Exemplo n.º 1
0
def test_vext(atomzs, dist):
    # check if the external potential gives the correct density profile
    # (energy is different because the energy of xc is not integral of potentials
    # times density)

    def get_dens(qc):
        dm = qc.aodm()
        rgrid = mol.get_grid().get_rgrid()
        dens = mol.get_hamiltonian().aodm2dens(dm, rgrid)
        return dens

    with xt.enable_debug():
        poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                            dtype=dtype) * dist
        mol = Mol((atomzs, poss), basis="3-21G", dtype=dtype)
        xc = get_xc("lda_x")
        qc = KS(mol, xc=xc).run()

        # get the density profile
        dens = get_dens(qc)
        ldax_pot = xc.get_vxc(ValGrad(value=dens)).value
        # ldax_pot2 = -0.7385587663820223 * (4.0 / 3) * dens ** (1.0 / 3)
        # assert torch.allclose(ldax_pot, ldax_pot2)

        # calculate the energy with the external potential
        mol2 = Mol((atomzs, poss), basis="3-21G", dtype=dtype, vext=ldax_pot)
        qc2 = KS(mol2, xc=None).run()
        dens2 = get_dens(qc2)

        # make sure the densities agree
        assert torch.allclose(dens, dens2)
Exemplo n.º 2
0
 def get_energy(atomz, with_ii=True):
     atomzs = [atomz, atomz]
     poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype)
     mol = Mol((atomzs, poss), basis=basis, spin=0, dtype=dtype)
     qc = HF(mol, restricted=True).run()
     ene = qc.energy()
     if with_ii:
         ene = ene - mol.get_nuclei_energy()
     return ene
Exemplo n.º 3
0
 def get_energy(atomzs):
     poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype)
     mol = Mol((atomzs, poss),
               basis="6-311++G**",
               spin=0,
               dtype=dtype,
               grid="sg3")
     qc = KS(mol, xc="lda_x", restricted=True).run()
     ene = qc.energy() - mol.get_nuclei_energy()
     return ene
Exemplo n.º 4
0
def test_rks_energy_df(xc, atomzs, dist, energy_true, grid):
    # test to see if the energy calculated by DQC agrees with PySCF using
    # density fitting
    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                        dtype=dtype) * dist
    mol = Mol((atomzs, poss), basis="6-311++G**", dtype=dtype, grid=grid)
    mol.densityfit(method="coulomb", auxbasis="def2-sv(p)-jkfit")
    qc = KS(mol, xc=xc, restricted=True).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true)
Exemplo n.º 5
0
def test_uks_energy_mols_df(xc, atomzs, dist, spin, energy_true):
    # check the energy of molecules with non-0 spins with density fitting
    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                        dtype=dtype) * dist
    mol = Mol((atomzs, poss),
              basis="6-311++G**",
              grid=3,
              dtype=dtype,
              spin=spin)
    mol.densityfit(method="coulomb", auxbasis="def2-sv(p)-jkfit")
    qc = KS(mol, xc=xc, restricted=False).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true, rtol=1e-6, atol=0.0)
Exemplo n.º 6
0
def test_no_xc(atomzs, dist, restricted):
    # check if xc == None produces the same result as "0*lda"
    with xt.enable_debug():
        poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                            dtype=dtype) * dist

        mol1 = Mol((atomzs, poss), basis="3-21G", dtype=dtype)
        qc1 = KS(mol1, xc="0*lda_x", restricted=restricted).run()
        ene1 = qc1.energy()

        mol2 = Mol((atomzs, poss), basis="3-21G", dtype=dtype)
        qc2 = KS(mol2, xc=None, restricted=restricted).run()
        ene2 = qc2.energy()

        assert torch.allclose(ene1, ene2)
Exemplo n.º 7
0
def test_uks_grad_vxc(xccls, xcparams, atomz):
    # check if the gradients w.r.t. vxc parameters are obtained correctly
    poss = torch.tensor([[0.0, 0.0, 0.0]], dtype=dtype)
    mol = Mol(([atomz], poss), basis="3-21G", dtype=dtype, grid=3)
    mol.setup_grid()

