Exemplo n.º 1
0
    def generate_mmodes(self):
        """Calculate the m-modes corresponding to the Timestream.

        Perform an MPI transpose for efficiency.
        """


        if os.path.exists(self.output_directory + "/mmodes/COMPLETED_M"):
            if mpiutil.rank0:
                print "******* m-files already generated ********"
            return

        tel = self.telescope
        mmax = tel.mmax
        nfreq = tel.nfreq

        lfreq, sfreq, efreq = mpiutil.split_local(nfreq)
        lm, sm, em = mpiutil.split_local(mmax + 1)

        # Load in the local frequencies of the time stream
        tstream = np.zeros((lfreq, tel.npairs, self.ntime), dtype=np.complex128)
        for lfi, fi in enumerate(range(sfreq, efreq)):
            tstream[lfi] = self.timestream_f(fi)

        # FFT to calculate the m-modes for the timestream
        row_mmodes = np.fft.fft(tstream, axis=-1) / self.ntime

        ## Combine positive and negative m parts.
        row_mpairs = np.zeros((lfreq, 2, tel.npairs, mmax+1), dtype=np.complex128)

        row_mpairs[:, 0, ..., 0] = row_mmodes[..., 0]
        for mi in range(1, mmax+1):
            row_mpairs[:, 0, ..., mi] = row_mmodes[...,  mi]
            row_mpairs[:, 1, ..., mi] = row_mmodes[..., -mi].conj()

        # Transpose to get the entirety of an m-mode on each process (i.e. all frequencies)
        col_mmodes = mpiutil.transpose_blocks(row_mpairs, (nfreq, 2, tel.npairs, mmax + 1))

        # Transpose the local section to make the m's first
        col_mmodes = np.transpose(col_mmodes, (3, 0, 1, 2))

        for lmi, mi in enumerate(range(sm, em)):

            # Make directory for each m-mode
            if not os.path.exists(self._mdir(mi)):
                os.makedirs(self._mdir(mi))

            # Create the m-file and save the result.
            with h5py.File(self._mfile(mi), 'w') as f:
                f.create_dataset('/mmode', data=col_mmodes[lmi])
                f.attrs['m'] = mi

        if mpiutil.rank0:

            # Make file marker that the m's have been correctly generated:
            open(self.output_directory + "/mmodes/COMPLETED_M", 'a').close()

        mpiutil.barrier()
Exemplo n.º 2
0
    def load(self, filename, freq_split=True):
        """Load a large dataset from a single file on disk.

        Parameters
        ----------
        filename : string
            File to load.
        freq_split : boolean
            Split file across nodes by frequency (default) or by time.

        Returns
        -------
        mpi_dset : MPIDataset
        """

        mpi_dset = MPIDataset()

        with h5py.File(filename, 'r') as f:

            mpi_dset.global_timestamp = f['timestamp'][:]
            mpi_dset.global_nfreq = f['vis'].shape[0]

            if freq_split:
                st = 0
                et = mpi_dset.global_timestamp.shape[0]
                nf, sf, ef = mpiutil.split_local(mpi_dset.global_nfreq)
            else:
                # Reset flags of which split we are in
                mpi_dset.freq_split = False
                mpi_dset.time_split = True

                sf = 0
                ef = mpi_dset.global_nfreq
                nt, st, et = mpiutil.split_local(mpi_dset.global_timestamp.shape[0])

            # Copy correct section of data from file.
            mpi_dset.data = f['vis'][sf:ef, ..., st:et][:]

            # Load mask if required
            if 'mask' in f:
                mpi_dset.mask = f['mask'][sf:ef, ..., st:et][:]
            else:
                mpi_dset.mask = np.ones_like(mpi_dset.data, dtype=np.int8)

            mpi_dset.time_start = st
            mpi_dset.time_end = et
            mpi_dset.freq_start = sf
            mpi_dset.freq_end = ef

        return mpi_dset
Exemplo n.º 3
0
    def make_clzz_array(self):

        p_bands, s_bands, e_bands = mpiutil.split_all(self.nbands)
        p, s, e = mpiutil.split_local(self.nbands)

        self.clarray = np.zeros((self.nbands, self.telescope.lmax + 1,
                                 self.telescope.nfreq, self.telescope.nfreq), dtype=np.float64)

        for bi in range(s, e):
            self.clarray[bi] = self.make_clzz(self.band_pk[bi])

        bandsize = (self.telescope.lmax + 1) * self.telescope.nfreq * self.telescope.nfreq
        sizes = p_bands * bandsize
        displ = s_bands * bandsize

        MPI.COMM_WORLD.Allgatherv(MPI.IN_PLACE, [self.clarray, sizes, displ, MPI.DOUBLE])
Exemplo n.º 4
0
    def to_time_split(self):
        """Transform from a frequency split dataset to a time split one.

