Exemplo n.º 1
0
def populate_dudetailsummary(engine=SQLITE):
    df = mmsds_reader.download(dataset="dudetailsummary", y=2019, m=2)
    cols = [
        'DUID', 'REGIONID', 'STATIONID', 'PARTICIPANTID', 'CONNECTIONPOINTID',
        'DISPATCHTYPE', 'SCHEDULE_TYPE', 'STARTTYPE', 'TRANSMISSIONLOSSFACTOR',
        'DISTRIBUTIONLOSSFACTOR', 'MIN_RAMP_RATE_UP', 'MIN_RAMP_RATE_DOWN',
        'MAX_RAMP_RATE_UP', 'MAX_RAMP_RATE_DOWN', 'IS_AGGREGATED',
        'START_DATE', 'END_DATE', 'LASTCHANGED'
    ]

    for col in ['START_DATE', 'END_DATE', 'LASTCHANGED']:
        df[col] = df[col].apply(lambda x: date_parse(x))

    for id_table, column in {
            "STATION": "STATIONID",
            "REGION": "REGIONID",
            "PARTICIPANT": "PARTICIPANTID",
            "CONNECTIONPOINT": "CONNECTIONPOINTID",
            "DISPATCHTYPE": "DISPATCHTYPE",
            "SCHEDULE_TYPE": "SCHEDULE_TYPE",
            "DU": "DUID"
    }.items():
        id_key_map = key_mapper(id_table, column)
        df[column] = df[column].apply(lambda x: id_key_map[x])

    id_key_map = key_mapper("STARTTYPE", "STARTTYPE")
    df['STARTTYPE'] = df['STARTTYPE'].apply(lambda x: nan_parse(id_key_map, x))
    df[cols].to_sql("DUDETAILSUMMARY",
                    con=engine,
                    index=False,
                    if_exists='append')
Exemplo n.º 2
0
def populate_participants(engine=SQLITE):
    key_map = key_mapper("PARTICIPANTCLASS", engine=engine)

    df = mmsds_reader.download(dataset="participant", y=2019, m=2)
    df.PARTICIPANTCLASSID = df.PARTICIPANTCLASSID.apply(lambda x: key_map[x])
    dx = df[['PARTICIPANTID', 'PARTICIPANTCLASSID', 'NAME']]
    dx.to_sql("PARTICIPANT", con=engine, index=False, if_exists='append')
Exemplo n.º 3
0
def populate_connection_points(engine=SQLITE):
    df = mmsds_reader.download(dataset="dudetail")
    df_conn = df.CONNECTIONPOINTID.copy().drop_duplicates()
    df_conn.sort_values(inplace=True)
    df_conn.to_sql("CONNECTIONPOINT",
                   con=engine,
                   index=False,
                   if_exists='append')
Exemplo n.º 4
0
def populate_operating_status(engine=SQLITE):
    df_os = mmsds_reader.download(dataset='operatingstatus')
    station_key_map = key_mapper("STATION", "STATIONID")
    df_os['STATIONID'] = df_os.STATIONID.apply(lambda x: station_key_map[x])

    status_key_map = key_mapper("STATUS", "STATUS")
    df_os['STATUS'] = df_os['STATUS'].apply(lambda x: status_key_map[x])

    df_os[['STATIONID', 'STATUS',
           'EFFECTIVEDATE']].to_sql("STATIONOPERATINGSTATUS",
                                    con=engine,
                                    if_exists='append',
                                    index=None)
Exemplo n.º 5
0
def populate_genset_table(engine=SQLITE):
    # could be added to genunit create
    df_g = mmsds_reader.download(dataset="genunits", y=2019, m=2)

    #all duids
    duid_key_map = key_mapper("FULL_REGISTER", "DUID", engine=legacy)
    df_g['ID'] = df_g.GENSETID.apply(lambda x: duid_parse(duid_key_map, x))

    genunitid = df_g[['ID', 'GENSETID']]

    da = genunitid[genunitid.ID.notna()]
    da.to_sql("GENSET", con=engine, if_exists='append', index=None)

    #new duids
    db = genunitid[genunitid.ID.isna()]
    db.to_sql("GENSET", con=engine, if_exists='append', index=None)
Exemplo n.º 6
0
def populate_duid_table(engine=SQLITE):
    df_ds = mmsds_reader.download(dataset="dudetailsummary", y=2019, m=2)

