin.dot(phi('+'), facet_normal('+')) *
            dolfin.dS())

    solver = NewtonSolver(form,
                          trial, [],
                          parameters=dict(relaxation_parameter=1.0,
                                          maximum_iterations=15,
                                          extra_iterations=10,
                                          relative_tolerance=1e-6,
                                          absolute_tolerance=1e-7))

    solver.solve()

    with closing(XdmfPlot("out/qflop_test.xdmf", fsr)) as X:
        CG1 = dolfin.FunctionSpace(mesh, dolfin.FiniteElement('CG', muc, 1))
        X.add('w0', 1, w0, CG1)
        X.add('w_c', 1, w + w0, CG1)
        X.add('w_e', 1, exprs['w'], CG1)
        X.add('f', 1, f, CG1)
        X.add('cx_c', 1, c[0], CG1)
        X.add('cx_e', 1, exprs['c'][0], CG1)
Exemplo n.º 16
0
    def updateCoefficients(self):
        x, y = SpatialCoordinate(self.mesh)

        # Init coefficient matrix
        self.a = as_matrix([[
            2.0,
            sin(pi * (20 * x * y + .5)) * conditional(x * y > 0, 1, -1)
        ], [sin(pi * (20 * x * y + .5)) * conditional(x * y > 0, 1, -1), 2.0]])

        self.u_ = x * y * sin(2 * pi * x) * \
            sin(3 * pi * y) / (x ** 2 + y ** 2 + 1)

        # Init right-hand side
        self.f = inner(self.a, grad(grad(self.u_)))

        # Set boundary conditions to exact solution
        self.g = self.u_
Exemplo n.º 17
0
    def inside_absorption_bounds_conditional(self, E, value):
        E_L, E_U = self.get_absorption_bounds()
        E_L = E_L.m_as('eV')
        E_U = E_U.m_as('eV')

        E = E.m_as('eV')
        return value.units * dolfin.conditional(
            ufl.And(E_L <= E, E < E_U), value.magnitude, 0)
Exemplo n.º 18
0
    def norm_theta_grad_local():

        delta_local = 1.5
        
        local_proj = dolfin.conditional(abs(theta-prm.theta_m)<delta_local,1.,0.)
        
        norm_theta_grad = dolfin.project(local_proj*dolfin.sqrt(dolfin.inner(dolfin.grad(theta),dolfin.grad(theta))),theta.function_space(),solver_type="cg",preconditioner_type="hypre_amg")
        
        return norm_theta_grad.vector().norm('linf')
Exemplo n.º 19
0
    def initControl(self):

        # Initialize control spaces
        self.controlSpace = [FunctionSpace(self.mesh, "DG", 0)]

        # Initialize controls
        u_lapl = Dx(Dx(self.u, 0), 0) + Dx(Dx(self.u, 1), 1)

        # Method 1:
        self.gamma = [conditional(u_lapl >= 0, self.alpha0, self.alpha1)]
Exemplo n.º 20
0
 def df_C0():
     if type(x) == np.ndarray:
         y = 0.0*x
         for pos, val in enumerate(x):
             if abs(val - x0) < eps:
                 y[pos] = (1.0/(eps**2))*(eps-np.sign(val-x0)*(val-x0))
             else:
                 y[pos] = 0
         return y
     return dolfin.conditional(abs(x-x0)<eps,(1.0/(eps**2))*(eps-sign(x-x0)*(x-x0)), 0)
Exemplo n.º 21
0
 def df_disC():
     if type(x) == np.ndarray:
         y = 0.0*x
         for pos, val in enumerate(x):
             if abs(val - x0) < eps:
                 y[pos] = 1.0/(2*eps)
             else:
                 y[pos] = 0
         return y
     return dolfin.conditional(abs(x-x0)<eps,1.0/(2*eps), 0.)
Exemplo n.º 22
0
    def initControl(self):