        Returns
        -------
        mpi_dset : MPIDataset
            A dataset which is now distributed along the time axis.
        """

        if self.time_split:
            return self

        if not self.freq_split:
            raise Exception("Can't transform from mixed splitting.")

        tsplit_dset = MPIDataset()

        # Set global properties
        tsplit_dset.global_timestamp = self.global_timestamp
        tsplit_dset.global_nfreq = self.global_nfreq

        # Set local frequency properties
        tsplit_dset.freq_start = 0
        tsplit_dset.freq_end = self.global_nfreq

        # Determine local time properties
        gtime = self.global_timestamp.size
        lt, st, et = mpiutil.split_local(gtime)
        tsplit_dset.time_start = st
        tsplit_dset.time_end = et

        # MPI transpose the data
        ts_data = mpiutil.transpose_blocks(self.data, self.global_shape)
        ts_mask = mpiutil.transpose_blocks(self.mask, self.global_shape)
        tsplit_dset.data = ts_data
        tsplit_dset.mask = ts_mask

        tsplit_dset.freq_split = False
        tsplit_dset.time_split = True

        return tsplit_dset
Exemplo n.º 5
0
    def to_freq_split(self):
        """Transform from a time split dataset to a frequency split one.

        Returns
        -------
        mpi_dset : MPIDataset
            A dataset which is now distributed along the freq axis.
        """
        if self.freq_split:
            return self

        if not self.time_split:
            raise Exception("Can't transform from mixed splitting.")

        fsplit_dset = MPIDataset()

        # Set global properties
        fsplit_dset.global_timestamp = self.global_timestamp
        fsplit_dset.global_nfreq = self.global_nfreq

        # Set local frequency properties
        fsplit_dset.time_start = 0
        fsplit_dset.time_end = self.global_timestamp.size


        # Determine local time properties
        lf, sf, ef = mpiutil.split_local(self.global_nfreq)
        fsplit_dset.freq_start = sf
        fsplit_dset.freq_end = ef

        fs_data = mpiutil.transpose_blocks(self.data.T, self.global_shape[::-1])
        fs_mask = mpiutil.transpose_blocks(self.mask.T, self.global_shape[::-1])

        fsplit_dset.data = fs_data.T
        fsplit_dset.mask = fs_mask.T

        return fsplit_dset
Exemplo n.º 6
0
def simulate(m, outdir, maps=[], ndays=None, resolution=0, seed=None, **kwargs):
    """Create a simulated timestream and save it to disk.

    Parameters
    ----------
    m : ProductManager object
        Products of telescope to simulate.
    outdir : directoryname
        Directory that we will save the timestream into.
    maps : list
        List of map filenames. The sum of these form the simulated sky.
    ndays : int, optional
        Number of days of observation. Setting `ndays = None` (default) uses
        the default stored in the telescope object; `ndays = 0`, assumes the
        observation time is infinite so that the noise is zero.
    resolution : scalar, optional
        Approximate time resolution in seconds. Setting `resolution = 0`
        (default) calculates the value from the mmax.

    Returns
    -------
    timestream : Timestream
    """

    ## Read in telescope system
    bt = m.beamtransfer
    tel = bt.telescope

    lmax = tel.lmax
    mmax = tel.mmax
    nfreq = tel.nfreq
    npol = tel.num_pol_sky

    projmaps = (len(maps) > 0)

    lfreq, sfreq, efreq = mpiutil.split_local(nfreq)
    local_freq = range(sfreq, efreq)

    lm, sm, em = mpiutil.split_local(mmax + 1)