    #all duids
    duid_key_map = key_mapper("FULL_REGISTER", "DUID", engine=legacy)
    df_ds['ID'] = df_ds.DUID.apply(lambda x: duid_parse(duid_key_map, x))

    unique_duids = df_ds[['ID', 'DUID']].drop_duplicates()

    #duids with legacy ids
    da = unique_duids[unique_duids.ID.notna()]
    da.to_sql("DU", con=engine, if_exists='append', index=None)

    #new duids
    db = unique_duids[unique_duids.ID.isna()]
    db.to_sql("DU", con=engine, if_exists='append', index=None)
Exemplo n.º 7
0
def populate_genunits(engine=SQLITE):
    df = mmsds_reader.download(dataset="genunits", y=2019, m=2)
    cols = [
        'GENSETID', 'STATIONID', 'CDINDICATOR', 'AGCFLAG', 'SPINNINGFLAG',
        'VOLTLEVEL', 'REGISTEREDCAPACITY', 'STARTTYPE', 'MKTGENERATORIND',
        'NORMALSTATUS', 'MAXCAPACITY', 'GENSETTYPE', 'LASTCHANGED',
        'CO2E_EMISSIONS_FACTOR', 'CO2E_ENERGY_SOURCE', 'CO2E_DATA_SOURCE'
    ]

    df = df[~df.GENSETID.isin([
        "GE01", "GE03", "GK03", "GE04", "GE02", "GK04", "GH01", "GH02", "GK01",
        "GK02"
    ])]
    gen_unit_map(df)

    for col in ['LASTCHANGED']:
        df[col] = df[col].apply(lambda x: date_parse(x))

    for col in [
            'CDINDICATOR', 'AGCFLAG', 'SPINNINGFLAG', 'MKTGENERATORIND',
            'NORMALSTATUS'
    ]:
        df[col] = df[col].apply(lambda x: True if x == "Y" else False)

    id_key_map = key_mapper("DISPATCHTYPE", "DISPATCHTYPE")
    df["GENSETTYPE"] = df["GENSETTYPE"].apply(lambda x: id_key_map[x])

    id_key_map = key_mapper("GENSET", "GENSETID")
    df["GENSETID"] = df["GENSETID"].apply(lambda x: id_key_map[x])

    id_key_map = key_mapper("STATION", "STATIONID")
    df["STATIONID"] = df["STATIONID"].apply(lambda x: id_key_map[x])

    for id_table, column in {
            "CO2E_ENERGY_SOURCE": "CO2E_ENERGY_SOURCE",
            "CO2E_DATA_SOURCE": "CO2E_DATA_SOURCE",
            "STARTTYPE": "STARTTYPE"
    }.items():
        id_key_map = key_mapper(id_table, column)
        df[column] = df[column].apply(lambda x: nan_parse(id_key_map, x))

    df[cols].to_sql("GENUNITS", con=engine, index=False, if_exists='append')
Exemplo n.º 8
0
def populate_stations(engine=SQLITE):
    state_keys = pd.read_sql(
        "SELECT STATE as _KEY, ID FROM STATE UNION SELECT STATENAME as _KEY, ID FROM STATE",
        con=engine,
        index_col="_KEY")
    key_map = state_keys.to_dict(orient='dict')['ID']

    df = mmsds_reader.download(dataset="station", y=2019, m=2)
    df.STATE = df.STATE.apply(lambda x: key_map[x])
    for string in ['COOMA', 'BRISBANE', 'ADELAIDE', 'PORTLAND']:
        df.loc[df.POSTCODE == string, "POSTCODE"] = pd.np.nan

    dx = df[['STATIONID', 'STATIONNAME', 'STATE', 'POSTCODE']].copy()
    dx['STATIONNAME'] = dx['STATIONNAME'].apply(str.strip)
    dx['DISPLAYNAME'] = df['STATIONNAME'].apply(display_names.display_names)
    dx.sort_values("STATIONID", inplace=True)
    df_latlon = load_latlon()

    df_comb = dx.merge(df_latlon, on="STATIONID", how="left")
    df_comb.to_sql("STATION", con=engine, index=False, if_exists='append')