        # Initialize control spaces
        self.controlSpace = [FunctionSpace(self.mesh, "DG", 0)]

        # Initialize controls
        u_x = Dx(self.u, 0)
        u_y = Dx(self.u, 1)
        u_lapl = Dx(u_x, 0) + Dx(u_y, 1)
        self.gamma = [conditional(u_lapl >= 0, self.alpha0, self.alpha1)]
Exemplo n.º 23
0
 def df_C1():
     if type(x) == np.ndarray:
         y = 0.0*x
         for pos, val in enumerate(x):
             if abs(val - x0) < eps:
                 y[pos] = 15/(16*eps**5)*(((val-x0)+eps)**2*((val-x0)-eps)**2)
             else:
                 y[pos] = 0
         return y
     return dolfin.conditional(abs(x-x0)<eps, 15/(16*eps**5)*(((x-x0)+eps)**2*((x-x0)-eps)**2), 0)
Exemplo n.º 24
0
def subplus(x):
    r"""
    Ramp function

    .. math::

       \max\{x,0\}

    """

    return dolfin.conditional(dolfin.ge(x, 0.0), x, 0.0)
Exemplo n.º 25
0
def heaviside(x):
    r"""
    Heaviside function

    .. math::

       \frac{\mathrm{d}}{\mathrm{d}x} \max\{x,0\}

    """

    return dolfin.conditional(dolfin.ge(x, 0.0), 1.0, 0.0)
Exemplo n.º 26
0
    def after_last_compute(self, get):
        self.mag_ta_wss = get("Magnitude_TimeIntegral_WSS-OSI")
        self.ta_mag_wss = get("TimeIntegral_Magnitude_WSS-OSI")
        #print self.name, " Calling after_last_compute"

        expr = conditional(self.ta_mag_wss < 1e-15,
                           0.0,
                           0.5 * (1.0 - self.mag_ta_wss / self.ta_mag_wss))
        self.osi.assign(project(expr, self.osi.function_space()))

        return self.osi
Exemplo n.º 27
0
    def updateCoefficients(self):
        # Init coefficient matrix
        x, y = SpatialCoordinate(self.mesh)

        self.a = as_matrix([[.02, .01],
                            [0.01, conditional(x**3 - y > 0.0, 2.0, 1.0)]])

        # Init right-hand side
        self.f = -1.0

        # Set boundary conditions to exact solution
        self.g = Constant(0.0)
Exemplo n.º 28
0
    def setUp(self):
        self.mesh = mesh = dolfin.UnitSquareMesh(20, 2, "left")
        self.DG0_element = DG0e = dolfin.FiniteElement("DG", mesh.ufl_cell(),
                                                       0)
        self.DG0v_element = DG0ve = dolfin.VectorElement(
            "DG", mesh.ufl_cell(), 0)
        self.DG0 = DG0 = dolfin.FunctionSpace(mesh, DG0e)
        self.DG0v = DG0v = dolfin.FunctionSpace(mesh, DG0ve)

        self.fsr = fsr = FunctionSubspaceRegistry()
        fsr.register(DG0)
        fsr.register(DG0v)

        self.cellmid = cm = CellMidpointExpression(mesh, element=DG0ve)
        self.n = n = dolfin.FacetNormal(mesh)

        self.u = u = dolfin.Function(DG0)
        self.v = v = dolfin.TestFunction(DG0)

        u_bc = dolfin.Expression('x[0]', degree=2)

        x = dolfin.SpatialCoordinate(mesh)
        self.rho = rho = dolfin.conditional(
            dolfin.lt((x[0] - 0.5)**2 + (x[1] - 0.5)**2, 0.2**2), 0.0, 0.0)

        dot = dolfin.dot
        cellsize = dolfin.CellSize(mesh)
        self.h = h = cm('+') - cm('-')
        self.h_boundary = h_boundary = 2 * n * dot(x - cm, n)
        self.E = E = h / dot(h, h) * (u('-') - u('+'))
        self.E_boundary = E_boundary = h_boundary / dot(
            h_boundary, h_boundary) * (u - u_bc)
        dS = dolfin.dS

        eps = 1e-8

        class BL(dolfin.SubDomain):
            def inside(self, x, on_boundary):
                return abs(x[0]) < eps

        class BR(dolfin.SubDomain):
            def inside(self, x, on_boundary):
                return abs(x[0] - 1) < eps

        ff = dolfin.FacetFunction('size_t', mesh, 0)
        BL().mark(ff, 1)
        BR().mark(ff, 1)

        ds = dolfin.Measure('ds', domain=mesh, subdomain_data=ff)

        self.F = (dot(E, n('+')) * v('+') * dS + dot(E, n('-')) * v('-') * dS -
                  v * rho * dolfin.dx + dot(E_boundary, n) * v * ds(1))
Exemplo n.º 29
0
    def initControl(self):

