Exemplo n.º 1
0
def prepare_data(db):
#    Processes/ methods to be called at the beginning of the pop_synthesis process 
    dbc = db.cursor()

# Identifying the number of housing units to build the Master Matrix
    dbc.execute('select * from housing_pums')
    housing_units = dbc.rowcount
    ti = time.clock()
# Identifying the control variables for the households, gq's, and persons
    hhld_control_variables = adjusting_pums_joint_distribution.choose_control_variables(db, 'hhld')
    gq_control_variables = adjusting_pums_joint_distribution.choose_control_variables(db, 'gq')
    person_control_variables = adjusting_pums_joint_distribution.choose_control_variables(db, 'person')

# Identifying the number of categories within each control variable for the households, gq's, and persons
    hhld_dimensions = numpy.asarray(adjusting_pums_joint_distribution.create_dimensions(db, 'hhld', hhld_control_variables))
    gq_dimensions = numpy.asarray(adjusting_pums_joint_distribution.create_dimensions(db, 'gq', gq_control_variables))
    person_dimensions = numpy.asarray(adjusting_pums_joint_distribution.create_dimensions(db, 'person', person_control_variables))
        
    print 'Dimensions and Control Variables created in %.4f' %(time.clock()-ti)
    ti = time.clock()
    
    update_string = adjusting_pums_joint_distribution.create_update_string(db, hhld_control_variables, hhld_dimensions)
    adjusting_pums_joint_distribution.add_unique_id(db, 'hhld', update_string)
    update_string = adjusting_pums_joint_distribution.create_update_string(db, gq_control_variables, gq_dimensions)
    adjusting_pums_joint_distribution.add_unique_id(db, 'gq', update_string)
    update_string = adjusting_pums_joint_distribution.create_update_string(db, person_control_variables, person_dimensions)
    adjusting_pums_joint_distribution.add_unique_id(db, 'person', update_string)
    
    print 'Uniqueid\'s created in %.4f' %(time.clock()-ti)
    ti = time.clock()
    
# Populating the Master Matrix	
    populated_matrix = psuedo_sparse_matrix.populate_master_matrix(db, 0, housing_units, hhld_dimensions, 
                                                                                               gq_dimensions, person_dimensions)
    print 'Frequency Matrix Populated in %.4f' %(time.clock()-ti)
    ti = time.clock()

# Sparse representation of the Master Matrix    
    ps_sp_matrix = psuedo_sparse_matrix.psuedo_sparse_matrix(db, populated_matrix, 0)
    print 'Psuedo Sparse Representation of the Frequency Matrix created in %.4f' %(time.clock()-ti)
    ti = time.clock()
#______________________________________________________________________
#Creating Index Matrix
    index_matrix = psuedo_sparse_matrix.generate_index_matrix(db, 0)
    print 'Index matrix created in %.4f' %(time.clock()-ti)
    ti = time.clock()
    dbc.close()
#______________________________________________________________________
# creating synthetic_population tables in MySQL
    drawing_households.create_synthetic_attribute_tables(db)

# Total PUMS Sample x composite_type adjustment for hhld    
    adjusting_pums_joint_distribution.create_joint_dist(db, 'hhld', hhld_control_variables, hhld_dimensions, 0, 0, 0)

# Total PUMS Sample x composite_type adjustment for gq    
    adjusting_pums_joint_distribution.create_joint_dist(db, 'gq', gq_control_variables, gq_dimensions, 0, 0, 0)

# Total PUMS Sample x composite_type adjustment for person    
    adjusting_pums_joint_distribution.create_joint_dist(db, 'person', person_control_variables, person_dimensions, 0, 0, 0)
    ti = time.clock()

# Sparse representation of the Master Matrix
    ps_sp_matrix = psuedo_sparse_matrix.psuedo_sparse_matrix(db, populated_matrix, 99999, project)
    print 'Psuedo Sparse Matrix in %.4fs' %(time.clock()-ti)
    ti = time.clock()
#______________________________________________________________________
#Creating Index Matrix
    index_matrix = psuedo_sparse_matrix.generate_index_matrix(db, 99999)
    print 'Index Matrix in %.4fs' %(time.clock()-ti)
    ti = time.clock()
    dbc.close()

