Exemplo n.º 1
0
def yolo_detect(video_id):
    """
    This is a HACK since Tensorflow is absolutely atrocious in allocating and freeing up memory.
    Once a process / session is allocated a memory it cannot be forced to clear it up.
    As a result this code gets called via a subprocess which clears memory when it exits.

    :param video_id:
    :return:
    """
    import django
    from PIL import Image
    sys.path.append(os.path.dirname(__file__))
    os.environ.setdefault("DJANGO_SETTINGS_MODULE", "dva.settings")
    django.setup()
    from django.conf import settings
    from dvaapp.models import Video,Region,Frame
    from dvaapp.operations.video_processing import WVideo,WFrame
    from dvalib import detector
    dv = Video.objects.get(id=video_id)
    frames = Frame.objects.all().filter(video=dv)
    v = WVideo(dvideo=dv, media_dir=settings.MEDIA_ROOT)
    wframes = {df.pk: WFrame(video=v, frame_index=df.frame_index, primary_key=df.pk) for df in frames}
    detection_count = 0
    algorithm = detector.YOLODetector()
    logging.info("starting detection {}".format(algorithm.name))
    frame_detections = algorithm.detect(wframes.values())
    for frame_pk,detections in frame_detections.iteritems():
        for d in detections:
            dd = Region()
            dd.region_type = Region.DETECTION
            dd.video = dv
            dd.frame_id = frame_pk
            dd.object_name = d['name']
            dd.confidence = d['confidence']
            dd.x = d['left']
            dd.y = d['top']
            dd.w = d['right'] - d['left']
            dd.h = d['bot'] - d['top']
            dd.save()
            img = Image.open(wframes[frame_pk].local_path())
            img2 = img.crop((d['left'], d['top'], d['right'], d['bot']))
            img2.save("{}/{}/detections/{}.jpg".format(settings.MEDIA_ROOT, video_id, dd.pk))
            detection_count += 1
    dv.refresh_from_db()
    dv.detections = dv.detections + detection_count
    dv.save()
Exemplo n.º 2
0
def detect_custom_objects(detector_pk,video_pk):
    """
    Detection using customized trained YOLO detectors
    :param detector_pk:
    :param video_pk:
    :return:
    """
    setup_django()
    from dvaapp.models import Region, Frame, CustomDetector
    from django.conf import settings
    from dvalib.yolo import trainer
    from PIL import Image
    args = {'detector_pk':int(detector_pk)}
    video_pk = int(video_pk)
    detector = CustomDetector.objects.get(pk=args['detector_pk'])
    args['root_dir'] = "{}/models/{}/".format(settings.MEDIA_ROOT, detector.pk)
    class_names = {k:v for k,v in json.loads(detector.class_names)}
    i_class_names = {i: k for k, i in class_names.items()}
    frames = {}
    for f in Frame.objects.all().filter(video_id=video_pk):
        frames[f.pk] = f
    images = []
    path_to_f = {}
    for k,f in frames.iteritems():
        path = "{}/{}/frames/{}.jpg".format(settings.MEDIA_ROOT,f.video_id,f.frame_index)
        path_to_f[path] = f
        images.append(path)
    train_task = trainer.YOLOTrainer(boxes=[], images=images, class_names=i_class_names, args=args,test_mode=True)
    results = train_task.predict()
    for path, box_class, score, top, left, bottom, right in results:
        r = Region()
        r.region_type = r.DETECTION
        r.confidence = int(100.0 * score)
        r.object_name = "YOLO_{}_{}".format(detector.pk, box_class)
        r.y = top
        r.x = left
        r.w = right - left
        r.h = bottom - top
        r.frame_id = path_to_f[path].pk
        r.video_id = path_to_f[path].video_id
        r.save()
        right = r.w + r.x
        bottom = r.h + r.y
        img = Image.open(path)
        img2 = img.crop((r.x,r.y,right, bottom))
        img2.save("{}/{}/detections/{}.jpg".format(settings.MEDIA_ROOT, video_pk, r.pk))
Exemplo n.º 3
0
def detect_custom_objects(detector_pk,video_pk):
    """
    Detection using customized trained YOLO detectors
    :param detector_pk:
    :param video_pk:
    :return:
    """
    setup_django()
    from dvaapp.models import Region, Frame, CustomDetector
    from django.conf import settings
    from dvalib.yolo import trainer
    from PIL import Image
    args = {'detector_pk':int(detector_pk)}
    video_pk = int(video_pk)
    detector = CustomDetector.objects.get(pk=args['detector_pk'])
    args['root_dir'] = "{}/detectors/{}/".format(settings.MEDIA_ROOT, detector.pk)
