Exemplo n.º 1
0
def FeedTensor(tensor, ndarray, force_cpu=False, dtype=None):
    tensor = tensor.name if hasattr(tensor, 'name') else str(tensor)
    dev = None
    if force_cpu is True: dev = utils.MakeDeviceOption(0, 0)
    else:
        from dragon.core.scope import DEVICE_SCOPE
        if DEVICE_SCOPE != '':
            supports = {'/cpu': 0, '/gpu': 1}
            dev = pb.DeviceOption()
            dev.device_type = supports[DEVICE_SCOPE.split(':')[0]]
            dev.gpu_id = int(DEVICE_SCOPE.split(':')[1])
        else:
            from dragon.config import option
            if option['device'] == 'CUDA':
                dev = utils.MakeDeviceOption(1, option['gpu_id'])
            elif option['device'] == 'CPU':
                dev = utils.MakeDeviceOption(0, 0)

    if not isinstance(ndarray, np.ndarray):
        if not isinstance(ndarray, list):
            ndarray = [ndarray]
        dtype = np.float32 if dtype is None else dtype
    else:
        dtype = ndarray.dtype if dtype is None else dtype
    ndarray = np.array(ndarray, dtype=dtype)
    FeedTensorCC(tensor, ndarray, StringfyProto(dev))
Exemplo n.º 2
0
 def _gen_op(self):
     self._op = pb_utils.MakeOperatorDef(
         op_type=self.op_meta['op_type'],
         name='runtime',
         inputs=[
             'I({})'.format(i) for i in range(self.op_meta['n_inputs'])
         ],
         outputs=[
             'O({})'.format(i) for i in range(self.op_meta['n_outputs'])
         ],
         device_option=pb_utils.MakeDeviceOption({
             'CPU': 0,
             'CUDA': 1
         }[self._ctx[0]],
                                                 self._ctx[1],
                                                 engine='CUDNN'),
         persistent_key=self.persistent_key,
         **self.op_meta['arguments'])
     dg.workspace.CreatePersistentOp(self._op)
     return self._op
Exemplo n.º 3
0
def FeedTensor(tensor, array, force_cpu=False, dtype=None):
    """Feed the values to the given tensor.

    Parameters
    ----------
    tensor : Tensor or str
        The tensor to feed.
    ndarray : number, list or ndarray
        The values to feed.
    force_cpu : boolean
        Whether force to feed to cpu context.
    dtype : str
        The data type. If ``None``, ``float32`` will be used instead.

    Returns
    -------
    None

    Examples
    --------
    >>> import dragon as dg
    >>> a = dg.Tensor().Variable()
    >>> dg.workspace.FeedTensor(a, 1)
    >>> a_value = dg.workspace.FetchTensor(a)
    >>> a_value, a_value.dtype
    >>> [ 1.], float32

    >>> dg.workspace.FeedTensor(a, [[1, 2, 3]], dtype='float16')
    >>> a_value = a.get_value()
    >>> a_value, a_value.dtype
    >>> [[ 1.  2.  3.]], float16

    References
    ----------
    The wrapper of ``FeedTensorCC``.

    """
    name = tensor.name if hasattr(tensor, 'name') else str(tensor)
    if force_cpu is True:
        dev = utils.MakeDeviceOption(0, 0)
    else:
        from dragon.core.scope import _DEVICE_SCOPE
        if _DEVICE_SCOPE != '':
            supports = {'/cpu': 0, '/gpu': 1, '/mlu': 2}
            dev = pb.DeviceOption()
            dev.device_type = supports[_DEVICE_SCOPE.split(':')[0]]
            dev.device_id = int(_DEVICE_SCOPE.split(':')[1])
        else:
            from dragon.config import option
            if option['device'] == 'CUDA':
                dev = utils.MakeDeviceOption(1, option['device_id'])
            else:
                dev = utils.MakeDeviceOption(0, 0)

    if not isinstance(array, np.ndarray):
        if not isinstance(array, list):
            array = [array]
        auto_data_type = np.float32 if dtype is None else dtype
    else:
        auto_data_type = array.dtype if dtype is None else dtype

    if hasattr(tensor, 'dtype') and tensor.dtype is not None:
        if tensor.dtype not in _DATA_TYPES:
            raise TypeError('Unsupported data types: {}.'.format(tensor.dtype))
        preset_data_type = _DATA_TYPES[tensor.dtype]
        if dtype is not None:
            if dtype != preset_data_type:
                raise TypeError(
                    'The preset data type is {}, but force to {}.'.format(
                        preset_data_type, dtype))
        auto_data_type = preset_data_type
    nd_array = np.array(array, dtype=auto_data_type, copy=False)
    FeedTensorCC(name, nd_array, _stringify_proto(dev))
Exemplo n.º 4
0
# ------------------------------------------------------------
# Copyright (c) 2017-present, SeetaTech, Co.,Ltd.
#
# Licensed under the BSD 2-Clause License.
# You should have received a copy of the BSD 2-Clause License
# along with the software. If not, See,
#
#      <https://opensource.org/licenses/BSD-2-Clause>
#
# ------------------------------------------------------------

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import dragon.core.utils as pb_utils

# Enumerate and persistent device options
# Make item frequently will degrade performance
DEVICE_LIMITS = 16
DEVICE_ENGINE = 'CUDNN'
CTX_TO_DEVICE_OPTION = {('CPU', 0): pb_utils.MakeDeviceOption(0, 0)}
for i in range(DEVICE_LIMITS):
    CTX_TO_DEVICE_OPTION['CUDA', i] = \
        pb_utils.MakeDeviceOption(1, i, DEVICE_ENGINE)