    # If ndays is not set use the default value.
    if ndays is None:
        ndays = tel.ndays

    # Calculate the number of timesamples from the resolution
    if resolution == 0:
        # Set the minimum resolution required for the sky.
        ntime = 2*mmax+1
    else:
        # Set the cl
        ntime = int(np.round(24 * 3600.0 / resolution))


    col_vis = np.zeros((tel.npairs, lfreq, ntime), dtype=np.complex128)

    ## If we want to add maps use the m-mode formalism to project a skymap
    ## into visibility space.
    
    if projmaps:

        # Load file to find out the map shapes.
        with h5py.File(maps[0], 'r') as f:
            mapshape = f['map'].shape

        if lfreq > 0:

            # Allocate array to store the local frequencies
            row_map = np.zeros((lfreq,) + mapshape[1:], dtype=np.float64)
            
            # Read in and sum up the local frequencies of the supplied maps.
            for mapfile in maps:
                with h5py.File(mapfile, 'r') as f:
                    row_map += f['map'][sfreq:efreq]
                    
            # Calculate the alm's for the local sections
            row_alm = hputil.sphtrans_sky(row_map, lmax=lmax).reshape((lfreq, npol * (lmax+1), lmax+1))

        else:
            row_alm = np.zeros((lfreq, npol * (lmax+1), lmax+1), dtype=np.complex128)

        # Perform the transposition to distribute different m's across processes. Neat
        # tip, putting a shorter value for the number of columns, trims the array at
        # the same time
        col_alm = mpiutil.transpose_blocks(row_alm, (nfreq, npol * (lmax+1), mmax+1))

        # Transpose and reshape to shift m index first.
        col_alm = np.transpose(col_alm, (2, 0, 1)).reshape(lm, nfreq, npol, lmax+1)

        # Create storage for visibility data
        vis_data = np.zeros((lm, nfreq, bt.ntel), dtype=np.complex128)

        # Iterate over m's local to this process and generate the corresponding
        # visibilities
        for mp, mi in enumerate(range(sm, em)):
            vis_data[mp] = bt.project_vector_sky_to_telescope(mi, col_alm[mp])

        # Rearrange axes such that frequency is last (as we want to divide
        # frequencies across processors)
        row_vis = vis_data.transpose((0, 2, 1))#.reshape((lm * bt.ntel, nfreq))

        # Parallel transpose to get all m's back onto the same processor
        col_vis_tmp = mpiutil.transpose_blocks(row_vis, ((mmax+1), bt.ntel, nfreq))
        col_vis_tmp = col_vis_tmp.reshape(mmax + 1, 2, tel.npairs, lfreq)


        # Transpose the local section to make the m's the last axis and unwrap the
        # positive and negative m at the same time.
        col_vis[..., 0] = col_vis_tmp[0, 0]
        for mi in range(1, mmax+1):
            col_vis[...,  mi] = col_vis_tmp[mi, 0]
            col_vis[..., -mi] = col_vis_tmp[mi, 1].conj()  # Conjugate only (not (-1)**m - see paper)


        del col_vis_tmp

    ## If we're simulating noise, create a realisation and add it to col_vis
    if ndays > 0:

        # Fetch the noise powerspectrum
        noise_ps = tel.noisepower(np.arange(tel.npairs)[:, np.newaxis], np.array(local_freq)[np.newaxis, :], ndays=ndays).reshape(tel.npairs, lfreq)[:, :, np.newaxis]


        # Seed random number generator to give consistent noise
        if seed is not None:
            # Must include rank such that we don't have massive power deficit from correlated noise
            np.random.seed(seed + mpiutil.rank) 

        # Create and weight complex noise coefficients
        noise_vis = (np.array([1.0, 1.0J]) * np.random.standard_normal(col_vis.shape + (2,))).sum(axis=-1)
        noise_vis *= (noise_ps / 2.0)**0.5

        # Reset RNG
        if seed is not None:
            np.random.seed()

        # Add into main noise sims
        col_vis += noise_vis

        del noise_vis


    # Fourier transform m-modes back to get timestream.
    vis_stream = np.fft.ifft(col_vis, axis=-1) * ntime
    vis_stream = vis_stream.reshape(tel.npairs, lfreq, ntime)