#______________________________________________________________________
# creating synthetic_population tables in MySQL
    drawing_households.create_synthetic_attribute_tables(db)

# creating performance_statistics table in MySQL
    drawing_households.create_performance_table(db)

# Total PUMS Sample x composite_type adjustment for hhld
    adjusting_sample_joint_distribution.create_joint_dist(db, 'hhld', hhld_control_variables, hhld_dimensions, 0, 0, 0)

# Total PUMS Sample x composite_type adjustment for gq
    adjusting_sample_joint_distribution.create_joint_dist(db, 'gq', gq_control_variables, gq_dimensions, 0, 0, 0)

if __name__ == '__main__':


    db = MySQLdb.connect(user = '******', passwd = '1234', db = 'aacog')
    prepare_data(db)
Exemplo n.º 3
0
    # Sparse representation of the Master Matrix
    ps_sp_matrix = psuedo_sparse_matrix.psuedo_sparse_matrix(
        db, populated_matrix, 99999, project)
    print 'Psuedo Sparse Matrix in %.4fs' % (time.clock() - ti)
    ti = time.clock()
    #______________________________________________________________________
    #Creating Index Matrix
    index_matrix = psuedo_sparse_matrix.generate_index_matrix(db, 99999)
    print 'Index Matrix in %.4fs' % (time.clock() - ti)
    ti = time.clock()
    dbc.close()

    #______________________________________________________________________
    # creating synthetic_population tables in MySQL
    drawing_households.create_synthetic_attribute_tables(db)

    # creating performance_statistics table in MySQL
    drawing_households.create_performance_table(db)

    # Total PUMS Sample x composite_type adjustment for hhld
    adjusting_sample_joint_distribution.create_joint_dist(
        db, 'hhld', hhld_control_variables, hhld_dimensions, 0, 0, 0)

if __name__ == '__main__':

    db = MySQLdb.connect(user='******', passwd='1234', db='aacog')
    prepare_data(db)
    db.commit()
    db.close()
def prepare_data(db, project, state=None):

    if state == None:
	stateFilterStr = ""
    else:
	stateFilterStr = " where state = %s" %(state)

    dbc = db.cursor()
    
    scenarioDatabase = '%s%s%s' %(project.name, 'scenario', project.scenario)
    projectDatabase = project.name

    try:
        dbc.execute('drop table %s.hhld_sample' %(scenarioDatabase))
        dbc.execute('drop table %s.gq_sample' %(scenarioDatabase))
        dbc.execute('drop table %s.person_sample' %(scenarioDatabase))
        dbc.execute('drop table %s.hhld_marginals' %(scenarioDatabase))
        dbc.execute('drop table %s.gq_marginals' %(scenarioDatabase))
        dbc.execute('drop table %s.person_marginals' %(scenarioDatabase))
        if project.sampleUserProv.defSource == 'ACS 2005-2007':
            dbc.execute('drop table %s.serialcorr' %(scenarioDatabase))
    except:
        pass

    dbc.execute('create table %s.hhld_sample select * from %s.hhld_sample %s'
                %(scenarioDatabase, projectDatabase, stateFilterStr))
    dbc.execute('alter table %s.hhld_sample add index(serialno)' %(scenarioDatabase))
    
    dbc.execute('create table %s.gq_sample select * from %s.gq_sample %s'
                %(scenarioDatabase, projectDatabase, stateFilterStr))
    dbc.execute('alter table %s.gq_sample add index(serialno)' %(scenarioDatabase))

    dbc.execute('create table %s.person_sample select * from %s.person_sample %s'
                %(scenarioDatabase, projectDatabase, stateFilterStr))
    dbc.execute('alter table %s.person_sample add index(serialno, pnum)' %(scenarioDatabase))


