def simultaneous_fit(self, histograms):
        from dps.utils.Fitting import FitData, FitDataCollection, Minuit
        print('not in production yet')
        fitter = None
        fit_data_collection = FitDataCollection()
        for fit_variable in self.fit_variables:
            mc_histograms = {
                'TTJet': histograms['TTJet'],
                'SingleTop': histograms['SingleTop'],
                'V+Jets': histograms['V+Jets'],
                'QCD': histograms['QCD'],
            }
            h_data = histograms['data']
            fit_data = FitData(h_data, mc_histograms,
                               fit_boundaries=self.config.fit_boundaries[fit_variable])
            fit_data_collection.add(fit_data, name=fit_variable)
        fitter = Minuit(fit_data_collection)
        fitter.fit()
        fit_results = fitter.readResults()

        normalisation = fit_data_collection.mc_normalisation(
            self.fit_variables[0])
        normalisation_errors = fit_data_collection.mc_normalisation_errors(
            self.fit_variables[0])
        print normalisation, normalisation_errors
class Test( unittest.TestCase ):


    def setUp( self ):

        # create histograms
        h_bkg1_1 = Hist( 100, 40, 200, title = 'Background' )
        h_signal_1 = h_bkg1_1.Clone( title = 'Signal' )
        h_data_1 = h_bkg1_1.Clone( title = 'Data' )
        h_bkg1_2 = h_bkg1_1.Clone( title = 'Background' )
        h_signal_2 = h_bkg1_1.Clone( title = 'Signal' )
        h_data_2 = h_bkg1_1.Clone( title = 'Data' )
    
        # fill the histograms with our distributions
        map( h_bkg1_1.Fill, x1 )
        map( h_signal_1.Fill, x2 )
        map( h_data_1.Fill, x1_obs )
        map( h_data_1.Fill, x2_obs )
        
        map( h_bkg1_2.Fill, x3 )
        map( h_signal_2.Fill, x4 )
        map( h_data_2.Fill, x3_obs )
        map( h_data_2.Fill, x4_obs )
        
        h_data_1.Scale(data_scale)
        h_data_2.Scale(data_scale)
        
        self.histograms_1 = {'signal': h_signal_1,
                             'bkg1': h_bkg1_1}
        
        self.histograms_2 = {'signal': h_signal_2,
                             'bkg1': h_bkg1_2}
        
        self.histograms_3 = {'var1': h_signal_1,
                             'bkg1': h_bkg1_1}
        
        self.fit_data_1 = FitData( h_data_1, self.histograms_1, fit_boundaries = ( x_min, x_max ))
        self.fit_data_2 = FitData( h_data_2, self.histograms_2, fit_boundaries = ( x_min, x_max ))
        self.fit_data_3 = FitData( h_data_1, self.histograms_3, fit_boundaries = ( x_min, x_max ))

        self.collection_1 = FitDataCollection()
        self.collection_1.add( self.fit_data_1, 'signal region' )
        self.collection_1.add( self.fit_data_2, 'control region' )
        self.collection_1.set_normalisation_constraints({'bkg1': 0.5})
        
        self.collection_2 = FitDataCollection()
        self.collection_2.add( self.fit_data_1 )
        self.collection_2.add( self.fit_data_2 )
        self.collection_2.set_normalisation_constraints({'bkg1': 0.5})
        
        self.single_collection = FitDataCollection()
        self.single_collection.add( self.fit_data_1 )
        self.single_collection.set_normalisation_constraints({'bkg1': 0.5})
        
        self.non_simultaneous_fit_collection = FitDataCollection()
        self.non_simultaneous_fit_collection.add( self.fit_data_1 )
        self.non_simultaneous_fit_collection.add( self.fit_data_3 )
        
        self.h_data = h_data_1
        self.h_bkg1 = h_bkg1_1
        self.h_signal = h_signal_1
        
    def tearDown( self ):
        pass

    def test_is_valid_for_simultaneous_fit( self ):
        self.assertTrue( self.collection_1.is_valid_for_simultaneous_fit(), msg = 'has_same_n_samples: ' + str(self.collection_1.has_same_n_samples) + ', has_same_n_data: ' + str(self.collection_1.has_same_n_data) )
        self.assertTrue( self.collection_2.is_valid_for_simultaneous_fit(), msg = 'has_same_n_samples: ' + str(self.collection_1.has_same_n_samples) + ', has_same_n_data: ' + str(self.collection_1.has_same_n_data)  )
        self.assertFalse( self.non_simultaneous_fit_collection.is_valid_for_simultaneous_fit() )
        
