Exemplo n.º 1
0
def h_field(a, b, m, n, omega, lambda_mn, x_min, x_max, dx, y_min, y_max, dy,
            z_min, z_max, dz, t_min, t_max, t_step):
    for t in drange(t_min, t_max, t_step):
        for z in drange(z_min, z_max, dz):
            for y in drange(y_min, y_max, dy):
                for x in drange(x_min, x_max, dx):
                    vector_dx = hx(a, b, m, n, omega, lambda_mn, x, y, z, t)
                    vector_dy = hy(a, b, m, n, omega, lambda_mn, x, y, z, t)
                    vector_dz = hz(a, b, m, n, omega, lambda_mn, x, y, z, t)
                    yield gplot_vector3(x, y, z, vector_dx, vector_dy,
                                        vector_dz)
        # Returning None to specify the end of one time frame
        yield None
Exemplo n.º 2
0
import math as m
from mk_galaxy_struc import mk_galaxy_struc
from drange import drange

sample = []
# get galaxy info
galaxies = mk_galaxy_struc()
for i in range(len(galaxies)):
    if galaxies[i].ston_I > 30.0 and galaxies[i].ICD_IH <= 0.25:
        sample.append([galaxies[i].ICD_IH, galaxies[i].Mass])

sample = np.asarray(sample)

# make the bins
bins = []
for i in drange(7.0, 12.5, 0.1):
    bins.append(10.0 ** i)
bins = np.asarray(bins)

# digitize the sample
inds = np.digitize(sample[:, 1], bins)

# put the sample in the postboxes
sorted = []
for i in range(bins.size):
    sorted.append([])
for i in range(inds.size):
    j = int(inds[i])
    sorted[j].append(i)

# match the sample to the icd's
Exemplo n.º 3
0
def plot_histogram(xs, filename, title, xlabel, lower, upper, normed=False):
    old_lower, old_upper = int(lower * 1000), int(upper * 1000)

    # lower/upper is in percentage.
    # in order to see what's appropriate, we need to figure out the scale.
    # like this?
    # http://stackoverflow.com/questions/15177203/how-is-the-pyplot-histogram-bins-interpreted

    matching_xs = [x for x in xs if x >= lower and x <= upper]
    if len(matching_xs) == 0:
        print "Nothing matching for", lower, upper
        return
    """
    if lower == 75:
        i = 0
        for x in matching_xs:
            print x,
            if i % 80 == 0:
                print
            i+=1
        #matching_xs = [99]*20 + [90]*10 + [80]*5
        pass
    """

    # at least MIN_RANGE steps.
    step = upper - lower
    if step < MIN_RANGE:
        step = float(step) / MIN_RANGE
    else:
        step = 1.0

    bins = [i for i in drange(lower, upper + 0.000001, step)]
    #print "bins from lower to upper:", bins
    #n, bins, patches = plt.hist(matching_xs, bins=[0, 70,80,90,100], histtype='stepfilled')
    #n, bins, patches = plt.hist(xs, bins=100, range=(lower, upper), histtype='stepfilled')
    #n, bins, patches = plt.hist(xs, bins=100, histtype='stepfilled')
    #n, bins, patches = plt.hist(matching_xs, bins=100, histtype='stepfilled')
    n, bins, patches = plt.hist(matching_xs,
                                bins=bins,
                                normed=normed,
                                histtype='stepfilled')
    #n, bins, patches = plt.hist(matching_xs, bins=bins, histtype='stepfilled')
    #print "n =", n
    print "lower, upper =", lower, upper
    #print "bins =", bins
    #print "patches =", patches

    plt.xlabel(xlabel)
    plt.ylabel("Handle count / % of max")
    plt.title("Histogram of memory area lifetime (%d - %d): %s" %
              (old_lower, old_upper, title))

    #plt.axis([100, 0, 0, len(bins)*0.75])

    plt.axis('tight')
    plt.grid(True)

    ax = plt.gca()
    ax.xaxis.set_major_formatter(
        mpl.ticker.FuncFormatter(formatter_x_to_percent))
    ymin, ymax = ax.get_ylim()
    ax.yaxis.set_major_formatter(
        mpl.ticker.FuncFormatter(
            lambda y, pos: formatter_max_to_percent(y, pos, ymax)))