    if project.selVariableDicts.hhldMargsModify:
        dbc.execute('create table %s.hhld_marginals select * from %s.hhld_marginals_modpgq'
                    %(scenarioDatabase, projectDatabase))
    else:
        dbc.execute('create table %s.hhld_marginals select * from %s.hhld_marginals'
                    %(scenarioDatabase, projectDatabase))

    dbc.execute('create table %s.gq_marginals select * from %s.gq_marginals'
                %(scenarioDatabase, projectDatabase))

    dbc.execute('create table %s.person_marginals select * from %s.person_marginals'
                %(scenarioDatabase, projectDatabase))

    if project.sampleUserProv.defSource == 'ACS 2005-2007':
        dbc.execute('create table %s.serialcorr select * from %s.serialcorr'
                    %(scenarioDatabase, projectDatabase))


#    Processes/ methods to be called at the beginning of the pop_synthesis process


# Identifying the number of housing units to build the Master Matrix
    dbc.execute('select * from hhld_sample')
    hhld_units = dbc.rowcount
    dbc.execute('select * from gq_sample')
    gq_units = dbc.rowcount

    ti = time.clock()
# Identifying the control variables for the households, gq's, and persons
    hhld_control_variables = project.hhldVars
    gq_control_variables = project.gqVars
    person_control_variables = project.personVars

# Identifying the number of categories within each control variable for the households, gq's, and persons
    hhld_dimensions = project.hhldDims
    gq_dimensions = project.gqDims
    person_dimensions = project.personDims

    print '------------------------------------------------------------------'
    print 'Preparing Data for the Synthesizer Run'
    print '------------------------------------------------------------------'




    print 'Dimensions and Control Variables in %.4f' %(time.clock()-ti)
    ti = time.clock()

    update_string = adjusting_sample_joint_distribution.create_update_string(db, hhld_control_variables, hhld_dimensions)
    adjusting_sample_joint_distribution.add_unique_id(db, 'hhld_sample', 'hhld', update_string)
    update_string = adjusting_sample_joint_distribution.create_update_string(db, gq_control_variables, gq_dimensions)
    adjusting_sample_joint_distribution.add_unique_id(db, 'gq_sample', 'gq', update_string)
    update_string = adjusting_sample_joint_distribution.create_update_string(db, person_control_variables, person_dimensions)
    adjusting_sample_joint_distribution.add_unique_id(db, 'person_sample', 'person', update_string)

    print 'Uniqueid\'s in %.4fs' %(time.clock()-ti)
    ti = time.clock()
    """
# Populating the Master Matrix
    populated_matrix = psuedo_sparse_matrix_new.populate_master_matrix(db, 0, 
                                                                   hhld_units, gq_units, 
                                                                   hhld_control_variables, gq_control_variables, person_control_variables,
                                                                   hhld_dimensions, gq_dimensions, person_dimensions)
    print 'Populated in %.4fs' %(time.clock()-ti)
    ti = time.clock()

# Sparse representation of the Master Matrix
    ps_sp_matrix = psuedo_sparse_matrix.psuedo_sparse_matrix(db, populated_matrix, 0)
    print 'Psuedo Sparse Matrix in %.4fs' %(time.clock()-ti)
    ti = time.clock()
#______________________________________________________________________
#Creating Index Matrix
    index_matrix = psuedo_sparse_matrix.generate_index_matrix(db, 0)
    print 'Index Matrix in %.4fs' %(time.clock()-ti)
    ti = time.clock()
    dbc.close()
    """
    
# Populating the Master Matrix for Household Types
    populated_matrix = psuedo_sparse_matrix.populate_master_matrix(db, 99999, 
                                                                   hhld_units, gq_units, 
                                                                   hhld_dimensions, gq_dimensions, person_dimensions)
    print 'Populated in %.4fs' %(time.clock()-ti)
    ti = time.clock()