    def test_samples( self ):
        samples = sorted( self.histograms_1.keys() )
        samples_from_fit_data = sorted( self.fit_data_1.samples )
        samples_from_fit_data_collection = self.collection_1.mc_samples()
        self.assertEqual( samples, samples_from_fit_data )
        self.assertEqual( samples, samples_from_fit_data_collection )
        
    def test_normalisation( self ):
        normalisation = {name:adjust_overflow_to_limit(histogram, x_min, x_max).Integral() for name, histogram in self.histograms_1.iteritems()}
        normalisation_from_fit_data = self.fit_data_1.normalisation
        normalisation_from_single_collection = self.single_collection.mc_normalisation()
        normalisation_from_collection = self.collection_1.mc_normalisation( 'signal region' )
        normalisation_from_collection_1 = self.collection_1.mc_normalisation()['signal region']
        for sample in normalisation.keys():
            self.assertEqual( normalisation[sample], normalisation_from_fit_data[sample] )
            self.assertEqual( normalisation[sample], normalisation_from_single_collection[sample] )
            self.assertEqual( normalisation[sample], normalisation_from_collection[sample] )
            self.assertEqual( normalisation[sample], normalisation_from_collection_1[sample] )
        
        # data normalisation
        normalisation = self.h_data.integral( overflow = True )
        normalisation_from_fit_data = self.fit_data_1.n_data()
        normalisation_from_single_collection = self.single_collection.n_data()
        normalisation_from_collection = self.collection_1.n_data( 'signal region' )
        normalisation_from_collection_1 = self.collection_1.n_data()['signal region']
        self.assertEqual( normalisation, normalisation_from_fit_data )
        self.assertEqual( normalisation, normalisation_from_single_collection )
        self.assertEqual( normalisation, normalisation_from_collection )
        self.assertEqual( normalisation, normalisation_from_collection_1 )
        
        self.assertAlmostEqual(normalisation, self.collection_1.max_n_data(), delta = 1 )
        
    def test_real_data( self ):
        real_data = self.fit_data_1.real_data_histogram()
        self.assertEqual( self.h_data.integral( overflow = True ), real_data.Integral() )
        
    def test_overwrite_warning( self ):
        c = FitDataCollection()
        c.add( self.fit_data_1, 'var1' )
        self.assertRaises( UserWarning, c.add, ( self.fit_data_1, 'var1' ) )
        
    def test_vectors( self ):
        h_signal = adjust_overflow_to_limit( self.h_signal, x_min, x_max )
        h_signal.Scale(1/h_signal.Integral())
        h_bkg1 = adjust_overflow_to_limit( self.h_bkg1, x_min, x_max )
        h_bkg1.Scale(1/h_bkg1.Integral())
        signal = list( h_signal.y() )
        bkg1 = list( h_bkg1.y() )
        
        v_from_fit_data = self.fit_data_1.vectors
        v_from_single_collection = self.single_collection.vectors()
#         v_from_collection = self.collection_1.vectors( 'signal region' )
#         v_from_collection_1 = self.collection_1.vectors()['signal region']
        self.assertEqual(signal, v_from_fit_data['signal'])
        self.assertEqual(bkg1, v_from_fit_data['bkg1'])
        
        self.assertEqual(signal, v_from_single_collection['signal'])
        self.assertEqual(bkg1, v_from_single_collection['bkg1'])
    
    def test_constraints(self):
        constraint_from_single_collection = self.single_collection.constraints()['bkg1']
        self.assertEqual(0.5, constraint_from_single_collection)
def get_fitted_normalisation_from_ROOT( channel, input_files, variable, met_systematic, met_type, b_tag_bin, treePrefix, weightBranch, scale_factors = None ):
    '''
    Retrieves the number of ttbar events from fits to one or more distribution
    (fit_variables) for each bin in the variable.
    ''' 
    global use_fitter, measurement_config, verbose, fit_variables, options
    # results and initial values are the same across different fit variables
    # templates are not
    results = {}
    initial_values = {}
    templates = {fit_variable: {} for fit_variable in fit_variables}

    for variable_bin in variable_bins_ROOT[variable]:
        fitter = None
        fit_data_collection = FitDataCollection()
        
        for fit_variable in fit_variables:
            
            histograms = get_histograms( channel,
                                        input_files,
                                        variable = variable,
                                        met_systematic = met_systematic,
                                        met_type = met_type,
                                        variable_bin = variable_bin,
                                        b_tag_bin = b_tag_bin,
                                        rebin = measurement_config.rebin[fit_variable],
                                        fit_variable = fit_variable,
                                        scale_factors = scale_factors,
                                        treePrefix = treePrefix,
                                        weightBranch = weightBranch,
                                        )
            # create data sets
            h_fit_variable_signal = None
            mc_histograms = None

