def setUp(self):
     self.identity_dq = DualQuaternion.identity()
     self.random_dq = DualQuaternion.from_quat_pose_array(
         np.array([1, 2, 3, 4, 5, 6, 7]))
     self.other_random_dq = DualQuaternion.from_quat_pose_array(
         np.array([0.2, 0.1, 0.3, 0.07, 1.2, 0.9, 0.2]))
     self.normalized_dq = self.random_dq.normalized()
 def test_creation(self):
     # from dual quaternion array: careful, need to supply a normalized DQ
     dql = np.array([
         0.7071067811, 0.7071067811, 0, 0, -3.535533905, 3.535533905,
         1.767766952, -1.767766952
     ])
     dq1 = DualQuaternion.from_dq_array(dql)
     dq2 = DualQuaternion.from_dq_array(dql)
     self.assertEqual(dq1, dq2)
     # from quaternion + translation array
     dq3 = DualQuaternion.from_quat_pose_array(
         np.array([1, 2, 3, 4, 5, 6, 7]))
     dq4 = DualQuaternion.from_quat_pose_array([1, 2, 3, 4, 5, 6, 7])
     self.assertEqual(dq3, dq4)
     # from homogeneous transformation matrix
     T = np.array([[1, 0, 0, 2], [0, 1, 0, 3], [0, 0, 1, 1], [0, 0, 0, 1]])
     dq7 = DualQuaternion.from_homogeneous_matrix(T)
     self.assertEqual(dq7.q_r, quaternion.one)
     self.assertEqual(dq7.translation(), [2, 3, 1])
     try:
         np.testing.assert_array_almost_equal(dq7.homogeneous_matrix(), T)
     except AssertionError as e:
         self.fail(e)
     # from a point
     dq8 = DualQuaternion.from_translation_vector([4, 6, 8])
     self.assertEqual(dq8.translation(), [4, 6, 8])
    def test_from_screw_and_back(self):
        # start with a random valid dual quaternion
        dq = DualQuaternion.from_quat_pose_array(
            [0.5, 0.3, 0.1, 0.4, 2, 5, -2])
        lr, mr, thetar, dr = dq.screw()
        dq_reconstructed = DualQuaternion.from_screw(lr, mr, thetar, dr)
        self.assertEqual(dq, dq_reconstructed)

        # start with some screw parameters
        l1 = np.array([0.4, 0.2, 0.5])
        l1 /= np.linalg.norm(l1)  # make sure l1 is normalized
        # pick some point away from the origin
        p1 = np.array([2.3, 0.9, 1.1])
        m1 = np.cross(p1, l1)
        d1 = 4.32
        theta1 = 1.94
        dq1 = DualQuaternion.from_screw(l1, m1, theta1, d1)
        l2, m2, theta2, d2 = dq1.screw()
        try:
            np.testing.assert_array_almost_equal(l1, l2, decimal=3)
            np.testing.assert_array_almost_equal(l1, l2, decimal=3)
        except AssertionError as e:
            self.fail(e)
        self.assertAlmostEqual(theta1, theta2)
        self.assertAlmostEqual(d1, d2)
 def test_normalize(self):
     self.assertTrue(self.identity_dq.is_normalized())
     self.assertEqual(self.identity_dq.normalized(), self.identity_dq)
     unnormalized_dq = DualQuaternion.from_quat_pose_array(
         [1, 2, 3, 4, 5, 6, 7])
     unnormalized_dq.normalize()  # now normalized!
     self.assertTrue(unnormalized_dq.is_normalized())
Exemplo n.º 5
0
def from_ros_transform(transform_msg):
    """
    Create a DualQuaternion instance from a ROS Transform msg

    :param transform_msg: geometry_msgs.msg.Transform()
    """
    tra = transform_msg.translation
    rot = transform_msg.rotation

    return DualQuaternion.from_quat_pose_array([rot.w, rot.x, rot.y, rot.z, tra.x, tra.y, tra.z])
Exemplo n.º 6
0
def from_ros_pose(pose_msg):
    """
    Create a DualQuaternion instance from a ROS Pose msg

    :param pose_msg: geometry_msgs.msg.Pose()
    """
    tra = pose_msg.position
    rot = pose_msg.orientation

    return DualQuaternion.from_quat_pose_array([rot.w, rot.x, rot.y, rot.z, tra.x, tra.y, tra.z])
Exemplo n.º 7
0
def from_ros(msg):
    """
    Create a DualQuaternion instance from a ROS Pose or Transform message

    :param msg: geometry_msgs.msg.Pose or geometry_msgs.msg.Transform
    """
    try:
        tra = msg.position
        rot = msg.orientation
    except AttributeError:
        tra = msg.translation
        rot = msg.rotation

    return DualQuaternion.from_quat_pose_array([rot.w, rot.x, rot.y, rot.z, tra.x, tra.y, tra.z])
 def test_from_screw(self):
     # construct an axis along the positive z-axis
     l = np.array([0, 0, 1])
     # pick a point on the axis that defines it's location
     p = np.array([-1, 0, 0])
     # moment vector
     m = np.cross(p, l)
     theta = np.pi / 2
     d = 3.
     # this corresponds to a rotation around the axis parallel with the origin's z-axis through the point p
     # the resulting transformation should move the origin to a DQ with elements:
     desired_dq_rot = DualQuaternion.from_quat_pose_array(
         [np.cos(theta / 2), 0, 0,
          np.sin(theta / 2), 0, 0, 0])
     desired_dq_trans = DualQuaternion.from_translation_vector([-1, 1, d])
     desired_dq = desired_dq_trans * desired_dq_rot
     dq = DualQuaternion.from_screw(l, m, theta, d)
     self.assertEqual(dq, desired_dq)