Exemplo n.º 1
0
def test_array_works_with_numpy_arrays():
    a = np.array([0.])
    x_node = Array()
    x_node.addfilter(Missing("prob", "m_val"))
    params = {"prob": 1., "m_val": np.nan}
    out = x_node.generate_error(a, params)
    assert np.isnan(out[0])
Exemplo n.º 2
0
def visualize(title, ind, data, flt, params):
    root_node = Array()
    root_node.addfilter(flt)
    result = root_node.generate_error(data, params)
    sub = fig.add_subplot(3, 4, ind + 1)
    sub.imshow(result)
    sub.set_title(title)
Exemplo n.º 3
0
def main():
    data = cv2.imread("data/landscape.png")
    x_node = Array()

    # Some filters, e.g. Rotation, expect the data to have a specific data type, e.g. uint8.
    #
    # This example takes an image, sums the original image and 180 degrees rotated version,
    # and then takes the average of each pixel's value.
    #
    # cv2's rotation requires data to be uint8, but summing them needs datatype with larger
    # precision, and thus type conversions are required.

    const = Constant("c")
    rot1 = Rotation("deg1")
    mod1 = ModifyAsDataType("rotation_dtype", rot1)
    rot2 = Rotation("deg2")
    mod2 = ModifyAsDataType("rotation_dtype", rot2)
    add = Addition(mod1, mod2)
    avg = Division(add, const)
    x_node.addfilter(ModifyAsDataType("avg_dtype", avg))

    params = {}
    params['c'] = 2
    params['rotation_dtype'] = np.uint8
    params['avg_dtype'] = np.uint16
    params['deg1'] = 0
    params['deg2'] = 180

    result = x_node.generate_error(data, params)
    cv2.imshow("Rotated", result)
    cv2.waitKey(0)
Exemplo n.º 4
0
def test_seed_determines_result_for_uppercase_filter():
    a = np.array(["hello world"])
    x_node = Array()
    x_node.addfilter(Uppercase("prob"))
    params = {"prob": .5}
    out1 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    out2 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    assert np.alltrue(out1 == out2)
Exemplo n.º 5
0
def test_seed_determines_result_for_fastrain_filter_two():
    a = np.zeros((10, 10, 3), dtype=int)
    x_node = Array()
    x_node.addfilter(Rain("probability", "range"))
    params = {"probability": 0.03, "range": 1}
    out1 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    out2 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    assert np.array_equal(out1, out2)
Exemplo n.º 6
0
def get_err_root_node():
    err_img_node = Array(reshape=(28, 28))
    err_root_node = Series(err_img_node)
    # err_img_node.addfilter(GaussianNoise("mean", "std"))
    # err_img_node.addfilter(Clip("min_val", "max_val"))
    # err_img_node.addfilter(Missing("probability", "missing_value"))
    err_img_node.addfilter(Rotation("min_angle", "max_angle"))
    return err_root_node
Exemplo n.º 7
0
def test_seed_determines_result_for_gaussian_noise_filter():
    a = np.array([0., 1., 2., 3., 4.])
    x_node = Array()
    x_node.addfilter(GaussianNoise("mean", "std"))
    params = {"mean": .5, "std": .5}
    out1 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    out2 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    assert np.allclose(out1, out2, equal_nan=True)
Exemplo n.º 8
0
def test_seed_determines_result_for_missing_filter():
    a = np.array([0., 1., 2., 3., 4.])
    x_node = Array()
    x_node.addfilter(Missing("prob", "m_val"))
    params = {"prob": .5, "m_val": np.nan}
    out1 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    out2 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    assert np.allclose(out1, out2, equal_nan=True)
Exemplo n.º 9
0
def test_series_and_array_work_with_regular_arrays():
    a = [0.]
    x_node = Array()
    x_node.addfilter(Missing("prob", "m_val"))
    series_node = Series(x_node)
    params = {"prob": 1., "m_val": np.nan}
    out = series_node.generate_error(a, params)
    assert np.isnan(out[0])
Exemplo n.º 10
0
def main():
    img = Image.open("data/yellow_circle.jpg")
    data = img_to_pixel_data(img)
    root_node = Array()
    root_node.addfilter(LensFlare())
    result = root_node.generate_error(data, {})
    filtered_img = Image.fromarray(result.astype('uint8'), 'RGB')
    filtered_img.show()
Exemplo n.º 11
0
def main():
    img = Image.open("data/landscape.png")
    data = np.array(img)
    root_node = Array()
    root_node.addfilter(JPEG_Compression('quality'))
    result = root_node.generate_error(data, {'quality': 5})
    filtered_img = Image.fromarray(result.astype('uint8'), 'RGB')
    filtered_img.show()
Exemplo n.º 12
0
def test_seed_determines_result_for_gap_filter():
    a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])
    x_node = Array()
    x_node.addfilter(Gap("prob_break", "prob_recover", "missing_value"))
    params = {"prob_break": 0.1, "prob_recover": 0.1, "missing_value": 1337}
    out1 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    out2 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    assert np.array_equal(out1, out2)
Exemplo n.º 13
0
def test_modify_as_datatype():
    a = np.array([256 + 42])
    params = {}
    params['dtype'] = np.int8
    x_node = Array()
    x_node.addfilter(ModifyAsDataType('dtype', Identity()))
    out = x_node.generate_error(a, params)
    assert np.array_equal(out, np.array([42]))
Exemplo n.º 14
0
def test_clip():
    a = np.arange(5)
    params = {}
    params['min'] = 2
    params['max'] = 3
    x_node = Array()
    x_node.addfilter(Clip('min', 'max'))
    out = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    assert np.array_equal(out, np.array([2, 2, 2, 3, 3]))
Exemplo n.º 15
0
def test_visualizing_array_node_with_filter():
    x_node = Array()
    x_node.addfilter(Missing("p", "missing_value"))
    tree = x_node.get_parametrized_tree({'p': 0.5, 'missing_value': np.nan})
    path = plotting_utils.visualize_error_generator(tree, False)
    file = open(path, 'r')
    data = file.read()
    assert re.compile(r'2.*Missing.*probability: 0').search(data)
    assert re.compile(r'1 -> 2').search(data)
Exemplo n.º 16
0
def test_visualizing_tuple_series_and_two_array_nodes():
    x_node = Array()
    y_node = Array()
    series_node = TupleSeries([x_node, y_node])
    path = plotting_utils.visualize_error_generator(series_node, False)
    file = open(path, 'r')
    data = file.read()
    assert re.compile(r'1.*TupleSeries').search(data)
    assert re.compile(r'1 -> 2').search(data)
    assert re.compile(r'1 -> 3').search(data)
Exemplo n.º 17
0
def main():
    img = Image.open("data/landscape.png")
    data = np.array(img)
    root_node = Array()
    # root_node.addfilter(filters.Blur_Gaussian('std'))
    # result = root_node.generate_error(data, {'std': 10.0})
    root_node.addfilter(Blur('repeats', 'radius'))
    result = root_node.generate_error(data, {'repeats': 1, 'radius': 20})
    filtered_img = Image.fromarray(result.astype('uint8'), 'RGB')
    filtered_img.show()
Exemplo n.º 18
0
def test_seed_determines_result_for_strange_behaviour_filter():
    def f(data, random_state):
        return data * random_state.randint(2, 4)