    def get_energy(*params):
        xc = xccls(*params)
        qc = KS(mol, xc=xc, restricted=False).run()
        ene = qc.energy()
        return ene

    params = tuple(
        torch.tensor(p, dtype=dtype).requires_grad_() for p in xcparams)
    torch.autograd.gradcheck(get_energy, params)
Exemplo n.º 8
0
def test_uhf_energy_same_as_rhf(atomzs, dist, energy_true, variational):
    # test to see if uhf energy gets the same energy as rhf for non-polarized systems
    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) * dist
    mol = Mol((atomzs, poss), basis=basis, dtype=dtype)
    qc = HF(mol, restricted=False, variational=variational).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true, rtol=1e-8)
Exemplo n.º 9
0
def test_uhf_energy_atoms(atomz, spin, energy_true, variational):
    # check the energy of atoms with non-0 spins
    torch.manual_seed(123)
    poss = torch.tensor([[0.0, 0.0, 0.0]], dtype=dtype)
    mol = Mol(([atomz], poss), basis=basis, dtype=dtype, spin=spin)
    qc = HF(mol, restricted=False, variational=variational).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true, atol=0.0, rtol=1e-7)
Exemplo n.º 10
0
def dqcelrepxc(atom: str, spin: int = 0, xc: str = "lda_x", basis: str = BASIS):
    # returns the electron repulsion and xc operator using DQC
    mol = Mol(atom, spin=spin, basis=basis, dtype=DTYPE, grid=4)
    qc = KS(mol, xc=xc)
    hamilt = mol.get_hamiltonian()
    if spin == 0:
        # set dm to be an identity matrix
        dm = torch.eye(hamilt.nao, dtype=DTYPE)
        velrepxc = hamilt.get_vxc(dm) + hamilt.get_elrep(dm)
        return velrepxc.fullmatrix()
    else:
        dmu = torch.eye(hamilt.nao, dtype=DTYPE)
        dm = SpinParam(u=dmu, d=dmu)
        vxc = hamilt.get_vxc(dm)
        elrep = hamilt.get_elrep(dm.u + dm.d)
        return torch.cat(((vxc.u + elrep).fullmatrix().unsqueeze(0),
                          (vxc.d + elrep).fullmatrix().unsqueeze(0)), dim=0)
Exemplo n.º 11
0
def test_uks_energy_same_as_rks(xc, atomzs, dist, energy_true):
    # test to see if uks energy gets the same energy as rks for non-polarized systems
    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                        dtype=dtype) * dist
    mol = Mol((atomzs, poss), basis="6-311++G**", dtype=dtype)
    qc = KS(mol, xc=xc, restricted=False).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true)
Exemplo n.º 12
0
def test_rks_energy(xc, atomzs, dist, energy_true, grid):
    # test to see if the energy calculated by DQC agrees with PySCF
    # for this test only we test for different types of grids to see if any error is raised
    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                        dtype=dtype) * dist
    mol = Mol((atomzs, poss), basis="6-311++G**", dtype=dtype, grid=grid)
    qc = KS(mol, xc=xc, restricted=True).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true)
Exemplo n.º 13
0
def test_uhf_energy_mols(atomzs, dist, spin, energy_true, variational):
    # check the energy of molecules with non-0 spins
    # NOTE: O2 iteration gets into excited state (probably)
    torch.manual_seed(123)
    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) * dist
    mol = Mol((atomzs, poss), basis=basis, dtype=dtype, spin=spin)
    qc = HF(mol, restricted=False, variational=variational).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true, rtol=1e-8, atol=0.0)
Exemplo n.º 14
0
def test_rks_grad_vext(xc, atomzs, dist, vext_p):
    # check if the gradient w.r.t. vext is obtained correctly (only check 1st
    # grad because we don't need 2nd grad at the moment)

