Exemplo n.º 1
0
def optimize(all_players: list,
             player_settings: PlayerPoolSettings = PlayerPoolSettings(),
             constraints: LineupConstraints = LineupConstraints()):
    lineup_players = []
    all_players = list(
        filter(add_pickem_contraints(player_settings), all_players))

    if constraints.has_group_constraints():
        raise NotImplementedError('Groups are not supported for pickem')

    for p in all_players:
        if constraints.is_banned(p.name):
            p.ban = True

    for t in TIERS:
        best = sorted(
            [p for p in all_players if p.tier == t and not p.ban],
            key=lambda p: p.proj,
            reverse=True,
        )[0]

        lineup_players.append(best)

    lineup = TieredLineup(lineup_players)

    for p in all_players:
        if constraints.is_locked(p.name):
            p.lock = True
            setattr(lineup, p.tier, p)

    return lineup
Exemplo n.º 2
0
def run_multi(
    iterations: int,
    rule_set: RuleSet,
    player_pool: list,
    constraints: LineupConstraints = LineupConstraints(),
    player_settings: PlayerPoolSettings = PlayerPoolSettings(),
    optimizer_settings: OptimizerSettings = OptimizerSettings(),
    verbose=False,
    exposure_bounds: List[dict] = list(),
    exposure_random_seed=None,
) -> [List[Roster], list]:
    # set the random seed globally for random lineup exposure
    random.seed(exposure_random_seed)

    rosters = []
    for _ in range(0, iterations):
        exposure_dict = get_exposure_args(
            existing_rosters=optimizer_settings.existing_rosters,
            exposure_bounds=exposure_bounds,
            n=iterations,
            use_random=bool(exposure_random_seed),
            random_seed=exposure_random_seed,
        )

        roster = run(
            rule_set=rule_set,
            player_pool=player_pool,
            optimizer_settings=optimizer_settings,
            player_settings=player_settings,
            exposure_dict=exposure_dict,
            constraints=constraints,
            verbose=verbose,
        )
        if roster:
            optimizer_settings.existing_rosters += [roster]

        if roster:
            rosters.append(roster)
        else:
            break

        # clear ban/lock to reset exposure between iterations
        reset_player_ban_lock(player_pool)

    exposure_diffs = {}

    if rosters and verbose:
        print(get_exposure_table(rosters, exposure_bounds))
        print()
        print(get_exposure_matrix(rosters))
        print()

        exposure_diffs = check_exposure(rosters, exposure_bounds)
        for n, d in exposure_diffs.items():
            if d < 0:
                print('{} is UNDER exposure by {} lineups'.format(n, d))
            else:
                print('{} is OVER exposure by {} lineups'.format(n, d))

    return rosters, exposure_diffs
Exemplo n.º 3
0
def test_banned_players():
    players = _generate_test_player_data()

    optimized = optimize(players,
                         player_settings=PlayerPoolSettings(),
                         constraints=LineupConstraints(banned=['A', 'C']))
    ntools.assert_equal(optimized.total, 49 + 47 + 46 + 44 + 42 + 40)
Exemplo n.º 4
0
def test_force_combo():
    # no combo
    players = salary_download.generate_players_from_csvs(
        salary_file_location=salary_file,
        projection_file_location=projection_file,
        game=rules.DRAFT_KINGS,
    )
    roster = run(rule_set=rules.DK_NFL_RULE_SET,
                 player_pool=players,
                 player_settings=PlayerPoolSettings(locked=['Sam Bradford'], ),
                 optimizer_settings=OptimizerSettings(
                     stack_team='NE',
                     stack_count=5,
                 ))
    qb = roster.sorted_players()[0]
    team_count = len([x for x in roster.sorted_players() if x.team == qb.team])
    ntools.assert_equals(team_count, 1)