            # if options.make_combined_signal:
            #     h_fit_variable_signal = histograms['TTJet'] + histograms['SingleTop']
            #     mc_histograms = {
            #                     'signal' : h_fit_variable_signal,
            #                     'V+Jets': histograms['V+Jets'],
            #                     'QCD': histograms['QCD'],
            #                 }
            # else:
            mc_histograms = {
                            'TTJet': histograms['TTJet'],
                            'SingleTop': histograms['SingleTop'],
                            'V+Jets': histograms['V+Jets'],
                            'QCD': histograms['QCD'],
                        }
            h_data = histograms['data']

            # if options.closure_test:
            #     ct_type = options.closure_test_type
            #     ct_norm = closure_tests[ct_type]
            #     h_data = histograms['TTJet'] * ct_norm['TTJet'] + histograms['SingleTop'] * ct_norm['SingleTop'] + histograms['V+Jets'] * ct_norm['V+Jets'] + histograms['QCD'] * ct_norm['QCD'] 
            fit_data = FitData( h_data,
                            mc_histograms,
                            fit_boundaries = measurement_config.fit_boundaries[fit_variable] )
            fit_data_collection.add( fit_data, name = fit_variable )
        # if options.enable_constraints:
        #     fit_data_collection.set_normalisation_constraints( {'QCD': 2.0, 'V+Jets': 0.5} )

        if use_fitter == 'RooFit':
            fitter = RooFitFit( fit_data_collection )
        elif use_fitter == 'Minuit':
            fitter = Minuit( fit_data_collection, verbose = verbose )
        else:  # not recognised
            sys.stderr.write( 'Do not recognise fitter "%s". Using default (Minuit).\n' % fitter )
            fitter = Minuit ( fit_data_collection )

        if verbose:
            print "FITTING: " + channel + '_' + variable + '_' + variable_bin + '_' + met_type + '_' + b_tag_bin

        fitter.fit()
        fit_results = fitter.readResults()
        
        normalisation = fit_data_collection.mc_normalisation( fit_variables[0] )
        normalisation_errors = fit_data_collection.mc_normalisation_errors( fit_variables[0] )

        # if options.make_combined_signal:
        #     N_ttbar_before_fit = histograms['TTJet'].Integral()
        #     N_SingleTop_before_fit = histograms['SingleTop'].Integral()
        #     N_ttbar_error_before_fit = sum(histograms['TTJet'].yerravg())
        #     N_SingleTop_error_before_fit = sum(histograms['SingleTop'].yerravg())
        #     N_Higgs_before_fit = 0
        #     N_Higgs_error_before_fit = 0
        #     if measurement_config.include_higgs:
        #         N_Higgs_before_fit = histograms['Higgs'].Integral()
        #         N_Higgs_error_before_fit = sum(histograms['Higgs'].yerravg())
     
        #     if (N_SingleTop_before_fit != 0):
        #         TTJet_SingleTop_ratio = (N_ttbar_before_fit + N_Higgs_before_fit) / N_SingleTop_before_fit
        #     else:
        #         print 'Bin ', variable_bin, ': ttbar/singleTop ratio undefined for %s channel! Setting to 0.' % channel
        #         TTJet_SingleTop_ratio = 0
     
        #     N_ttbar_all, N_SingleTop = decombine_result(fit_results['signal'], TTJet_SingleTop_ratio)
        #     if (N_Higgs_before_fit != 0):
        #         TTJet_Higgs_ratio = N_ttbar_before_fit/ N_Higgs_before_fit
        #     else:
        #         TTJet_Higgs_ratio = 0
     
            
        #     N_ttbar, N_Higgs = decombine_result(N_ttbar_all, TTJet_Higgs_ratio)
    
        #     fit_results['TTJet'] = N_ttbar
        #     fit_results['SingleTop'] = N_SingleTop
        #     fit_results['Higgs'] = N_Higgs
    