    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                        dtype=dtype) * dist
    mol = Mol((atomzs, poss), basis="3-21G", dtype=dtype, grid=3)
    mol.setup_grid()
    rgrid = mol.get_grid().get_rgrid()  # (ngrid, ndim)
    rgrid_norm = torch.norm(rgrid, dim=-1)  # (ngrid,)

    def get_energy(vext_params):
        vext = rgrid_norm * rgrid_norm * vext_params  # (ngrid,)
        qc = KS(mol, xc=xc, vext=vext, restricted=True).run()
        ene = qc.energy()
        return ene

    vext_params = torch.tensor(vext_p, dtype=dtype).requires_grad_()
    torch.autograd.gradcheck(get_energy, (vext_params, ))
Exemplo n.º 15
0
 def get_energy(vext_params):
     vext = rgrid_norm * rgrid_norm * vext_params  # (ngrid,)
     mol = Mol((atomzs, poss),
               basis="3-21G",
               dtype=dtype,
               grid=3,
               vext=vext)
     qc = KS(mol, xc=xc, restricted=True).run()
     ene = qc.energy()
     return ene
Exemplo n.º 16
0
def test_uks_energy_atoms(xc, atomz, spin, energy_true):
    # check the energy of atoms with non-0 spins
    poss = torch.tensor([[0.0, 0.0, 0.0]], dtype=dtype)
    mol = Mol(([atomz], poss),
              basis="6-311++G**",
              grid=4,
              dtype=dtype,
              spin=spin)
    qc = KS(mol, xc=xc, restricted=False).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true, atol=0.0, rtol=1e-6)
Exemplo n.º 17
0
    def _test_hf_mols():
        poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                            dtype=dtype) * dist
        poss = poss.requires_grad_()
        mol = Mol((atomzs, poss), basis="6-311++G**", dtype=dtype, spin=spin)
        qc = HF(mol).run()
        ene = qc.energy()

        # see if grad and backward create memleak
        grads = torch.autograd.grad(ene, (poss, ), create_graph=True)
        ene.backward()  # no create_graph here because of known pytorch's leak
Exemplo n.º 18
0
def test_uks_energy_mols(xc, atomzs, dist, spin, energy_true):
    # check the energy of molecules with non-0 spins
    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                        dtype=dtype) * dist
    mol = Mol((atomzs, poss),
              basis="6-311++G**",
              grid=3,
              dtype=dtype,
              spin=spin)
    qc = KS(mol, xc=xc, restricted=False).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true, rtol=1e-6, atol=0.0)
Exemplo n.º 19
0
def test_mol_cache():
    # test if cache is stored correctly
    cache_fname = "_temp_cache.h5"
    # remove the cache if exists
    if os.path.exists(cache_fname):
        os.remove(cache_fname)

    moldesc = "H 0 0 0"
    mol = Mol(moldesc, basis="3-21G").set_cache(cache_fname)
    h = mol.get_hamiltonian()
    h.build()

    # read the stored file
    with h5py.File(cache_fname, "r") as f:
        olp_cache = torch.as_tensor(f["hamilton/overlap"])

    olp = h.get_overlap().fullmatrix()
    assert torch.allclose(olp, olp_cache)

    # try again with different atom, if cache is set, then it should be same
    # as previous (although it is a wrong result)
    # TODO: raise a warning if mol properties do not match
    moldesc1 = "Li 0 0 0"
    mol1 = Mol(moldesc1, basis="3-21G").set_cache(cache_fname)
    h1 = mol1.get_hamiltonian()
    h1.build()

    # remove the cache
    if os.path.exists(cache_fname):
        os.remove(cache_fname)

    olp1 = h1.get_overlap().fullmatrix()
    assert torch.allclose(olp, olp1)
Exemplo n.º 20
0
def test_rhf_basis_inputs():
    # test to see if the various basis inputs produce the same results
    atomzs = [1, 1]
    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) * 1.0
    mol0 = Mol((atomzs, poss), basis=basis, dtype=dtype)
    ene0 = HF(mol0, restricted=True).run().energy()