# Sparse representation of the Master Matrix for Household Types
    ps_sp_matrix = psuedo_sparse_matrix.psuedo_sparse_matrix(db, populated_matrix, 99999, project)
    print 'Psuedo Sparse Matrix in %.4fs' %(time.clock()-ti)
    ti = time.clock()
#______________________________________________________________________
#Creating Index Matrix of the Master Matrix for Household Types
    index_matrix = psuedo_sparse_matrix.generate_index_matrix(db, 99999)
    print 'Index Matrix in %.4fs' %(time.clock()-ti)
    ti = time.clock()
    dbc.close()

#______________________________________________________________________
# creating synthetic_population tables in MySQL
    drawing_households.create_synthetic_attribute_tables(db)

# creating performance_statistics table in MySQL
    drawing_households.create_performance_table(db)

# Total PUMS Sample x composite_type adjustment for hhld
    adjusting_sample_joint_distribution.create_joint_dist(db, 'hhld', hhld_control_variables, hhld_dimensions, 0, 0, 0)

# Total PUMS Sample x composite_type adjustment for gq
    adjusting_sample_joint_distribution.create_joint_dist(db, 'gq', gq_control_variables, gq_dimensions, 0, 0, 0)

# Total PUMS Sample x composite_type adjustment for person
    adjusting_sample_joint_distribution.create_joint_dist(db, 'person', person_control_variables, person_dimensions, 0, 0, 0)
Exemplo n.º 5
0
def prepare_data(db, project, state=None):

    if state == None:
        stateFilterStr = ""
    else:
        stateFilterStr = " where state = %s" % (state)

    dbc = db.cursor()

    scenarioDatabase = '%s%s%s' % (project.name, 'scenario', project.scenario)
    projectDatabase = project.name

    try:
        dbc.execute('drop table %s.hhld_sample' % (scenarioDatabase))
        dbc.execute('drop table %s.gq_sample' % (scenarioDatabase))
        dbc.execute('drop table %s.person_sample' % (scenarioDatabase))
        dbc.execute('drop table %s.hhld_marginals' % (scenarioDatabase))
        dbc.execute('drop table %s.gq_marginals' % (scenarioDatabase))
        dbc.execute('drop table %s.person_marginals' % (scenarioDatabase))
        if project.sampleUserProv.defSource == 'ACS 2005-2007':
            dbc.execute('drop table %s.serialcorr' % (scenarioDatabase))
    except:
        pass

    dbc.execute('create table %s.hhld_sample select * from %s.hhld_sample %s' %
                (scenarioDatabase, projectDatabase, stateFilterStr))
    dbc.execute('alter table %s.hhld_sample add index(serialno)' %
                (scenarioDatabase))

    dbc.execute('create table %s.gq_sample select * from %s.gq_sample %s' %
                (scenarioDatabase, projectDatabase, stateFilterStr))
    dbc.execute('alter table %s.gq_sample add index(serialno)' %
                (scenarioDatabase))

    dbc.execute(
        'create table %s.person_sample select * from %s.person_sample %s' %
        (scenarioDatabase, projectDatabase, stateFilterStr))
    dbc.execute('alter table %s.person_sample add index(serialno, pnum)' %
                (scenarioDatabase))

    if project.selVariableDicts.hhldMargsModify:
        dbc.execute(
            'create table %s.hhld_marginals select * from %s.hhld_marginals_modpgq'
            % (scenarioDatabase, projectDatabase))
    else:
        dbc.execute(
            'create table %s.hhld_marginals select * from %s.hhld_marginals' %
            (scenarioDatabase, projectDatabase))

    dbc.execute('create table %s.gq_marginals select * from %s.gq_marginals' %
                (scenarioDatabase, projectDatabase))

    dbc.execute(
        'create table %s.person_marginals select * from %s.person_marginals' %
        (scenarioDatabase, projectDatabase))

    if project.sampleUserProv.defSource == 'ACS 2005-2007':
        dbc.execute('create table %s.serialcorr select * from %s.serialcorr' %
                    (scenarioDatabase, projectDatabase))