        #     normalisation['TTJet'] = N_ttbar_before_fit
        #     normalisation['SingleTop'] = N_SingleTop_before_fit
        #     normalisation['Higgs'] = N_Higgs_before_fit
        #     normalisation_errors['TTJet'] = N_ttbar_error_before_fit
        #     normalisation_errors['SingleTop'] = N_SingleTop_error_before_fit
        #     normalisation_errors['Higgs'] = N_Higgs_error_before_fit

        if results == {}:  # empty
            initial_values['data'] = [( normalisation['data'], normalisation_errors['data'] )]
            for fit_variable in fit_variables:
                templates[fit_variable]['data'] = [fit_data_collection.vectors( fit_variable )['data']]
            for sample in fit_results.keys():
                results[sample] = [fit_results[sample]]
                initial_values[sample] = [( normalisation[sample], normalisation_errors[sample] )]
                if sample in ['TTJet', 'SingleTop', 'Higgs'] and options.make_combined_signal:
                    continue
                for fit_variable in fit_variables:
                    templates[fit_variable][sample] = [fit_data_collection.vectors( fit_variable )[sample]]
        else:
            initial_values['data'].append( [normalisation['data'], normalisation_errors['data']] )
            for fit_variable in fit_variables:
                templates[fit_variable]['data'].append( fit_data_collection.vectors( fit_variable )['data'] )
            for sample in fit_results.keys():
                results[sample].append( fit_results[sample] )
                initial_values[sample].append( [normalisation[sample], normalisation_errors[sample]] )
                if sample in ['TTJet', 'SingleTop', 'Higgs'] and options.make_combined_signal:
                    continue
                for fit_variable in fit_variables:
                    templates[fit_variable][sample].append( fit_data_collection.vectors( fit_variable )[sample] )

    # print results
    # print "results = ", results
    # print 'templates = ',templates
    return results, initial_values, templates
Exemplo n.º 4
0
class Test(unittest.TestCase):
    def setUp(self):

        # create histograms
        h_bkg1_1 = Hist(100, 40, 200, title='Background')
        h_signal_1 = h_bkg1_1.Clone(title='Signal')
        h_data_1 = h_bkg1_1.Clone(title='Data')
        h_bkg1_2 = h_bkg1_1.Clone(title='Background')
        h_signal_2 = h_bkg1_1.Clone(title='Signal')
        h_data_2 = h_bkg1_1.Clone(title='Data')

        # fill the histograms with our distributions
        map(h_bkg1_1.Fill, x1)
        map(h_signal_1.Fill, x2)
        map(h_data_1.Fill, x1_obs)
        map(h_data_1.Fill, x2_obs)

        map(h_bkg1_2.Fill, x3)
        map(h_signal_2.Fill, x4)
        map(h_data_2.Fill, x3_obs)
        map(h_data_2.Fill, x4_obs)

        h_data_1.Scale(data_scale)
        h_data_2.Scale(data_scale)

        self.histograms_1 = {'signal': h_signal_1, 'bkg1': h_bkg1_1}

        self.histograms_2 = {'signal': h_signal_2, 'bkg1': h_bkg1_2}

        self.histograms_3 = {'var1': h_signal_1, 'bkg1': h_bkg1_1}

        self.fit_data_1 = FitData(h_data_1,
                                  self.histograms_1,
                                  fit_boundaries=(x_min, x_max))
        self.fit_data_2 = FitData(h_data_2,
                                  self.histograms_2,
                                  fit_boundaries=(x_min, x_max))
        self.fit_data_3 = FitData(h_data_1,
                                  self.histograms_3,
                                  fit_boundaries=(x_min, x_max))

        self.collection_1 = FitDataCollection()
        self.collection_1.add(self.fit_data_1, 'signal region')
        self.collection_1.add(self.fit_data_2, 'control region')
        self.collection_1.set_normalisation_constraints({'bkg1': 0.5})

        self.collection_2 = FitDataCollection()
        self.collection_2.add(self.fit_data_1)
        self.collection_2.add(self.fit_data_2)
        self.collection_2.set_normalisation_constraints({'bkg1': 0.5})

        self.single_collection = FitDataCollection()
        self.single_collection.add(self.fit_data_1)
        self.single_collection.set_normalisation_constraints({'bkg1': 0.5})

        self.non_simultaneous_fit_collection = FitDataCollection()
        self.non_simultaneous_fit_collection.add(self.fit_data_1)
        self.non_simultaneous_fit_collection.add(self.fit_data_3)