    # QB/WR combo
    players = salary_download.generate_players_from_csvs(
        salary_file_location=salary_file,
        projection_file_location=projection_file,
        game=rules.DRAFT_KINGS,
    )
    roster = run(rule_set=rules.DK_NFL_RULE_SET,
                 player_pool=players,
                 optimizer_settings=OptimizerSettings(force_combo=True, ))
    qb = roster.sorted_players()[0]
    ntools.assert_equal(qb.pos, 'QB')
Exemplo n.º 5
0
def test_respects_locked():
    pool = filter_pool(mock_player_pool,
                       PlayerPoolSettings(
                           locked=['A2'],
                           min_proj=31,
                       ))
    ntools.assert_equals(pool, [p_b, p_c])
Exemplo n.º 6
0
def optimize(all_players,
             player_settings=PlayerPoolSettings(),
             pickem_settings=PickemSettings()):
    lineup_players = []
    all_players = list(
        filter(add_pickem_contraints(player_settings), all_players))
    for t in TIERS:
        best = sorted(
            [p for p in all_players if p.tier == t],
            key=lambda p: p.proj,
            reverse=True,
        )[0]

        lineup_players.append(best)

    lineup = TieredLineup(lineup_players)
    locked = pickem_settings.locked
    if locked:
        for lock in locked:
            player_lock = _get_player(lock, all_players)
            player_lock.locked = True
            setattr(
                lineup,
                player_lock.tier,
                player_lock,
            )

    return lineup
Exemplo n.º 7
0
def run_multi(
    iterations: int,
    rule_set: RuleSet,
    player_pool: list,
    player_settings=PlayerPoolSettings(),
    optimizer_settings=OptimizerSettings(),
    verbose=False,
    exposure_bounds=None,
    exposure_random_seed=None,
) -> [List[Roster], list]:

    # set the random seed globally for random lineup exposure
    if exposure_random_seed:
        random.seed(exposure_random_seed)

    rosters = []
    for _ in range(0, iterations):
        if exposure_bounds:
            exposure_dct = get_exposure_args(
                existing_rosters=optimizer_settings.existing_rosters,
                exposure_bounds=exposure_bounds,
                n=iterations,
                use_random=bool(exposure_random_seed),
                random_seed=exposure_random_seed,
            )
            player_settings.banned = exposure_dct['banned']
            player_settings.locked = exposure_dct['locked']

        roster = run(
            rule_set=rule_set,
            player_pool=player_pool,
            optimizer_settings=optimizer_settings,
            player_settings=player_settings,
            verbose=verbose,
        )
        if roster:
            optimizer_settings.existing_rosters += [roster]

        if roster:
            rosters.append(roster)
        else:
            break

    exposure_diffs = {}

    if rosters and verbose:
        print(get_exposure_table(rosters, exposure_bounds))
        print()
        print(get_exposure_matrix(rosters))
        print()

        exposure_diffs = check_exposure(rosters, exposure_bounds)
        for n, d in exposure_diffs.items():
            if d < 0:
                print('{} is UNDER exposure by {} lineups'.format(n, d))
            else:
                print('{} is OVER exposure by {} lineups'.format(n, d))

    return rosters, exposure_diffs
Exemplo n.º 8
0
def test_no_double_te():
    players = salary_download.generate_players_from_csvs(
        salary_file_location=salary_file,
        projection_file_location=projection_file,
        game=rules.DRAFT_KINGS,
    )
    roster = run(rule_set=rules.DK_NFL_RULE_SET,
                 player_pool=players,
                 player_settings=PlayerPoolSettings(locked=['Rob Gronkowski']))
    qb = roster.sorted_players()[0]
    ntools.assert_equal(qb.pos, 'QB')
Exemplo n.º 9
0
def test_soccer_dk_no_opp_d():
    player_pool = salary_download.generate_players_from_csvs(
        salary_file_location=salary_file,
        game=rules.DRAFT_KINGS,
    )
    roster = run(
        rule_set=rules.DK_SOCCER_RULE_SET,
        player_pool=player_pool,
        player_settings=PlayerPoolSettings(locked=['Maxi Gomez'], ),
        optimizer_settings=OptimizerSettings(
            no_offense_against_defense=False, ),
        verbose=True,
    )
    cel_off_players = [
        p for p in roster.players if p.team == 'CEL' and p.pos in ['M', 'F']
    ]
    lgn_d_players = [
        p for p in roster.players if p.team == 'LGN' and p.pos in ['D', 'GK']
    ]
    ntools.assert_equal(len(cel_off_players), 2)
    ntools.assert_equal(len(lgn_d_players), 2)