    a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])
    x_node = Array()
    x_node.addfilter(StrangeBehaviour("f"))
    params = {"f": f}
    out1 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    out2 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    assert np.array_equal(out1, out2)
Exemplo n.º 19
0
def test_tuple_series_works_with_numpy_arrays():
    a = np.array([[1, 2, 3]])
    b = np.array([[1, 1, 1]])
    data = (a, b)
    x_node = Array()
    x_node.addfilter(SensorDrift("a"))
    y_node = Array()
    root_node = TupleSeries([x_node, y_node])
    res = root_node.generate_error(data, {'a': 1})
    assert np.array_equal(res[0], np.array([[2, 4, 6]])) and np.array_equal(
        res[1], np.array([[1, 1, 1]]))
Exemplo n.º 20
0
def get_err_root_node():
    err_node = Array()
    err_root_node = Series(err_node)
    # err_node.addfilter(GaussianNoise("mean", "std"))
    # err_node.addfilter(Blur_Gaussian("std"))
    # err_node.addfilter(Snow("snowflake_probability", "snowflake_alpha", "snowstorm_alpha"))
    # err_node.addfilter(FastRain("probability", "range"))
    # err_node.addfilter(StainArea("probability", "radius_generator", "transparency_percentage"))
    # err_node.addfilter(JPEG_Compression("quality"))
    err_node.addfilter(Resolution("k"))
    # err_node.addfilter(Brightness("tar", "rat", "range"))
    # err_node.addfilter(Identity())
    return err_root_node
Exemplo n.º 21
0
def main():
    d = {"resolution": 10}
    data = plt.imread("data/landscape.png")
    x_node = Array()
    r = Resolution("resolution")
    x_node.addfilter(r)
    start = time.time()
    result = x_node.generate_error(data, d)
    end = time.time()
    print(f"Time vectorized: {end-start}")