        self.h_data = h_data_1
        self.h_bkg1 = h_bkg1_1
        self.h_signal = h_signal_1

    def tearDown(self):
        pass

    def test_is_valid_for_simultaneous_fit(self):
        self.assertTrue(self.collection_1.is_valid_for_simultaneous_fit(),
                        msg='has_same_n_samples: ' +
                        str(self.collection_1.has_same_n_samples) +
                        ', has_same_n_data: ' +
                        str(self.collection_1.has_same_n_data))
        self.assertTrue(self.collection_2.is_valid_for_simultaneous_fit(),
                        msg='has_same_n_samples: ' +
                        str(self.collection_1.has_same_n_samples) +
                        ', has_same_n_data: ' +
                        str(self.collection_1.has_same_n_data))
        self.assertFalse(self.non_simultaneous_fit_collection.
                         is_valid_for_simultaneous_fit())

    def test_samples(self):
        samples = sorted(self.histograms_1.keys())
        samples_from_fit_data = sorted(self.fit_data_1.samples)
        samples_from_fit_data_collection = self.collection_1.mc_samples()
        self.assertEqual(samples, samples_from_fit_data)
        self.assertEqual(samples, samples_from_fit_data_collection)

    def test_normalisation(self):
        normalisation = {
            name: adjust_overflow_to_limit(histogram, x_min, x_max).Integral()
            for name, histogram in self.histograms_1.iteritems()
        }
        normalisation_from_fit_data = self.fit_data_1.normalisation
        normalisation_from_single_collection = self.single_collection.mc_normalisation(
        )
        normalisation_from_collection = self.collection_1.mc_normalisation(
            'signal region')
        normalisation_from_collection_1 = self.collection_1.mc_normalisation(
        )['signal region']
        for sample in normalisation.keys():
            self.assertEqual(normalisation[sample],
                             normalisation_from_fit_data[sample])
            self.assertEqual(normalisation[sample],
                             normalisation_from_single_collection[sample])
            self.assertEqual(normalisation[sample],
                             normalisation_from_collection[sample])
            self.assertEqual(normalisation[sample],
                             normalisation_from_collection_1[sample])

        # data normalisation
        normalisation = self.h_data.integral(overflow=True)
        normalisation_from_fit_data = self.fit_data_1.n_data()
        normalisation_from_single_collection = self.single_collection.n_data()
        normalisation_from_collection = self.collection_1.n_data(
            'signal region')
        normalisation_from_collection_1 = self.collection_1.n_data(
        )['signal region']
        self.assertEqual(normalisation, normalisation_from_fit_data)
        self.assertEqual(normalisation, normalisation_from_single_collection)
        self.assertEqual(normalisation, normalisation_from_collection)
        self.assertEqual(normalisation, normalisation_from_collection_1)

        self.assertAlmostEqual(normalisation,
                               self.collection_1.max_n_data(),
                               delta=1)

    def test_real_data(self):
        real_data = self.fit_data_1.real_data_histogram()
        self.assertEqual(self.h_data.integral(overflow=True),
                         real_data.Integral())

    def test_overwrite_warning(self):
        c = FitDataCollection()
        c.add(self.fit_data_1, 'var1')
        self.assertRaises(UserWarning, c.add, (self.fit_data_1, 'var1'))

    def test_vectors(self):
        h_signal = adjust_overflow_to_limit(self.h_signal, x_min, x_max)
        h_signal.Scale(1 / h_signal.Integral())
        h_bkg1 = adjust_overflow_to_limit(self.h_bkg1, x_min, x_max)
        h_bkg1.Scale(1 / h_bkg1.Integral())
        signal = list(h_signal.y())
        bkg1 = list(h_bkg1.y())

        v_from_fit_data = self.fit_data_1.vectors
        v_from_single_collection = self.single_collection.vectors()
        #         v_from_collection = self.collection_1.vectors( 'signal region' )
        #         v_from_collection_1 = self.collection_1.vectors()['signal region']
        self.assertEqual(signal, v_from_fit_data['signal'])
        self.assertEqual(bkg1, v_from_fit_data['bkg1'])

        self.assertEqual(signal, v_from_single_collection['signal'])
        self.assertEqual(bkg1, v_from_single_collection['bkg1'])

    def test_constraints(self):
        constraint_from_single_collection = self.single_collection.constraints(
        )['bkg1']
        self.assertEqual(0.5, constraint_from_single_collection)