        # Initialize control spaces
        self.controlSpace = []
        self.controlSpace.append(FunctionSpace(self.mesh, "DG", 0))
        self.controlSpace.append(FunctionSpace(self.mesh, "DG", 1))
        self.controlSpace.append(FunctionSpace(self.mesh, "DG", 1))

        # Initialize controls
        u_x = Dx(self.u, 0)
        u_y = Dx(self.u, 1)
        u_lapl = Dx(u_x, 0) + Dx(u_y, 1)

        g_a = conditional(u_lapl >= 0, self.alpha0, self.alpha1)

        u_norm = sqrt(u_x**2 + u_y**2)
        g_x = conditional(u_norm > 0, u_x / u_norm, 0)
        g_y = conditional(u_norm > 0, u_y / u_norm, 0)
        self.gamma = []
        self.gamma.append(g_a)
        self.gamma.append(g_x)
        self.gamma.append(g_y)
Exemplo n.º 30
0
    def initControl(self):

        # Initialize control spaces
        self.controlSpace = [FunctionSpace(self.mesh, "DG", 1)]

        # Initialize controls
        x = SpatialCoordinate(self.mesh)[0]

        u_x = Dx(self.u, 0)
        u_xx = Dx(u_x, 0)
        g1 = conditional(
            x > 0, -(self.mu - self.r) * u_x / (x * self.sigmax**2 * u_xx), 0)
        self.gamma = [g1]
Exemplo n.º 31
0
    def updateCoefficients(self):
        # Init coefficient matrix
        x, y = SpatialCoordinate(self.mesh)

        off_diag = conditional(x * y > 0, 1.0, -1.0)
        self.a = as_matrix([[2.0, off_diag], [off_diag, 2.0]])

        self.u_ = x * y * (1 - exp(1 - abs(x))) * (1 - exp(1 - abs(y)))

        # Init right-hand side
        self.f = inner(self.a, grad(grad(self.u_)))

        # Set boundary conditions to exact solution
        self.g = self.u_
Exemplo n.º 32
0
def _normalize(self, graceful = True):
  if not isinstance(self, Function):
    raise Exception("Cannot normalize '%s'." % type(self))
  f = self.copy(True)
  v = TestFunction(f.function_space())

  # if graceful = True: (0,0,0) -> (1,0,0)
  #              False: (0,0,0) -> (0,0,0)
  fx = 1.0 if graceful else 0.0

  expr = conditional(eq(inner(f, f), 0.0), \
    Constant((fx, 0.0, 0.0)),           \
    f / sqrt(inner(f, f)))

  result = Function(f.function_space())
  assemble(inner(v, expr) * dP, result.vector())
  setattr(self._state, self.name(), result)
Exemplo n.º 33
0
    def compute(self, get):
        # Requires the fields Magnitude(TimeIntegral("WSS", label="OSI")) and
        # TimeIntegral(Magnitude("WSS"), label="OSI")
        #self.mag_ta_wss = get("Magnitude_TimeIntegral_WSS_OSI")
        #self.ta_mag_wss = get("TimeIntegral_Magnitude_WSS_OSI")
        self.mag_ta_wss = get("Magnitude_TimeIntegral_WSS-OSI")
        self.ta_mag_wss = get("TimeIntegral_Magnitude_WSS-OSI")

        if self.params.finalize:
            return None
        elif self.mag_ta_wss == None or self.ta_mag_wss == None:
            return None
        else:
            expr = conditional(self.ta_mag_wss < 1e-15,
                               0.0,
                               0.5 * (1.0 - self.mag_ta_wss / self.ta_mag_wss))
            self.osi.assign(project(expr, self.osi.function_space()))
            return self.osi