Exemplo n.º 1
0
def train(tubs,
          new_model_path,
          base_model_path=None,
          train_split=.08,
          batch_size=64):
    """
    use the specified data in tub_names to train an artifical neural network
    saves the output trained model as model_name
    """
    X_keys = ['cam/image_array']
    y_keys = ['user/angle', 'user/throttle']

    new_model_path = os.path.expanduser(new_model_path)

    kl = KerasLinear()
    if base_model_path is not None:
        base_model_path = os.path.expanduser(base_model_path)
        kl.load(base_model_path)

    print('tubs')
    tubgroup = TubGroup(tubs)
    train_gen, val_gen = tubgroup.get_train_val_gen(X_keys,
                                                    y_keys,
                                                    batch_size=batch_size,
                                                    train_frac=train_split)

    total_records = len(tubgroup.df)
    total_train = int(total_records * train_split)
    total_val = total_records - total_train
    print('train: %d, validation: %d' % (total_train, total_val))
    steps_per_epoch = total_train // batch_size
    print('steps_per_epoch', steps_per_epoch)

    kl.train(train_gen,
             val_gen,
             saved_model_path=new_model_path,
             steps=steps_per_epoch,
             train_split=train_split)
Exemplo n.º 2
0
def train(cfg, tub_names, new_model_path, base_model_path=None):
    """
    use the specified data in tub_names to train an artifical neural network
    saves the output trained model as model_name
    """
    X_keys = ['cam/image_array']
    y_keys = ['user/angle', 'user/throttle']

    new_model_path = os.path.expanduser(new_model_path)

    kl = KerasLinear()
    if base_model_path is not None:
        base_model_path = os.path.expanduser(base_model_path)
        kl.load(base_model_path)

    print('tub_names', tub_names)
    if not tub_names:
        tub_names = os.path.join(cfg.DATA_PATH, '*')
    tubgroup = TubGroup(tub_names)
    train_gen, val_gen = tubgroup.get_train_val_gen(
        X_keys,
        y_keys,
        batch_size=cfg.BATCH_SIZE,
        train_frac=cfg.TRAIN_TEST_SPLIT)

    total_records = len(tubgroup.df)
    total_train = int(total_records * cfg.TRAIN_TEST_SPLIT)
    total_val = total_records - total_train
    print('train: %d, validation: %d' % (total_train, total_val))
    steps_per_epoch = total_train // cfg.BATCH_SIZE
    print('steps_per_epoch', steps_per_epoch)

    kl.train(train_gen,
             val_gen,
             saved_model_path=new_model_path,
             steps=steps_per_epoch,
             train_split=cfg.TRAIN_TEST_SPLIT)
Exemplo n.º 3
0
def drive(cfg, model_path=None, use_chaos=False):
    """
    """

    V = dk.vehicle.Vehicle()

    clock = Timestamp()
    V.add(clock, outputs=['timestamp'])

    cam = PiCamera(resolution=cfg.CAMERA_RESOLUTION)
    V.add(cam, outputs=['cam/image_array'], threaded=True)

    ctr = LocalWebController(use_chaos=use_chaos)
    V.add(ctr,
          inputs=['cam/image_array'],
          outputs=['user/angle', 'user/throttle', 'user/mode', 'recording'],
          threaded=True)

    # See if we should even run the pilot module.
    # This is only needed because the part run_condition only accepts boolean

    pilot_condition_part = MakeRunConditionBoolean()
    V.add(pilot_condition_part, inputs=['user/mode'], outputs=['run_pilot'])

    # Run the pilot if the mode is not user.
    kl = KerasLinear()
    if model_path:
        kl.load(model_path)

    V.add(kl,
          inputs=['cam/image_array'],
          outputs=['pilot/angle', 'pilot/throttle'],
          run_condition='run_pilot')

    state_controller = StateController()
    V.add(state_controller,
          inputs=[
              'user/mode', 'user/angle', 'user/throttle', 'pilot/angle',
              'pilot/throttle'
          ],
          outputs=['angle', 'throttle'])

    steering_controller = PCA9685(cfg.STEERING_CHANNEL)
    steering = PWMSteering(controller=steering_controller,
                           left_pulse=cfg.STEERING_LEFT_PWM,
                           right_pulse=cfg.STEERING_RIGHT_PWM)

    throttle_controller = PCA9685(cfg.THROTTLE_CHANNEL)
    throttle = PWMThrottle(controller=throttle_controller,
                           max_pulse=cfg.THROTTLE_FORWARD_PWM,
                           zero_pulse=cfg.THROTTLE_STOPPED_PWM,
                           min_pulse=cfg.THROTTLE_REVERSE_PWM)