#    Processes/ methods to be called at the beginning of the pop_synthesis process

# Identifying the number of housing units to build the Master Matrix
    dbc.execute('select * from hhld_sample')
    hhld_units = dbc.rowcount
    dbc.execute('select * from gq_sample')
    gq_units = dbc.rowcount

    ti = time.clock()
    # Identifying the control variables for the households, gq's, and persons
    hhld_control_variables = project.hhldVars
    gq_control_variables = project.gqVars
    person_control_variables = project.personVars

    # Identifying the number of categories within each control variable for the households, gq's, and persons
    hhld_dimensions = project.hhldDims
    gq_dimensions = project.gqDims
    person_dimensions = project.personDims

    print '------------------------------------------------------------------'
    print 'Preparing Data for the Synthesizer Run'
    print '------------------------------------------------------------------'

    print 'Dimensions and Control Variables in %.4f' % (time.clock() - ti)
    ti = time.clock()

    update_string = adjusting_sample_joint_distribution.create_update_string(
        db, hhld_control_variables, hhld_dimensions)
    adjusting_sample_joint_distribution.add_unique_id(db, 'hhld_sample',
                                                      'hhld', update_string)
    update_string = adjusting_sample_joint_distribution.create_update_string(
        db, gq_control_variables, gq_dimensions)
    adjusting_sample_joint_distribution.add_unique_id(db, 'gq_sample', 'gq',
                                                      update_string)
    update_string = adjusting_sample_joint_distribution.create_update_string(
        db, person_control_variables, person_dimensions)
    adjusting_sample_joint_distribution.add_unique_id(db, 'person_sample',
                                                      'person', update_string)

    print 'Uniqueid\'s in %.4fs' % (time.clock() - ti)
    ti = time.clock()
    """
# Populating the Master Matrix
    populated_matrix = psuedo_sparse_matrix_new.populate_master_matrix(db, 0, 
                                                                   hhld_units, gq_units, 
                                                                   hhld_control_variables, gq_control_variables, person_control_variables,
                                                                   hhld_dimensions, gq_dimensions, person_dimensions)
    print 'Populated in %.4fs' %(time.clock()-ti)
    ti = time.clock()

# Sparse representation of the Master Matrix
    ps_sp_matrix = psuedo_sparse_matrix.psuedo_sparse_matrix(db, populated_matrix, 0)
    print 'Psuedo Sparse Matrix in %.4fs' %(time.clock()-ti)
    ti = time.clock()
#______________________________________________________________________
#Creating Index Matrix
    index_matrix = psuedo_sparse_matrix.generate_index_matrix(db, 0)
    print 'Index Matrix in %.4fs' %(time.clock()-ti)
    ti = time.clock()
    dbc.close()
    """

    # Populating the Master Matrix for Household Types
    populated_matrix = psuedo_sparse_matrix.populate_master_matrix(
        db, 99999, hhld_units, gq_units, hhld_dimensions, gq_dimensions,
        person_dimensions)
    print 'Populated in %.4fs' % (time.clock() - ti)
    ti = time.clock()

    # Sparse representation of the Master Matrix for Household Types
    ps_sp_matrix = psuedo_sparse_matrix.psuedo_sparse_matrix(
        db, populated_matrix, 99999, project)
    print 'Psuedo Sparse Matrix in %.4fs' % (time.clock() - ti)
    ti = time.clock()
    #______________________________________________________________________
    #Creating Index Matrix of the Master Matrix for Household Types
    index_matrix = psuedo_sparse_matrix.generate_index_matrix(db, 99999)
    print 'Index Matrix in %.4fs' % (time.clock() - ti)
    ti = time.clock()
    dbc.close()

    #______________________________________________________________________
    # creating synthetic_population tables in MySQL
    drawing_households.create_synthetic_attribute_tables(db)

    # creating performance_statistics table in MySQL
    drawing_households.create_performance_table(db)

    # Total PUMS Sample x composite_type adjustment for hhld
    adjusting_sample_joint_distribution.create_joint_dist(
        db, 'hhld', hhld_control_variables, hhld_dimensions, 0, 0, 0)

    # Total PUMS Sample x composite_type adjustment for gq
    adjusting_sample_joint_distribution.create_joint_dist(
        db, 'gq', gq_control_variables, gq_dimensions, 0, 0, 0)