    mol1 = Mol((atomzs, poss), basis=[basis, basis], dtype=dtype)
    ene1 = HF(mol1, restricted=True).run().energy()
    assert torch.allclose(ene0, ene1)

    mol1 = Mol((atomzs, poss), basis=loadbasis("1:" + basis), dtype=dtype)
    ene1 = HF(mol1, restricted=True).run().energy()
    assert torch.allclose(ene0, ene1)

    mol2 = Mol((atomzs, poss), basis={"H": basis}, dtype=dtype)
    ene2 = HF(mol2, restricted=True).run().energy()
    assert torch.allclose(ene0, ene2)

    mol2 = Mol((atomzs, poss), basis={1: basis}, dtype=dtype)
    ene2 = HF(mol2, restricted=True).run().energy()
    assert torch.allclose(ene0, ene2)

    mol2 = Mol((atomzs, poss), basis={1: loadbasis("1:3-21G")}, dtype=dtype)
    ene2 = HF(mol2, restricted=True).run().energy()
    assert torch.allclose(ene0, ene2)
Exemplo n.º 21
0
 def get_energy(alphas, coeffs):
     basis = {
         'H': [
             CGTOBasis(angmom=0,
                       alphas=alphas,
                       coeffs=coeffs,
                       normalized=True)
         ]
     }
     moldesc = "H 0.0000 0.0000 0.0000; H 0.0000 0.0000 1.1163"
     mol = Mol(moldesc, basis=basis, dtype=dtype, grid=3)
     # qc = HF(mol, restricted=True).run()
     qc = KS(mol, xc="lda_x", restricted=True).run()
     return qc.energy()
Exemplo n.º 22
0
def test_rks_energy(xc, atomzs, dist, energy_true, grid, variational):
    # test to see if the energy calculated by DQC agrees with PySCF
    # for this test only we test for different types of grids to see if any error is raised
    if xc == "mgga_x_scan":
        if atomzs == [1, 1]:
            pytest.xfail("Psi4 and PySCF don't converge")
    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                        dtype=dtype) * dist
    mol = Mol((atomzs, poss), basis="6-311++G**", dtype=dtype, grid=grid)
    qc = KS(mol, xc=xc, restricted=True,
            variational=variational).run(fwd_options={"verbose": True})
    ene = qc.energy()
    # < 1 kcal/mol
    assert torch.allclose(ene, ene * 0 + energy_true, atol=1.3e-3, rtol=0)
Exemplo n.º 23
0
def test_rks_energy_df(xc, atomzs, dist, energy_true, grid):
    # test to see if the energy calculated by DQC agrees with PySCF using
    # density fitting
    if xc == "mgga_x_scan":
        if atomzs == [1, 1]:
            pytest.xfail("Psi4 and PySCF don't converge")

    for lowmem in [False, True]:  # simulating low memory condition
        if lowmem:
            init_value = config.THRESHOLD_MEMORY
            config.THRESHOLD_MEMORY = 1000000  # 1 MB

        poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                            dtype=dtype) * dist
        mol = Mol((atomzs, poss), basis="6-311++G**", dtype=dtype, grid=grid)
        mol.densityfit(method="coulomb", auxbasis="def2-sv(p)-jkfit")
        qc = KS(mol, xc=xc, restricted=True).run()
        ene = qc.energy()
        # error to be < 1 kcal/mol
        assert torch.allclose(ene, ene * 0 + energy_true, atol=1.1e-3, rtol=0)

        if lowmem:
            # restore the value
            config.THRESHOLD_MEMORY = init_value
Exemplo n.º 24
0
def test_rhf_energy_overcomplete(atomzs, dist, energy_true, variational):
    # test to see if the energy calculated by DQC agrees with PySCF with
    # overcomplete basis
    torch.manual_seed(123)

    # double the basis to make it overcomplete
    basis0 = loadbasis(f"{atomzs[0]}:{basis}") * 2
    basis1 = loadbasis(f"{atomzs[1]}:{basis}") * 2