    class_names = {k:v for k,v in json.loads(detector.class_names)}
    i_class_names = {i: k for k, i in class_names.items()}
    frames = {}
    for f in Frame.objects.all().filter(video_id=video_pk):
        frames[f.pk] = f
    images = []
    path_to_f = {}
    for k,f in frames.iteritems():
        path = "{}/{}/frames/{}.jpg".format(settings.MEDIA_ROOT,f.video_id,f.frame_index)
        path_to_f[path] = f
        images.append(path)
    train_task = trainer.YOLOTrainer(boxes=[], images=images, class_names=i_class_names, args=args,test_mode=True)
    results = train_task.predict()
    for path, box_class, score, top, left, bottom, right in results:
        r = Region()
        r.region_type = r.DETECTION
        r.confidence = int(100.0 * score)
        r.object_name = "YOLO_{}_{}".format(detector.pk, box_class)
        r.y = top
        r.x = left
        r.w = right - left
        r.h = bottom - top
        r.frame_id = path_to_f[path].pk
        r.video_id = path_to_f[path].video_id
        r.save()
        right = r.w + r.x
        bottom = r.h + r.y
        img = Image.open(path)
        img2 = img.crop((r.x,r.y,right, bottom))
        img2.save("{}/{}/regions/{}.jpg".format(settings.MEDIA_ROOT, video_pk, r.pk))
Exemplo n.º 4
0
def train_yolo(start_pk):
    """
    Train a yolo model specified in a TaskEvent.
    This is necessary to ensure that the Tensorflow process exits and releases the allocated GPU memory.
    :param start_pk: TEvent PK with information about lauching the training task
    :return:
    """
    setup_django()
    from django.conf import settings
    from dvaapp.models import Region, Frame, CustomDetector, TEvent
    from dvaapp.shared import create_detector_folders, create_detector_dataset
    from dvalib.yolo import trainer
    start = TEvent.objects.get(pk=start_pk)
    args = json.loads(start.arguments_json)
    labels = set(args['labels']) if 'labels' in args else set()
    object_names = set(args['object_names']) if 'object_names' in args else set()
    detector = CustomDetector.objects.get(pk=args['detector_pk'])
    create_detector_folders(detector)
    args['root_dir'] = "{}/detectors/{}/".format(settings.MEDIA_ROOT,detector.pk)
    class_distribution, class_names, rboxes, rboxes_set, frames, i_class_names = create_detector_dataset(object_names,labels)
    images, boxes = [], []
    path_to_f = {}
    for k,f in frames.iteritems():
        path = "{}/{}/frames/{}.jpg".format(settings.MEDIA_ROOT,f.video_id,f.frame_index)
        path_to_f[path] = f
        images.append(path)
        boxes.append(rboxes[k])
        # print k,rboxes[k]
    with open("{}/input.json".format(args['root_dir']),'w') as input_data:
        json.dump({'boxes':boxes,
                   'images':images,
                   'args':args,
                   'class_names':class_names.items(),
                   'class_distribution':class_distribution.items()},
                  input_data)
    detector.boxes_count = sum([len(k) for k in boxes])
    detector.frames_count = len(images)
    detector.classes_count = len(class_names)
    detector.save()
    train_task = trainer.YOLOTrainer(boxes=boxes,images=images,class_names=i_class_names,args=args)
    train_task.train()
    detector.phase_1_log = file("{}/phase_1.log".format(args['root_dir'])).read()
    detector.phase_2_log = file("{}/phase_2.log".format(args['root_dir'])).read()
    detector.class_distribution = json.dumps(class_distribution.items())
    detector.class_names = json.dumps(class_names.items())
    detector.trained = True
    detector.save()
    results = train_task.predict()
    bulk_regions = []
    for path, box_class, score, top, left, bottom, right in results:
        r = Region()
        r.region_type = r.ANNOTATION
        r.confidence = int(100.0 * score)
        r.object_name = "YOLO_{}_{}".format(detector.pk,box_class)
        r.y = top
        r.x = left
        r.w = right - left
        r.h = bottom - top
        r.frame_id = path_to_f[path].pk
        r.video_id = path_to_f[path].video_id
        bulk_regions.append(r)
    Region.objects.bulk_create(bulk_regions,batch_size=1000)
    folder_name = "{}/detectors/{}".format(settings.MEDIA_ROOT,detector.pk)
    file_name = '{}/exports/{}.dva_detector.zip'.format(settings.MEDIA_ROOT,detector.pk)
    zipper = subprocess.Popen(['zip', file_name, '-r', '.'],cwd=folder_name)
    zipper.wait()
    return 0
Exemplo n.º 5
0