    plt.imshow(result)
    plt.show()
Exemplo n.º 22
0
def test_seed_determines_result_for_snow_filter():
    a = np.zeros((10, 10, 3), dtype=int)
    x_node = Array()
    x_node.addfilter(
        Snow("snowflake_probability", "snowflake_alpha", "snowstorm_alpha"))
    params = {
        "snowflake_probability": 0.04,
        "snowflake_alpha": 0.4,
        "snowstorm_alpha": 1
    }
    out1 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    out2 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    assert np.array_equal(out1, out2)
Exemplo n.º 23
0
def test_seed_determines_result_for_ocr_error_filter():
    a = np.array(["hello world"])
    x_node = Array()
    x_node.addfilter(OCRError("probs", "p"))
    params = {
        "probs": {
            "e": (["E", "i"], [.5, .5]),
            "g": (["q", "9"], [.2, .8])
        },
        "p": 1
    }
    out1 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    out2 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    assert np.array_equal(out1, out2)
Exemplo n.º 24
0
def test_visualizing_array_node_with_complex_filter():
    x_node = Array()
    const = Constant("c")
    addition = Addition(const, const)
    x_node.addfilter(addition)
    path = plotting_utils.visualize_error_generator(
        x_node.get_parametrized_tree({'c': 5}), False)
    file = open(path, 'r')
    data = file.read()
    assert re.compile(r'2.*Addition').search(data)
    assert re.compile(r'3.*Constant.*value: 5').search(data)
    assert re.compile(r'4.*Constant.*value: 5').search(data)
    assert re.compile(r'2 -> 3.*filter_a').search(data)
    assert re.compile(r'2 -> 4.*filter_b').search(data)
Exemplo n.º 25
0
def test_seed_determines_result_for_missing_area_filter_with_gaussian_radius_generator(
):
    a = np.array(["hello world\n" * 10])
    x_node = Array()
    x_node.addfilter(
        MissingArea("probability", "radius_generator", "missing_value"))
    params = {
        "probability": 0.05,
        "radius_generator": radius_generators.GaussianRadiusGenerator(1, 1),
        "missing_value": "#"
    }
    out1 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    out2 = x_node.generate_error(a, params, np.random.RandomState(seed=42))
    assert np.array_equal(out1, out2)
def main():
    d = {"tar": 1, "rat": 0.5, "range": 1}
    img_path = "data/landscape.png"

    data = plt.imread(img_path)
    x_node = Array()
    b = Brightness("tar", "rat", "range")
    x_node.addfilter(b)
    start = time.time()
    result = x_node.generate_error(data, d)
    end = time.time()
    print(f"Time vectorized: {end-start}")

    plt.imshow(result)
    plt.show()
def main():
    img_path = "data/landscape.png"
    d = {"tar": 1, "rat": 0.55, "range": 255}

    img2 = Image.open(img_path)
    data = np.array(img2)
    x_node = Array()
    b2 = Brightness("tar", "rat", "range")
    x_node.addfilter(b2)
    start = time.time()
    result = x_node.generate_error(data, d)
    end = time.time()
    print(f"Time vectorized: {end-start}")

    plt.imshow(result)
    plt.show()
Exemplo n.º 28
0
def test_seed_determines_result_for_time_dependent_gaussian_noise():
    a = np.arange(25).reshape((5, 5)).astype(np.float64)
    params = {}
    params['mean'] = 2.
    params['std'] = 3.
    params['mean_inc'] = 1.
    params['std_inc'] = 4.
    x_node = Array()
    x_node.addfilter(
        GaussianNoiseTimeDependent('mean', 'std', 'mean_inc', 'std_inc'))
    series_node = Series(x_node, dim_name="time")
    out1 = series_node.generate_error(a, params,
                                      np.random.RandomState(seed=42))
    out2 = series_node.generate_error(a, params,
                                      np.random.RandomState(seed=42))
    assert np.allclose(out1, out2)
Exemplo n.º 29
0
def main():
    img_path = "data/landscape.png"
    d = {"tar": 0, "rat": 0.8, "range": 255}

    img = Image.open(img_path)
    data = np.array(img)
    x_node = Array()
    s = Saturation("tar", "rat", "range")
    x_node.addfilter(s)
    start = time.time()
    result = x_node.generate_error(data, d)
    end = time.time()
    print(f"Time vectorized: {end-start}")

    plt.imshow(result)
    plt.show()
Exemplo n.º 30
0
def main():
    """An example that rotates MNIST digits and displays one.
    Usage: python run_rotate_MNIST_example <angle>
    where <angle> is the angle of rotation
    (e.g. 90 to rotate by pi / 2)
    """
    x, _, _, _ = load_mnist()
    xs = x[:20]  # small subset of x
    angle = float(sys.argv[1])
    print(f"x subset shape: {xs.shape}")
    img_node = Array(reshape=(28, 28))
    root_node = Series(img_node)
    img_node.addfilter(Rotation("angle"))
    result = root_node.generate_error(xs, {'angle': angle})

    plt.matshow(result[0].reshape((28, 28)))
    plt.show()