    # The time samples the visibility is calculated at
    tphi = np.linspace(0, 2*np.pi, ntime, endpoint=False)

    # Create timestream object
    tstream = Timestream(outdir, m)

    ## Iterate over the local frequencies and write them to disk.
    for lfi, fi in enumerate(local_freq):

        # Make directory if required
        if not os.path.exists(tstream._fdir(fi)):
            os.makedirs(tstream._fdir(fi))

        # Write file contents
        with h5py.File(tstream._ffile(fi), 'w') as f:

            # Timestream data
            f.create_dataset('/timestream', data=vis_stream[:, lfi])
            f.create_dataset('/phi', data=tphi)

            # Telescope layout data
            f.create_dataset('/feedmap', data=tel.feedmap)
            f.create_dataset('/feedconj', data=tel.feedconj)
            f.create_dataset('/feedmask', data=tel.feedmask)
            f.create_dataset('/uniquepairs', data=tel.uniquepairs)
            f.create_dataset('/baselines', data=tel.baselines)

            # Write metadata
            f.attrs['beamtransfer_path'] = os.path.abspath(bt.directory)
            f.attrs['ntime'] = ntime

    tstream.save()

    mpiutil.barrier()

    return tstream
Exemplo n.º 7
0
    def from_files(cls, filelist, acq=True):
        """Load from a set of CHIME data files.

        Parameters
        ----------
        filelist : list
            List of filenames to load.
        acq : boolean, optional
            Are the files analysis files or acquisition files (default)?

        Returns
        -------
        mpi_dset : MPIDataset
            Distributed dataset type.
        """
        mpi_dset = cls()

        filelist.sort()

        # Global number of files
        ngfiles = len(filelist)

        # Split into local set of files.
        lf, sf, ef = mpiutil.split_local(ngfiles)
        local_files = filelist[sf:ef]

        fshape = None

        # Set file loading routine depending on whether files are acq or
        # analysis.
        _load_file = andata.AnData.from_acq_h5 if acq else andata.AnData.from_file

        # Rank 0 should open file and check the shape.
        if mpiutil.rank0:
            d0 = _load_file(local_files[0])
            fshape = d0.datasets['vis'].shape

        # Broadcast the shape to all other ranks
        fshape = mpiutil.world.bcast(fshape, root=0)

        # Unpack to get the individual lengths
        nfreq, nprod, ntime = fshape

        # This will be the local shape, file ordered.
        lshape = (lf, ntime, nprod, nfreq)

        local_array = np.zeros(lshape, dtype=np.complex128)

        # Timestamps
        timestamps = []

        for li, lfile in enumerate(local_files):

            print "Rank %i reading %s" % (mpiutil.rank, lfile)
            # Load file
            df = _load_file(lfile)

            # Copy data into local dataset
            dset = df.datasets['vis']

            if dset.shape != fshape:
                raise Exception("Data from %s is not the right shape" % lfile)

            local_array[li] = dset.T

            # Get timestamps
            timestamps.append((li + sf, df.timestamp))


        ## Merge timestamps
        tslist = mpiutil.world.allgather(timestamps)
        tsflat = [ts for proclist in tslist for ts in proclist]  # Flatten list

        # Add timestamps into array
        timestamp_array = np.zeros((ngfiles, ntime), dtype=np.float64)
        for ind, tstamps in tsflat:
            timestamp_array[ind] = tstamps
        timestamp_array = timestamp_array.reshape(ngfiles * ntime)

        if mpiutil.rank0:
            print "Starting transpose...",

        data_by_freq = mpiutil.transpose_blocks(local_array, (ngfiles, ntime, nprod, nfreq))

        if mpiutil.rank0:
            print " done."
            
        # Get local frequencies
        lfreq, sfreq, efreq = mpiutil.split_local(nfreq)

        data_by_freq = data_by_freq.reshape((ngfiles * ntime, nprod, lfreq)).T

        # Set dataset
        mpi_dset.data = data_by_freq
        mpi_dset.mask = np.ones_like(mpi_dset.data, dtype=np.int8)

        # Set time properties
        mpi_dset.global_timestamp = timestamp_array
        mpi_dset.time_start = 0
        mpi_dset.time_end = mpi_dset.timestamp.shape[0]

        # Set frequency properties
        mpi_dset.freq_start = sfreq
        mpi_dset.freq_end = efreq
        mpi_dset.global_nfreq = nfreq

        return mpi_dset