    train_task = trainer.YOLOTrainer(boxes=boxes, images=images, args=args)
    train_task.train()
    detector.phase_1_log = file("{}/phase_1.log".format(
        args['root_dir'])).read()
    detector.phase_2_log = file("{}/phase_2.log".format(
        args['root_dir'])).read()
    detector.class_distribution = json.dumps(class_distribution.items())
    detector.class_names = json.dumps(class_names.items())
    detector.trained = True
    detector.save()
    results = train_task.predict()
    bulk_regions = []
    for path, box_class, score, top, left, bottom, right in results:
        r = Region()
        r.region_type = r.ANNOTATION
        r.confidence = int(100.0 * score)
        r.object_name = "YOLO_{}_{}".format(detector.pk, box_class)
        r.y = top
        r.x = left
        r.w = right - left
        r.h = bottom - top
        r.frame_id = path_to_f[path].pk
        r.video_id = path_to_f[path].video_id
        bulk_regions.append(r)
    Region.objects.bulk_create(bulk_regions, batch_size=1000)
    folder_name = "{}/detectors/{}".format(settings.MEDIA_ROOT, detector.pk)
    file_name = '{}/exports/{}.dva_detector.zip'.format(
        settings.MEDIA_ROOT, detector.pk)
    zipper = subprocess.Popen(['zip', file_name, '-r', '.'], cwd=folder_name)
    zipper.wait()
Exemplo n.º 6
0
def train_yolo(start_pk):
    """
    Train a yolo model specified in a TaskEvent.
    This is necessary to ensure that the Tensorflow process exits and releases the allocated GPU memory.
    :param start_pk: TEvent PK with information about lauching the training task
    :return:
    """
    setup_django()
    from django.conf import settings
    from dvaapp.models import Region, Frame, CustomDetector, TEvent
    from dvaapp.shared import create_detector_folders, create_detector_dataset
    from dvalib.yolo import trainer
    start = TEvent.objects.get(pk=start_pk)
    args = json.loads(start.arguments_json)
    labels = set(args['labels']) if 'labels' in args else set()
    object_names = set(args['object_names']) if 'object_names' in args else set()
    detector = CustomDetector.objects.get(pk=args['detector_pk'])
    create_detector_folders(detector)
    args['root_dir'] = "{}/detectors/{}/".format(settings.MEDIA_ROOT,detector.pk)
    class_distribution, class_names, rboxes, rboxes_set, frames, i_class_names = create_detector_dataset(object_names,labels)
    images, boxes = [], []
    path_to_f = {}
    for k,f in frames.iteritems():
        path = "{}/{}/frames/{}.jpg".format(settings.MEDIA_ROOT,f.video_id,f.frame_index)
        path_to_f[path] = f
        images.append(path)
        boxes.append(rboxes[k])
        # print k,rboxes[k]
    with open("{}/input.json".format(args['root_dir']),'w') as input_data:
        json.dump({'boxes':boxes,
                   'images':images,
                   'args':args,
                   'class_names':class_names.items(),
                   'class_distribution':class_distribution.items()},
                  input_data)
    detector.boxes_count = sum([len(k) for k in boxes])
    detector.frames_count = len(images)
    detector.classes_count = len(class_names)
    detector.save()
    train_task = trainer.YOLOTrainer(boxes=boxes,images=images,class_names=i_class_names,args=args)
    train_task.train()
    detector.phase_1_log = file("{}/phase_1.log".format(args['root_dir'])).read()
    detector.phase_2_log = file("{}/phase_2.log".format(args['root_dir'])).read()
    detector.class_distribution = json.dumps(class_distribution.items())
    detector.class_names = json.dumps(class_names.items())
    detector.trained = True
    detector.save()
    results = train_task.predict()
    bulk_regions = []
    for path, box_class, score, top, left, bottom, right in results:
        r = Region()
        r.region_type = r.ANNOTATION
        r.confidence = int(100.0 * score)
        r.object_name = "YOLO_{}_{}".format(detector.pk,box_class)
        r.y = top
        r.x = left
        r.w = right - left
        r.h = bottom - top
        r.frame_id = path_to_f[path].pk
        r.video_id = path_to_f[path].video_id
        bulk_regions.append(r)
    Region.objects.bulk_create(bulk_regions,batch_size=1000)
    folder_name = "{}/detectors/{}".format(settings.MEDIA_ROOT,detector.pk)
    file_name = '{}/exports/{}.dva_detector.zip'.format(settings.MEDIA_ROOT,detector.pk)
    zipper = subprocess.Popen(['zip', file_name, '-r', '.'],cwd=folder_name)
    zipper.wait()
    return 0