    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) * dist
    # orthogonalize_basis = True to handle overcomplete
    mol = Mol((atomzs, poss), basis=[basis0, basis1], dtype=dtype, orthogonalize_basis=True)
    qc = HF(mol, restricted=True, variational=variational).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true, rtol=1e-7)
Exemplo n.º 25
0
    def _test_ks_mols():
        # setting up xc
        a = torch.tensor(-0.7385587663820223, dtype=dtype, requires_grad=True)
        p = torch.tensor(1.3333333333333333, dtype=dtype, requires_grad=True)
        xc = PseudoLDA(a=a, p=p)

        poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) * dist
        poss = poss.requires_grad_()
        mol = Mol((atomzs, poss), basis="6-311++G**", grid=3, dtype=dtype, spin=spin)
        qc = KS(mol, xc=xc).run()
        ene = qc.energy()

        # see if grad and backward create memleak
        grads = torch.autograd.grad(ene, (poss, a, p), create_graph=True)
        ene.backward()  # no create_graph here because of known pytorch's leak
Exemplo n.º 26
0
def test_mol_grid(moldesc):
    # default: level 4
    m = Mol(moldesc, basis="6-311++G**", dtype=dtype)
    m.setup_grid()
    rgrid = m.get_grid().get_rgrid()

    # only check the dimension and the type because the number of grid points
    # can be changed
    assert rgrid.shape[1] == 3
    assert m.get_grid().coord_type == "cart"
Exemplo n.º 27
0
def h2o_qc():
    # run the self-consistent HF iteration for h2o
    atomzs = torch.tensor([8, 1, 1], dtype=torch.int64)
    # from CCCBDB (calculated geometry for H2O)
    atomposs = torch.tensor([
        [0.0, 0.0, 0.2156],
        [0.0, 1.4749, -0.8625],
        [0.0, -1.4749, -0.8625],
    ], dtype=dtype).requires_grad_()
    efield = torch.zeros(3, dtype=dtype).requires_grad_()
    grad_efield = torch.zeros((3, 3), dtype=dtype).requires_grad_()

    efields = (efield, grad_efield)
    mol = Mol(moldesc=(atomzs, atomposs), basis="3-21G", dtype=dtype, efield=efields)
    qc = HF(mol).run()
    return qc
Exemplo n.º 28
0
def test_uks_energy_atoms(xc, atomz, spin, energy_true):
    # check the energy of atoms with non-0 spins
    if xc == "mgga_x_scan":
        if atomz == 3:
            pytest.xfail("No benchmark converges")

    poss = torch.tensor([[0.0, 0.0, 0.0]], dtype=dtype)
    mol = Mol(([atomz], poss),
              basis="6-311++G**",
              grid="sg3",
              dtype=dtype,
              spin=spin)
    qc = KS(mol, xc=xc, restricted=False).run()
    ene = qc.energy()
    # < 1 kcal/mol
    assert torch.allclose(ene, ene * 0 + energy_true, atol=1e-3, rtol=0)
Exemplo n.º 29
0
def test_rhf_energy(atomzs, dist, energy_true, variational):
    # test to see if the energy calculated by DQC agrees with PySCF
    torch.manual_seed(123)

    # only set debugging mode only in one case to save time
    if atomzs == [1, 1]:
        xt.set_debug_mode(True)

    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) * dist
    mol = Mol((atomzs, poss), basis=basis, dtype=dtype)
    qc = HF(mol, restricted=True, variational=variational).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true, rtol=1e-7)

    if atomzs == [1, 1]:
        xt.set_debug_mode(False)
Exemplo n.º 30
0
def system1(request):
    poss = torch.tensor([[0.0, 0.0, 0.8], [0.0, 0.0, -0.8]], dtype=dtype)
    moldesc = ([1, 1], poss)
    # untruncated grid is required to pass the hamiltonian tests
    m = Mol(moldesc, basis="3-21G", dtype=dtype, grid=3,
            orthogonalize_basis=request.param["basis_ortho"])
    m.setup_grid()
    hamilton = m.get_hamiltonian()
    hamilton.build()
    hamilton.setup_grid(m.get_grid())
    return m