    #plt.show()
    fname = "%s-histogram-%d-%d.pdf" % (filename, old_lower, old_upper)
    plt.savefig(fname)
    print "Saved histogram:", fname

    plt.clf()
    plt.cla()
    plt.close()
def plot_histogram(xs, filename, title, xlabel,      lower, upper, normed=False):
    old_lower, old_upper = int(lower*1000), int(upper*1000)

    # lower/upper is in percentage.
    # in order to see what's appropriate, we need to figure out the scale.
    # like this?
    # http://stackoverflow.com/questions/15177203/how-is-the-pyplot-histogram-bins-interpreted

    matching_xs = [x for x in xs if x >= lower and x <= upper]
    if len(matching_xs) == 0:
        print "Nothing matching for", lower, upper
        return

    """
    if lower == 75:
        i = 0
        for x in matching_xs:
            print x,
            if i % 80 == 0:
                print
            i+=1
        #matching_xs = [99]*20 + [90]*10 + [80]*5
        pass
    """

    # at least MIN_RANGE steps.
    step = upper-lower
    if step < MIN_RANGE:
        step = float(step) / MIN_RANGE
    else:
        step = 1.0

    bins = [i for i in drange(lower, upper+0.000001, step)]
    #print "bins from lower to upper:", bins
    #n, bins, patches = plt.hist(matching_xs, bins=[0, 70,80,90,100], histtype='stepfilled')
    #n, bins, patches = plt.hist(xs, bins=100, range=(lower, upper), histtype='stepfilled')
    #n, bins, patches = plt.hist(xs, bins=100, histtype='stepfilled')
    #n, bins, patches = plt.hist(matching_xs, bins=100, histtype='stepfilled')
    n, bins, patches = plt.hist(matching_xs, bins=bins, normed=normed, histtype='stepfilled')
    #n, bins, patches = plt.hist(matching_xs, bins=bins, histtype='stepfilled')
    #print "n =", n
    print "lower, upper =", lower, upper
    #print "bins =", bins
    #print "patches =", patches


    plt.xlabel(xlabel)
    plt.ylabel("Handle count / % of max")
    plt.title("Histogram of memory area lifetime (%d - %d): %s" % (old_lower, old_upper, title))

    #plt.axis([100, 0, 0, len(bins)*0.75])

    plt.axis('tight')
    plt.grid(True)

    ax = plt.gca()
    ax.xaxis.set_major_formatter(mpl.ticker.FuncFormatter(formatter_x_to_percent))
    ymin, ymax = ax.get_ylim()
    ax.yaxis.set_major_formatter(mpl.ticker.FuncFormatter(lambda y, pos: formatter_max_to_percent(y, pos, ymax)))

    #plt.show()
    fname = "%s-histogram-%d-%d.pdf" % (filename, old_lower, old_upper)
    plt.savefig(fname)
    print "Saved histogram:", fname

    plt.clf()
    plt.cla()
    plt.close()
Exemplo n.º 5
0
import math as m
from mk_galaxy_struc import mk_galaxy_struc
from drange import drange

sample = []
# get galaxy info
galaxies = mk_galaxy_struc()
for i in range(len(galaxies)):
	if galaxies[i].ston_I > 30.0 and galaxies[i].ICD_IH <= 0.25:
		sample.append([galaxies[i].ICD_IH,galaxies[i].Mass])

sample = np.asarray(sample)

# make the bins
bins = []
for i in drange(7.0,12.5,0.1):
	bins.append(10.0**i)
bins = np.asarray(bins)

# digitize the sample
inds = np.digitize(sample[:,1],bins)

# put the sample in the postboxes
sorted =[]
for i in range(bins.size):
	sorted.append([])
for i in range(inds.size):
	j = int(inds[i])
       	sorted[j].append(i)

# match the sample to the icd's