    # Total PUMS Sample x composite_type adjustment for person
    adjusting_sample_joint_distribution.create_joint_dist(
        db, 'person', person_control_variables, person_dimensions, 0, 0, 0)
Exemplo n.º 6
0
def prepare_data(db):
    #    Processes/ methods to be called at the beginning of the pop_synthesis process
    dbc = db.cursor()

    # Identifying the number of housing units to build the Master Matrix
    dbc.execute('select * from housing_pums')
    housing_units = dbc.rowcount
    ti = time.clock()
    # Identifying the control variables for the households, gq's, and persons
    hhld_control_variables = adjusting_pums_joint_distribution.choose_control_variables(
        db, 'hhld')
    gq_control_variables = adjusting_pums_joint_distribution.choose_control_variables(
        db, 'gq')
    person_control_variables = adjusting_pums_joint_distribution.choose_control_variables(
        db, 'person')

    # Identifying the number of categories within each control variable for the households, gq's, and persons
    hhld_dimensions = numpy.asarray(
        adjusting_pums_joint_distribution.create_dimensions(
            db, 'hhld', hhld_control_variables))
    gq_dimensions = numpy.asarray(
        adjusting_pums_joint_distribution.create_dimensions(
            db, 'gq', gq_control_variables))
    person_dimensions = numpy.asarray(
        adjusting_pums_joint_distribution.create_dimensions(
            db, 'person', person_control_variables))

    print 'Dimensions and Control Variables created in %.4f' % (time.clock() -
                                                                ti)
    ti = time.clock()

    update_string = adjusting_pums_joint_distribution.create_update_string(
        db, hhld_control_variables, hhld_dimensions)
    adjusting_pums_joint_distribution.add_unique_id(db, 'hhld', update_string)
    update_string = adjusting_pums_joint_distribution.create_update_string(
        db, gq_control_variables, gq_dimensions)
    adjusting_pums_joint_distribution.add_unique_id(db, 'gq', update_string)
    update_string = adjusting_pums_joint_distribution.create_update_string(
        db, person_control_variables, person_dimensions)
    adjusting_pums_joint_distribution.add_unique_id(db, 'person',
                                                    update_string)

    print 'Uniqueid\'s created in %.4f' % (time.clock() - ti)
    ti = time.clock()

    # Populating the Master Matrix
    populated_matrix = psuedo_sparse_matrix.populate_master_matrix(
        db, 0, housing_units, hhld_dimensions, gq_dimensions,
        person_dimensions)
    print 'Frequency Matrix Populated in %.4f' % (time.clock() - ti)
    ti = time.clock()

    # Sparse representation of the Master Matrix
    ps_sp_matrix = psuedo_sparse_matrix.psuedo_sparse_matrix(
        db, populated_matrix, 0)
    print 'Psuedo Sparse Representation of the Frequency Matrix created in %.4f' % (
        time.clock() - ti)
    ti = time.clock()
    #______________________________________________________________________
    #Creating Index Matrix
    index_matrix = psuedo_sparse_matrix.generate_index_matrix(db, 0)
    print 'Index matrix created in %.4f' % (time.clock() - ti)
    ti = time.clock()
    dbc.close()
    #______________________________________________________________________
    # creating synthetic_population tables in MySQL
    drawing_households.create_synthetic_attribute_tables(db)

    # Total PUMS Sample x composite_type adjustment for hhld
    adjusting_pums_joint_distribution.create_joint_dist(
        db, 'hhld', hhld_control_variables, hhld_dimensions, 0, 0, 0)

    # Total PUMS Sample x composite_type adjustment for gq
    adjusting_pums_joint_distribution.create_joint_dist(
        db, 'gq', gq_control_variables, gq_dimensions, 0, 0, 0)

    # Total PUMS Sample x composite_type adjustment for person
    adjusting_pums_joint_distribution.create_joint_dist(
        db, 'person', person_control_variables, person_dimensions, 0, 0, 0)