    V.add(steering, inputs=['angle'])
    V.add(throttle, inputs=['throttle'])

    # add tub to save data
    inputs = [
        'cam/image_array', 'user/angle', 'user/throttle', 'user/mode',
        'timestamp'
    ]
    types = ['image_array', 'float', 'float', 'str', 'str']

    # single tub
    tub = TubWriter(path=cfg.TUB_PATH, inputs=inputs, types=types)
    V.add(tub, inputs=inputs, run_condition='recording')

    # run the vehicle
    V.start(rate_hz=cfg.DRIVE_LOOP_HZ)
Exemplo n.º 4
0
def drive(cfg, model_path=None, use_chaos=False):
    """
    """

    V = dk.vehicle.Vehicle()

    clock = Timestamp()
    V.add(clock, outputs=['timestamp'])

    cam = PiCamera(resolution=cfg.CAMERA_RESOLUTION)
    V.add(cam, outputs=['cam/image_array'], threaded=True)
    """
    ctr = LocalWebController(use_chaos=use_chaos)
    V.add(ctr,
          inputs=['cam/image_array'],
          outputs=['user/angle', 'user/throttle', 'user/mode', 'recording'],
          threaded=True)
    """

    # then replace your current controller with...
    ctl = BluetoothGameController()
    V.add(ctl,
          inputs=['cam/image_array'],
          outputs=['user/angle', 'user/throttle', 'user/mode', 'recording'],
          threaded=True)

    # See if we should even run the pilot module.
    # This is only needed because the part run_condition only accepts boolean

    pilot_condition_part = MakeRunConditionBoolean()
    V.add(pilot_condition_part, inputs=['user/mode'], outputs=['run_pilot'])

    # Run the pilot if the mode is not user.
    kl = KerasLinear()
    if model_path:
        kl.load(model_path)

    V.add(kl,
          inputs=['cam/image_array'],
          outputs=['pilot/angle', 'pilot/throttle'],
          run_condition='run_pilot')

    state_controller = StateController()
    V.add(state_controller,
          inputs=[
              'user/mode', 'user/angle', 'user/throttle', 'pilot/angle',
              'pilot/throttle'
          ],
          outputs=['angle', 'throttle'])

    sombrero = Sombrero(steering_channel=cfg.STEERING_CHANNEL,
                        steering_left_pwm=cfg.STEERING_LEFT_PWM,
                        steering_right_pwm=cfg.STEERING_RIGHT_PWM,
                        throttle_channel=cfg.THROTTLE_CHANNEL,
                        throttle_forward_pwm=cfg.THROTTLE_FORWARD_PWM,
                        throttle_stop_pwm=cfg.THROTTLE_STOPPED_PWM,
                        throttle_reverse_pwm=cfg.THROTTLE_REVERSE_PWM)

    V.add(sombrero, inputs=['angle', 'throttle'])

    # add tub to save data
    inputs = [
        'cam/image_array', 'user/angle', 'user/throttle', 'user/mode',
        'timestamp'
    ]
    types = ['image_array', 'float', 'float', 'str', 'str']

    # single tub
    tub = TubWriter(path=cfg.TUB_PATH, inputs=inputs, types=types)
    V.add(tub, inputs=inputs, run_condition='recording')

    # run the vehicle
    V.start(rate_hz=cfg.DRIVE_LOOP_HZ, max_loop_count=cfg.MAX_LOOPS)
def test_linear():
    kl = KerasLinear()
    assert kl.model is not None
def test_linear_with_model():
    kc = KerasLinear(default_linear())
    assert kc.model is not None