    roster = run(
        rule_set=rules.DK_SOCCER_RULE_SET,
        player_pool=player_pool,
        player_settings=PlayerPoolSettings(locked=['Maxi Gomez'], ),
        optimizer_settings=OptimizerSettings(
            no_offense_against_defense=True, ),
        verbose=True,
    )
    cel_off_players = [
        p for p in roster.players if p.team == 'CEL' and p.pos in ['M', 'F']
    ]
    lgn_d_players = [
        p for p in roster.players if p.team == 'LGN' and p.pos in ['D', 'GK']
    ]
    ntools.assert_equal(len(cel_off_players), 2)
    ntools.assert_equal(len(lgn_d_players), 0)
Exemplo n.º 10
0
def test_multi_position():
    players = salary_download.generate_players_from_csvs(
        salary_file_location=salary_file,
        projection_file_location=projection_file,
        game=rules.DRAFT_KINGS,
    )
    roster = run(
        rule_set=rules.DK_NFL_RULE_SET,
        player_pool=players,
        player_settings=PlayerPoolSettings(locked=['Eli Manning'], ),
    )
    ntools.assert_not_equals(roster, None)
    multi_pos = [p for p in roster.players if p.name == 'Eli Manning']
    ntools.assert_equal(len(multi_pos), 1)
    ntools.assert_equal(multi_pos[0].pos, 'TE')
Exemplo n.º 11
0
def test_respects_max_proj():
    pool = filter_pool(mock_player_pool, PlayerPoolSettings(max_proj=50))
    ntools.assert_equals(pool, [p_a, p_b])
Exemplo n.º 12
0
def test_no_settings():
    pool = filter_pool(mock_player_pool, PlayerPoolSettings())
    ntools.assert_equals(pool, mock_player_pool)
Exemplo n.º 13
0
def run(rule_set: RuleSet,
        player_pool: list,
        constraints: LineupConstraints = LineupConstraints(),
        optimizer_settings: OptimizerSettings = OptimizerSettings(),
        player_settings: PlayerPoolSettings = PlayerPoolSettings(),
        exposure_dict: dict = dict(),
        roster_gen: Roster = None,
        verbose=False) -> Roster:
    players = pool.filter_pool(
        player_pool,
        player_settings,
    )

    if rule_set.game_type == 'showdown':
        if optimizer_settings.no_offense_against_defense:
            print('WARNING:')
            print('no_offense_against_defense setting ignored for showdown')
            print('game types. Use no_defense_against_captain instead.')
            print()

    optimizer = Optimizer(
        players=players,
        rule_set=rule_set,
        settings=optimizer_settings,
        lineup_constraints=constraints,
        exposure_dict=exposure_dict,
    )

    variables = optimizer.variables

    if optimizer.solve():
        if roster_gen:
            roster = roster_gen()
        else:
            roster = RosterSelect().roster_gen(rule_set.league)

        for i, player in enumerate(players):
            if variables[i].solution_value() == 1:
                roster.add_player(player)

        if verbose:
            print('Optimal roster for: {}'.format(rule_set.league))
            print(roster)

        return roster

    if verbose:
        print('''
No solution found.
Try adjusting your query by taking away constraints.

OPTIMIZER CONSTRAINTS:

{}

LINEUP CONSTRAINTS:

{}

PLAYER POOL SETTINGS:

{}

PLAYER COUNT: {}
        '''.format(optimizer_settings, constraints, player_settings,
                   len(players or [])))
    return None
Exemplo n.º 14
0
from draftfast.lineup_contraints import LineupConstraints

import csv

player_pool = []

with open('input.csv') as inputfile:
    csvreader = csv.reader(inputfile)
    isHeader = True
    for row in csvreader:
        if isHeader:
            minSalary = float(row[0])
            maxSalary = float(row[1])
            lineups = int(row[2])
            isHeader = False
        else:
            player = Player(name=row[1] + '(' + row[0] + ')', cost=float(row[2]), proj=float(row[5]), pos='D')
            player_pool.append(player)


player_settings = PlayerPoolSettings(min_salary=minSalary, max_salary=maxSalary)

rosters = run_multi(lineups, rule_set=rules.FD_NASCAR_RULE_SET, player_pool=player_pool, verbose=True)

with open('output.csv', 'w') as outputfile:
    csvwriter = csv.writer(outputfile)
    for roster in rosters[0]:
        players = roster.players
        cost = players[0].cost + players[1].cost + players[2].cost + players[3].cost + players[4].cost + players[5].cost
        csvwriter.writerow([players[0].name, players[1].name, players[2].name, players[3].name, players[4].name, players[5].name, cost])
Exemplo n.º 15
0
def test_respects_max_cost():
    pool = filter_pool(mock_player_pool, PlayerPoolSettings(max_salary=7001))
    ntools.assert_equals(pool, [p_a, p_b])
Exemplo n.º 16
0
def test_respects_banned():
    pool = filter_pool(mock_player_pool,
                       PlayerPoolSettings(banned=['A1', 'A2']))
    ntools.assert_equals(pool, [p_c])
Exemplo n.º 17
0
def test_banned_players():
    players = _generate_test_player_data()
    player_settings = PlayerPoolSettings(banned=['A', 'C'], )
    optimized = optimize(players, player_settings=player_settings)
    ntools.assert_equal(optimized.total, 49 + 47 + 46 + 44 + 42 + 40)
Exemplo n.º 18
0
def test_randomize():
    random.seed(1)
    pool = filter_pool(mock_player_pool, PlayerPoolSettings(randomize=0.1, ))
    ntools.assert_equals(pool[0].proj, 18.537456976449604)
Exemplo n.º 19
0
def run_multi(
    iterations: int,
    rule_set: RuleSet,
    player_pool: list,
    constraints: LineupConstraints = LineupConstraints(),
    player_settings: PlayerPoolSettings = PlayerPoolSettings(),
    optimizer_settings: OptimizerSettings = OptimizerSettings(),
    verbose=False,
    exposure_bounds: List[dict] = list(),
    exposure_random_seed=None,
    progress_recorder=None,
    locked_pos=None,
    locked=None,
    lowest_salary=None,
) -> [List[Roster], list]:

    if not isinstance(rule_set, RuleSet):
        raise Exception("RuleSet not defined. Please refer to the docs")

    # set the random seed globally for random lineup exposure
    random.seed(exposure_random_seed)

    rosters = []
    for idx in range(0, iterations):
        progress_recorder.set_progress(idx, iterations)
        exposure_dict = get_exposure_args(
            existing_rosters=optimizer_settings.existing_rosters,
            exposure_bounds=exposure_bounds,
            n=iterations,
            use_random=bool(exposure_random_seed),
            random_seed=exposure_random_seed,
            locked_pos=locked_pos,
            constraints=constraints,
            rule_set=rule_set,
            locked=locked,
        )

        roster = run(
            rule_set=rule_set,
            player_pool=player_pool,
            optimizer_settings=optimizer_settings,
            player_settings=player_settings,
            exposure_dict=exposure_dict,
            constraints=constraints,
            verbose=verbose,
            lowest_salary=lowest_salary,
        )
        if roster:
            optimizer_settings.existing_rosters += [roster]

        if roster:
            rosters.append(roster)
        else:
            break

        # clear ban/lock to reset exposure between iterations
        reset_player_ban_lock(player_pool)

    exposure_diffs = {}

    if rosters and verbose:
        print(get_exposure_table(rosters, exposure_bounds))
        print()
        print(get_exposure_matrix(rosters))
        print()

        exposure_diffs = check_exposure(rosters, exposure_bounds)
        for n, d in exposure_diffs.items():
            if d < 0:
                print('{} is UNDER exposure by {} lineups'.format(n, d))
            else:
                print('{} is OVER exposure by {} lineups'.format(n, d))

    return rosters, exposure_diffs